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Abstract

This is the first of a series of three papers involving bilateral semidirect product decompositions of monoids
of transformations that preserve or reverse the order or the orientation on a finite set. In this paper we deal
with the full transformation case. Namely, we consider the monoid ORn of all full transformations on a chain
with n elements that preserve or reverse the orientation, as well as its submonoids ODn of all order-preserving
or order-reversing elements, OPn all orientation-preserving elements and On of all order-preserving elements.

2000 Mathematics subject classification: 20M05, 20M07, 20M20, 20M35.
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Introduction and preliminaries

In this paper we construct decompositions of certain monoids of transformations by means of bilateral semidirect
products and quotients. The notion of a bilateral semidirect product of two semigroups was studied by Kunze in
[11] and was strongly motivated by automata theoretic ideas (see [12, 13] for applications in Automata Theory).
In [14] Kunze proved that the full transformation semigroup on a finite setX is a quotient of a bilateral semidirect
product of the symmetric group on X and the semigroup of all order preserving full transformations on X,
for some linear order on X. On the other hand, in the same paper, Kunze showed that the semigroup of all
order preserving full transformations on a finite chain is a quotient of a bilateral semidirect product of two its
subsemigroups. These results as well as applications to Formal Languages are also discussed by Kunze in [15].

Our strategy to construct bilateral semidirect product decompositions is quite different from Kunze tech-
niques. In fact, we first develop a general method which consists in the construction of a bilateral semidirect
product of two free monoids that, under certain conditions, induces a bilateral semidirect product of two monoids
defined by presentations associated to these free monoids. Then, we apply this method to some monoids of
transformations that preserve or reverse the order or the orientation on a finite chain. In particular, we give
a simpler, shorter and transparent proof of Kunze’s result [14] on the semigroup of all order preserving full
transformations on a finite chain.

Let S and T be two semigroups. Let

δ : T −→ T (S)
u 7−→ δu : S −→ S

s 7−→ u � s

be an anti-homomorphism of semigroups (i.e. (uv) � s = u � (v � s), for s ∈ S and u, v ∈ T ) and let

ϕ : S −→ T (T )
s 7−→ ϕs : T −→ T

u 7−→ us

1The author gratefully acknowledges support of FCT and PIDDAC, within the project PTDC/MAT/69514/2006 of CAUL.
2The author gratefully acknowledges support of FCT and PIDDAC, within the project PTDC/MAT/69514/2006 of CAUL, and

of ISEL.
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be a homomorphism of semigroups (i.e. usr = (us)r, for s, r ∈ S and u ∈ T ) such that:

(SPR) (uv)s = uv�svs, for s ∈ S and u, v ∈ T (Sequential Processing Rule); and

(SCR) u � (sr) = (u � s)(us � r), for s, r ∈ S and u ∈ T (Serial Composition Rule).

Within these conditions, we say that δ is a left action of T on S and that ϕ is a right action of S on T .
In [11], Kunze proved that the set S × T is a semigroup with respect to the following multiplication:

(s, u)(r, v) = (s(u � r), urv),

for s, r ∈ S and u, v ∈ T . We denote this semigroup by Sδ1ϕT (or, if it is not ambiguous, simply by S 1T )
and call it the bilateral semidirect product of S and T associated with δ and ϕ.

If S and T are monoids and the actions δ and ϕ preserve the identity (i.e. 1 � s = s, for s ∈ S, and u1 = u,
for u ∈ T ) and are monoidal (i.e. u � 1 = 1, for u ∈ T , and 1s = 1, for s ∈ S), then S 1 T is a monoid with
identity (1, 1).

From now on, we will just consider bilateral semidirect products of monoids associated to monoidal actions.
Notice that, if ϕ is a trivial action (i.e. (S)ϕ = {idT }) then S1T = S ∗ T is an usual semidirect product,

if δ is a trivial action (i.e. (T )δ = {idS}) then S 1 T coincides with a reverse semidirect product T ∗r S (by
interchanging the coordinates) and if both actions are trivial then S 1 T is the usual direct product S × T .
Observe also that the bilateral semidirect product is quite different from the Rhodes and Tilson [19] double
semidirect product, where the second components multiply always as in the direct product.

Now, recall that a pseudovariety of monoids is a class of finite monoids closed under formation of finite
direct products, submonoids and homomorphic images. The semidirect product V ∗W of the pseudovarieties of
monoids V and W is the pseudovariety generated by all monoidal semidirect products M ∗N , where M ∈ V and
N ∈ W. Similarly, we define the reverse semidirect product V ∗r W and the bilateral semidirect product V 1W
of the pseudovarieties of monoids V and W. Clearly, V ∗W ⊆ V1W and W ∗r V ⊆ V1W.

The problem of the decidability of the semidirect product of pseudovarieties in general and the decidability
of iterated semidirect products, possibly for particular pseudovarieties, has interested many semigroup theorists
for the past few decades. Notice that a positive answer for the question of the decidability of iterated semidirect
products whose factors are the classes of all finite groups and of all finite aperiodic semigroups would solve the
problem of the decidability of the complexity, which is undoubtedly the most famous problem in finite semigroup
theory.

Let X be an alphabet and denote by X+ the free semigroup generated by X and by X∗ the free monoid
generated by X. A monoid presentation is an ordered pair 〈X | R〉, where X is an alphabet and R is a subset
of X∗ ×X∗. An element (u, v) of X∗ ×X∗ is called a relation and it is usually represented by u = v. To avoid
confusion, given u, v ∈ X∗, we will write u ≡ v, instead of u = v, whenever we want to state precisely that u
and v are identical words of X∗. A monoid S is said to be defined by a presentation 〈X | R〉 if S is isomorphic
to X∗/ρR, where ρR denotes the smallest congruence on X∗ containing R. Often, we identify the words of X∗

with the elements of S they represent. In this context, for w,w′ ∈ X∗, saying that w = w′ in S means that
(w,w′) ∈ ρR. Notice that, if w = w′ in S then there exists a sequence w ≡ w0 → w1 → · · · → wn ≡ w′ of
elementary transitions of R, i.e., for each i ∈ {0, 1, . . . , n− 1}, there exist x, y ∈ X∗ and (u = v) ∈ R such that
either wi ≡ xuy and wi+1 ≡ xvy or wi ≡ xvy and wi+1 ≡ xuy (for more details, see [16] or [20]). We say that
〈X | R〉 is letter-irredundant if x 6= 1 in S and x = y in S if and only if x ≡ y, for x, y ∈ X.

Now, let S be a monoid and let X be a set of generators of S. Let s be an element of S. The length of s
with respect to X is the minimum of the set of positive integers {n | s = x1 · · ·xn, for some x1 . . . , xn ∈ X}, if
s is not the identity, or zero, otherwise. We denote this non-negative integer by |s|X or, if it is not ambiguous,
simply by |s|. Naturally, this number coincide with the usual notion of length of a word in a free monoid.

Denote by Tn the monoid of all full transformations of a set with n elements, say Xn = {1, 2, . . . , n}.
Consider Xn as a chain with the usual order: Xn = {1 < 2 < · · · < n}. We say that a transformation s in
Tn is order-preserving [order-reversing] if, for all x, y ∈ Dom(s), x ≤ y implies xs ≤ ys [xs ≥ ys]. Clearly, the
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product of two order-preserving transformations or of two order-reversing transformations is order-preserving
and the product of an order-preserving transformation by an order-reversing transformation is order-reversing.
Denote by On the submonoid of Tn whose elements are order-preserving and by ODn the submonoid of Tn
whose elements are either order-preserving or order-reversing.

Next, let a = (a1, a2, . . . , at) be a sequence of t (t ≥ 0) elements from the chain Xn. We say that a is cyclic
[anti-cyclic] if there exists no more than one index i ∈ {1, . . . , t} such that ai > ai+1 [ai < ai+1], where at+1

denotes a1. Let s ∈ Tn and suppose that Dom(s) = {a1, . . . , at}, with t ≥ 0 and a1 < · · · < at. We say that
s is an orientation-preserving [orientation-reversing] transformation if the sequence of its images (a1s, . . . , ats)
is cyclic [anti-cyclic]. It is also clear that the product of two orientation-preserving or of two orientation-
reversing transformations is orientation-preserving and the product of an orientation-preserving transformation
by an orientation-reversing transformation is orientation-reversing. Denote by OPn the submonoid of Tn whose
elements are orientation-preserving and by ORn the submonoid of Tn whose elements are either orientation-
preserving or orientation-reversing.

Semigroups of order-preserving transformations have long been considered in the literature. In 1962,
Aı̌zenštat [1] exhibited a presentation for On. Some years later, in 1971, Howie [10] studied some combi-
natorial and algebraic properties of On and, in 1992, Gomes and Howie [8] revisited this monoid. On the
other hand, the notion of an orientation-preserving transformation was introduced by McAlister in [17] and,
independently, by Catarino and Higgins in [5]. The monoid OPn was also considered by Catarino in [4] and by
Arthur and Ruškuc in [3].

1 The general method

In this section we present a general technique to obtain a bilateral semidirect decomposition of a monoid in
terms of two of its submonoids.

Constructing bilateral semidirect products using presentations

Let A and B be two alphabets. Suppose we have defined actions of and on the letters satisfying

b � a ∈ A ∪ {1}, 1 � a = a, b � 1 = 1, 1 � 1 = 1 (1)

and
ba ∈ B∗, b1 = b, 1a = 1, 11 = 1 , (2)

for a ∈ A and b ∈ B. Then first, inductively on the length of u ∈ B+, define

(ub) � a = u � (b � a) (3)

and
(ub)a = ub�aba, (4)

for a ∈ A ∪ {1} and b ∈ B. Secondly, inductively on the length of s ∈ A+, define

u � (as) = (u � a)(ua � s) (5)

and
uas = (ua)s, (6)

for u ∈ B∗ and a ∈ A. Thus, we have well defined mappings

δ : B∗ −→ T (A∗)
u 7−→ δu : A∗ −→ A∗

s 7−→ u � s

3
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and
ϕ : A∗ −→ T (B∗)

s 7−→ ϕs : B∗ −→ B∗

u 7−→ us .

Lemma 1.1 Let s, t ∈ A∗ and u, v ∈ B∗. Then:

(a) 1 � s = s and 1s = 1;

(b) u � 1 = 1 and u1 = u.

Proof. (a) For |s| ≤ 1 both equalities follow directly from (1) and (2). Now, we proceed by induction on the
length of s. Suppose that |s| > 1 and let a ∈ A and s′ ∈ A+ be such that s = as′. As 1 ≤ |s′| < |s|, by the
induction hypothesis, we have 1 � s′ = s′ and 1s

′
= 1, whence

1 � s = 1 � (as′) = (1 � a)(1a � s′) = a(1 � s′) = as′ = s,

by applying (5), and
1s = 1as

′
= (1a)s

′
= 1s

′
= 1,

by applying (6).
(b) The proof of these properties is similar to (a) (by induction on the length of u, using this time (3) and

(4)).

Next, we prove that δ and ϕ verify both the Sequential Processing Rule and the Serial Composition Rule.

Lemma 1.2 Let s, r ∈ A∗ and u, v ∈ B∗. Then:

(SCR) u � (sr) = (u � s)(us � r);

(SPR) (uv)s = uv�svs.

Proof. (SCR) If s = 1 or r = 1, the equality follows from Lemma 1.1 (b). Hence, we admit that s, r ∈ A+ and
proceed by induction on the length of s. If |s| = 1 the equality follows from (5). Then, let s = as′, with a ∈ A
and s′ ∈ A+. Since 1 ≤ |s′| < |s|, we have

u � (sr) = u � (as′r)
= (u � a)(ua � (s′r)) (by (5))
= (u � a)(ua � s′)((ua)s

′
� r) (by the induction hypothesis)

= (u � (as′))(uas
′
� r) (by (5) and (6))

= (u � s)(us � r) .

(SPR) First, we show that (uv)a = uv�ava, for a ∈ A ∪ {1}. If u = 1 this equality follows from (2) (notice
that v � a ∈ A∪{1}). So, admit that |u| ≥ 1. We proceed by induction on the length of v. If v = 1 this equality
follows from (1) and (2) and if |v| = 1 it follows from (4). Hence, let v = v′b, with v′ ∈ B+ and b ∈ B. Then,
as 1 ≤ |v′| < |v| and b � a ∈ A ∪ {1}, we have

(uv)a = (uv′b)a

= (uv′)b�aba (by (4))
= uv

′�(b�a)v′b�aba (by the induction hypothesis)
= u(v′b)�a(v′b)a (by (3) and (4))
= uv�ava .

4
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Now, we prove the equality for any s ∈ A∗ by induction on the length of s. Since we have just proved it for
|s| ≤ 1, take s = as′ with a ∈ A and s′ ∈ A+. Then, as 1 ≤ |s′| < |s| and v � a ∈ A ∪ {1}, we have

(uv)s = (uv)as
′

= ((uv)a)s
′

(by (6))
= (uv�ava)s

′
(by the case |s| = 1)

= (uv�a)v
a�s′(va)s

′
(by the induction hypothesis)

= u(v�a)(va�s′)vas
′

(by (6) and Lemma 1.1 (b))
= uv�(as

′)vas
′

(by (5))
= uv�svs ,

as required.

Lemma 1.3 Let s, r ∈ A∗ and u, v ∈ B∗. Then:

(a) (uv) � s = u � (v � s);

(b) usr = (us)r.

Proof. (a) First we prove that (uv) � a = u � (v � a), for a ∈ A ∪ {1}. We proceed by induction on the length
of v. For |v| ≤ 1 the equality follows directly from (1) and (3). Then, suppose that |v| > 1 and let b ∈ B and
v′ ∈ B+ be such that v = v′b. As 1 ≤ |v′| < |v| and b � a ∈ A ∪ {1}, by (3) and the induction hypothesis, we
have

(uv) � a = (uv′b) � a = (uv′) � (b � a) = u � (v′ � (b � a)) = u � ((v′b) � a) = u � (v � a).

Now, we proceed by induction on the length of s. So, suppose that |s| > 1 and let a ∈ A and s′ ∈ A+ be such
that s = as′. Then, as 1 ≤ |s′| < |s|, we have

(uv) � s = (uv) � (as′)
= ((uv) � a)((uv)a � s′) (by (5))
= (u � (v � a))((uv�ava) � s′) (by the case |s| = 1 and (SPR))
= (u � (v � a))(uv�a � (va � s′)) (by the induction hypothesis)
= u � ((v � a)(va � s′)) (by (SCR))
= u � (v � (as′)) (by (5))
= u � (v � s) .

(b) If s = 1 or r = 1, the equality follows immediately from Lemma 1.1(b). Then, admit that s, r ∈ A+.
Now, we proceed by induction on the length of s. If |s| = 1 the equality follows from (6). So, let s = as′, with
a ∈ A and s′ ∈ A+. Since 1 ≤ |s′| < |s|, we have

usr = uas
′r = (ua)s

′r = ((ua)s
′
)r = (uas

′
)r = (us)r,

by applying (6) in the second and fourth expressions and the induction hypothesis in the third expression, as
required.

Now, we have:

Proposition 1.4 The mappings δ and ϕ are the unique left action of B∗ on A∗ and right action of A∗ on B∗,
respectively, extending the given actions of and on the letters.

5
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Proof. It follows immediately from Lemmas 1.1-1.3 that the operations defined by (1)-(6) are a left action of
B∗ on A∗ and a right action of A∗ on B∗. It remains to show the unicity.

Let δ′ and ϕ′ be a left action of B∗ on A∗ and a right action of A∗ on B∗, respectively, such that (a)δ′b = (a)δb
and (b)ϕ′a = (b)ϕa, for a ∈ A and b ∈ B. Let s ∈ A∗ and u ∈ B∗. We aim to show that (s)δ′u = (s)δu and
(u)ϕ′s = (u)ϕs. If s = 1 or u = 1, then both these equalities are valid, by definition. Thus, admit that s ∈ A+

and u ∈ B+.
We proceed by induction on the length of s.
Suppose that |s| = 1. Then, by induction on the length of u, we show that (a)δ′u = (a)δu and (u)ϕ′a = (u)ϕa,

for a ∈ A and u ∈ B+. If |u| = 1 we have precisely our main hypothesis. So, take u = vb, with b ∈ B and
v ∈ B+. Also, let a′ = (a)δ′b = (a)δb. Notice that a′ ∈ A ∪ {1}. Then

(a)δ′u = (a)δ′vb = ((a)δ′b)δ
′
v = (a′)δ′v = (a′)δv = ((a)δb)δv = (a)δvb = (a)δu

and
(u)ϕ′a = (vb)ϕ′a = (v)ϕ′(a)δ′b

(b)ϕ′a = (v)ϕ′a′(b)ϕ
′
a

= (v)ϕa′(b)ϕa = (v)ϕ(a)δb(b)ϕa = (vb)ϕa = (u)ϕa,

by applying in both chain of equalities the induction hypothesis in the fourth expression.
Now, by induction hypothesis, we assume that (r)δ′u = (r)δu and (u)ϕ′r = (u)ϕr, for u ∈ B+ and r ∈ A+

such that 1 ≤ |r| < |s|. So, take u ∈ B+ and s = ar with a ∈ A and r ∈ A+. Then

(s)δ′u = (ar)δ′u = (a)δ′u(r)δ′(u)ϕ′a = (a)δ′u(r)δ′(u)ϕa
= (a)δu(r)δ(u)ϕa

= (ar)δu = (s)δu

and
(u)ϕ′s = (u)ϕ′ar = ((u)ϕ′a)ϕ

′
r = ((u)ϕa)ϕ′r = ((u)ϕa)ϕr = (u)ϕar = (u)ϕs,

as required.

Dually, suppose we have defined actions of and on the letters satisfying

b � a ∈ A∗, 1 � a = a, b � 1 = 1, 1 � 1 = 1 (7)

and
ba ∈ B ∪ {1}, b1 = b, 1a = 1, 11 = 1 , (8)

for a ∈ A and b ∈ B. Then first, inductively on the length of s ∈ A+, define

bas = (ba)s (9)

and
b � (as) = (b � a)(ba � s) (10)

for a ∈ A and b ∈ B ∪ {1}, and secondly, inductively on the length of u ∈ B+, define

(ub)s = ub�sbs (11)

and
(ub) � s = u � (b � s), (12)

for s ∈ A∗ and b ∈ B.
Similarly, we have:

Proposition 1.5 The mappings defined by (7)-(12) are the unique left action of B∗ on A∗ and right action of
A∗ on B∗ extending the given actions of and on the letters.

6
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Naturally, if we have both (1) and (8), then the actions defined by (3)-(6) and by (9)-(12) coincide.
Observe also that, as particular cases of both the propositions 1.4 and 1.5, we obtain constructions of

semidirect products A∗ ∗ B∗ and of reverse semidirect products B∗ ∗r A∗ by just defining the actions on the
letters (without any restriction for reverse semidirect products by Proposition 1.4 and for semidirect products
by Proposition 1.5; and with the restriction (1) for semidirect products by Proposition 1.4 and the restriction
(8) for reverse semidirect products by Proposition 1.5)..

Let δ be a left action of B∗ on A∗ and let ϕ be a right action of A∗ on B∗.
We say that δ (resp., ϕ) preserves letters if it satisfies (1) (resp., (8)), i.e. the action of a letter on a letter

is a letter or the empty word.
Let R be a set of relations on A∗ and let U be a set of relations on B∗. Let S and T be the monoids defined by

the presentations 〈A | R〉 and 〈B | U〉, respectively. We assume that these presentations are letter-irredundant.
We say that the action δ (resp., ϕ) preserves the presentations 〈A | R〉 and 〈B | U〉 if

b � s = b � r in S (resp., bs = br in T ),

for all (s = r) ∈ R and b ∈ B, and

u � a = v � a in S (resp. ua = va in T ),

for all (u = v) ∈ U and a ∈ A.

Now, we fix a left action of B∗ on A∗ and a right action of A∗ on B∗ that preserve letters and preserve
the letter-irredundant presentations 〈A | R〉 and 〈B | U〉. We aim to show that these actions on free monoids
induce a bilateral semidirect product S1T . First, we prove the following lemma.

Lemma 1.6 Within the above conditions, let z ∈ A∗ and w1, w2 ∈ B∗ be such that w1 = w2 in T . Then, we
have w1 � z = w2 � z in S and wz1 = wz2 in T .

Proof. Clearly, for z = 1 the lemma follows by definition. Thus, we assume that z ∈ A+ and proceed by
induction on the length of z.

First, notice that, as the left action preserves letters and the presentation 〈A | R〉 is letter-irredundant, we
have u � a = v � a in S if and only if u � a ≡ v � a, for u, v ∈ B∗ and a ∈ A ∪ {1}..

Let a ∈ A. We aim to prove that w1 �a = w2 �a in S (i.e. w1 �a ≡ w2 �a) and w1
a = w2

a in T . It is a routine
matter to show that it suffices to just consider elementary transitions. Therefore, without loss of generality, let
w1 ≡ guh and w2 ≡ gvh, with g, h ∈ B∗ and (u = v) ∈ U . Let a′ = h � a ∈ A ∪ {1}. Then u � a′ = v � a′ in S
and so u � a′ ≡ v � a′, whence g � (u � a′) ≡ g � (v � a′), i.e. w1 � a ≡ w2 � a. On the other hand, gu�a′ ≡ gv�a

′
and

ua
′

= va
′

in T , whence

wa1 ≡ gu�(h�a)uh�aha ≡ gu�a′ua
′
ha = gv�a

′
va
′
ha ≡ gv�(h�a)vh�aha ≡ wa2 .

Now, let z = az′, with a ∈ A and z′ ∈ A+. As wa1 = wa2 in T and 1 ≤ |z′| < |z|, by the induction hypothesis,
we have wa1 � z′ = wa2 � z′ in S and (wa1)z

′
= (wa2)z

′
in T . Hence

wz1 ≡ waz
′

1 ≡ (wa1)z
′

= (wa2)z
′ ≡ waz′2 ≡ wz2

and, as also w1 � a = w2 � a in S,

w1 � z ≡ w1 � (az′) ≡ (w1 � a)(wa1 � z′) = (w2 � a)(wa2 � z′) ≡ w2 � (az′) ≡ w2 � z,

as required.

7
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çõ
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Similarly, by duality, we have:

Lemma 1.7 Within the above conditions, let z1, z2 ∈ A∗ and w ∈ B∗ be such that z1 = z2 in S. Then, we have
w � z1 = w � z2 in S and wz1 = wz2 in T .

Clearly, by combining the previous two lemmas, we have w1 � z1 = w2 � z2 in S and w1
z1 = w2

z2 in T , for
all words z1, z2 ∈ A∗ and w1, w2 ∈ B∗ such that z1 = z2 in S and w1 = w2 in T , which proves the next result,
announced above:

Theorem 1.8 If a left action of B∗ on A∗ and a right action of A∗ on B∗ preserve letters and preserve the
letter-irredundant presentations 〈A | R〉 and 〈B | U〉 then they induce a left action of T on S and a right action
of S on T .

The decomposition

Now, let M be a monoid and let S and T be two submonoids of M . Let A and B be sets of generators of S
and T , respectively. Consider a left action of T on S and a right action of S on T .

We say that the left (resp., right) action of T on S (resp., S on T ) preserves A (resp., B) if b � a ∈ A ∪ {1}
(resp., ba ∈ B∪{1}), for a ∈ A and b ∈ B. Notice that, if the left action preserves A then, clearly, u �a ∈ A∪{1},
for a ∈ A and u ∈ T . Naturally, a similar property holds if the right action preserves B.

Lemma 1.9 Within the above conditions, suppose that ba = (b � a)ba in M , for a ∈ A and b ∈ B. If either the
left action preserves A or the right action preserves B, then us = (u � s)us in M , for s ∈ S and u ∈ T .

Proof. We prove the lemma by admitting that the left action preserves A. The other case is similar.
Let s ∈ S and u ∈ T . First, we proceed by induction on the length of s (with respect to A). If |s| = 0 then

the equality follows immediately by definition. We need to prove also the case |s| = 1, i.e. ua = (u � a)ua, for
a ∈ A and u ∈ T .

If |u| = 0 or |u| = 1 this equality follows by definition or by the main hypothesis, respectively. So, proceeding
by induction on the length of u (with respect to B), we admit the equality for 1 ≤ |u| < k. Let u ∈ T be such
that |u| = k. Then u = bv, for some b ∈ B and some v ∈ T with length k − 1. Let a′ = v � a ∈ A ∪ {1}. Hence

ua = b(va) = b((v � a)va) = (ba′)va = (b � a′)ba
′
va = (b � (v � a))bv�ava

= ((bv) � a)(bv)a = (u � a)ua,

by applying the induction hypothesis in the second expression and (SPR) in the sixth expression.
Now, by induction hypothesis, we assume that us = (u � s)us, for u ∈ T and s ∈ S such that 1 ≤ |s| < n.

Let s be an element of S with length n and let u ∈ T . Then s = ra, for some a ∈ A and some r ∈ S with length
n− 1. Let v = ur ∈ T . Thus, we have

us = (ur)a = ((u � r)ur)a = (u � r)(va) = (u � r)(v � a)va = (u � r)(ur � a)(ur)a

= (u � (ra))ura = (u � s)us,

by applying the induction hypothesis in the second expression, the case |s| = 1 in the fourth expression and
(SCR) in the sixth expression, as required.

Theorem 1.10 Let M be a monoid and let S and T be two submonoids of M generated by A and B, respectively.
Let S1T be a bilateral semidirect product of S and T such that either the left action preserves A or the right
action preserves B. If A ∪ B generates M and ba = (b � a)ba in M , for a ∈ A and b ∈ B, then M is a
homomorphic image of S1T .

8
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Proof. We prove that the mapping
µ : S1T −→ M

(s, u) 7−→ su

is a surjective homomorphism.
First, we show that µ is a homomorphism. Let (s, u), (r, v) ∈ S1T . Then

(s, u)µ(r, v)µ = surv = s(u � r)urv = (s(u � r), urv)µ = ((s, u)(r, v))µ ,

by applying the Lemma 1.9 in the second expression.
Now, we show that µ is onto. Let x ∈M . As A∪B generates M , we may write x = s1u1 · · · skuk, for some

s1, . . . , sk ∈ S and u1, . . . , uk ∈ T . Also, we may assume that k is the least positive integer for which such a
decomposition exists. Suppose that k ≥ 2. Then, by applying the Lemma 1.9, we have

x = s1u1 · · · sk−1(uk−1sk)uk = s1u1 · · · sk−1(uk−1 � sk)u
sk
k−1uk ,

which contradicts the minimality of k, as sk−1(uk−1 � sk) ∈ S and usk
k−1uk ∈ T . Therefore k = 1, as required.

As an immediate consequence, for semidirect products, we have:

Corollary 1.11 Let M be a monoid and let S and T be two submonoids of M generated by A and B, respec-
tively. Let S ∗ T (resp., S ∗r T ) be a (resp., reverse) semidirect product of S and T . If A ∪B generates M and
ba = (b � a)b (resp., ab = bab) in M , for a ∈ A and b ∈ B, then M is a homomorphic image of S ∗ T (resp.,
S ∗r T ).

2 Applications

Let n ∈ N. In this section, we construct bilateral semidirect decompositions of the monoids On, ODn, OPn
and ORn, by using the technique presented in the last section.

On the monoid On
Our first application is a new proof of the Kunze [14] bilateral semidirect decomposition of the monoid On in
terms of its submonoids O−n = {s ∈ On | (x)s ≤ x, for x ∈ Xn} and O+

n = {s ∈ On | x ≤ (x)s, for x ∈ Xn}.
First, notice that O−n and O+

n are isomorphic monoids: the mapping from O−n onto O+
n , which maps each

transformation s ∈ O−n in the transformation s̄ ∈ O+
n defined by (x)s̄ = n+ 1− (n+ 1− x)s, for x ∈ Xn, is an

isomorphism of monoids.
For i ∈ {1, . . . , n− 1}, let

ai =
(

1 2 · · · i i+ 1 i+ 2 · · · n
1 2 · · · i i i+ 2 · · · n

)
and

bi = ān−i =
(

1 2 · · · i− 1 i i+ 1 · · · n
1 2 · · · i− 1 i+ 1 i+ 1 · · · n

)
.

Let A = {a1, . . . , an−1} and B = {b1, . . . , bn−1}. Then A and B are generating sets of O−n and O+
n , respectively.

Furthermore, being R− the set of the relations

• a2
i = ai, for 1 ≤ i ≤ n− 1,

• aiai+1ai = ai+1aiai+1 = ai+1ai, for 1 ≤ i ≤ n− 2, and

9
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• aiaj = ajai, for 1 ≤ i, j ≤ n− 1 and |i− j| ≥ 2,

and R+ the set of the relations

• b2i = bi, for 1 ≤ i ≤ n− 1,

• bibi+1bi = bi+1bibi+1 = bibi+1, for 1 ≤ i ≤ n− 2, and

• bibj = bjbi, for 1 ≤ i, j ≤ n− 1 and |i− j| ≥ 2,

the monoids O−n and O+
n are defined by the presentations 〈A | R−〉 and 〈B | R+〉, respectively. On the other

hand, the monoid On is generated by A ∪B and, being R the set of the relations

• aibi = biai−1, for 2 ≤ i ≤ n− 1,

• biai = aibi+1, for 1 ≤ i ≤ n− 2,

• aibi = bi, for 1 ≤ i ≤ n− 1,

• biai = ai, for 1 ≤ i ≤ n− 1,

• bjai = aibj , for 1 ≤ i, j ≤ n− 1 and j /∈ {i, i+ 1},

• an−1an−2an−1 = an−1an−2, and

• b1b2b1 = b1b2,

is defined by the presentation 〈A∪B | R〉. This presentation was given by Aı̆zenštat in 1962 [1]. See also [21, 6].
Now, by applying the Proposition 1.4 (or 1.5), consider the left action δ of B∗ on A∗ and the right action

ϕ of A∗ on B∗ that extend the following actions of and on the letters:

bj � ai =
{

1 if j = i+ 1
ai otherwise

and

bai
j =

{
1 if j = i
bj otherwise ,

for 1 ≤ i, j ≤ n− 1.
Notice that both δ and ϕ preserve letters. On the other hand, clearly, both the presentations 〈A | R−〉 and

〈B | R+〉 are letter-irredundant. Moreover, we have:

Lemma 2.1 The actions δ and ϕ preserve the presentations 〈A | R−〉 and 〈B | R+〉.

Proof. We have to prove the following relations:
(i) For 1 ≤ j ≤ n− 1,

bj � a2
i = bj � ai, for 1 ≤ i ≤ n− 1,

bj � (aiai+1ai) = bj � (ai+1aiai+1) = bj � (ai+1ai), for 1 ≤ i ≤ n− 2,
bj � (aiak) = bj � (akai), for 1 ≤ i, k ≤ n− 1 and |i− k| ≥ 2,

b
a2

i
j = bai

j , for 1 ≤ i ≤ n− 1,
b
aiai+1ai

j = b
ai+1aiai+1

j = b
ai+1ai

j , for 1 ≤ i ≤ n− 2,
baiak
j = bakai

j , for 1 ≤ i, k ≤ n− 1 and |i− k| ≥ 2;

10
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(ii) And, for 1 ≤ i ≤ n− 1,

b2j � ai = bj � ai, for 1 ≤ j ≤ n− 1,
(bjbj+1bj) � ai = (bj+1bjbj+1) � ai = (bj+1bj) � ai, for 1 ≤ j ≤ n− 2,
(bjbk) � ai = (bkbj) � ai, for 1 ≤ j, k ≤ n− 1 and |j − k| ≥ 2,

(b2j )
ai = bai

j , for 1 ≤ j ≤ n− 1,
(bjbj+1bj)ai = (bj+1bjbj+1)ai = (bj+1bj)ai , for 1 ≤ j ≤ n− 2,
(bjbk)ai = (bkbj)ai , for 1 ≤ j, k ≤ n− 1 and |j − k| ≥ 2.

We just present the proof of (i). The proof of (ii) is similar.
Let 1 ≤ j ≤ n− 1. Then: for 1 ≤ i ≤ n− 1,

bj � a2
i = (bj � ai)(bai

j � ai) =


1(bj � ai) if j = i+ 1
ai(1 � ai) if j = i
ai(bj � ai) otherwise

=


1 if j = i+ 1
a2
i if j = i
a2
i otherwise

=
{

1 if j = i+ 1
ai otherwise

= bj � ai ;

for 1 ≤ i ≤ n− 2,

bj � (aiai+1ai) = (bj � ai)(bai
j � (ai+1ai)) =


1(bj � (ai+1ai)) if j = i+ 1
ai(ai+1ai) if j = i
ai(bj � (ai+1ai)) otherwise

=


(bj � ai+1)(bai+1

j � ai) if j = i+ 1
aiai+1ai if j = i
ai(bj � ai+1)(bai+1

j � ai) otherwise
=


ai+1(1 � ai) if j = i+ 1
aiai+1ai if j = i
ai(bj � ai+1)(bj � ai) otherwise

=


ai+1ai if j = i+ 1
aiai+1ai if j = i
ai1ai if j = i+ 2
aiai+1ai otherwise

=
{
ai if j = i+ 2
ai+1ai otherwise

= (bj � ai+1)(bai+1

j � ai) = bj � (ai+1ai)

and, similarly, bj � (ai+1aiai+1) = bj � (ai+1ai); for 1 ≤ i, k ≤ n− 1 and |i− k| ≥ 2,

bj � (aiak) = (bj � ai)(bai
j � ak) =


1(bj � ak) if j = i+ 1
aiak if j = i
ai(bj � ak) otherwise

=


ak if j = i+ 1
ai if j = k + 1
aiak otherwise

=


ak if j = i+ 1
ai if j = k + 1
akai otherwise

= bj � (akai) ;

for 1 ≤ i ≤ n− 1,

b
a2

i
j = (bai

j )ai =
{

1 if j = i
bj otherwise

= bai
j ;

for 1 ≤ i ≤ n− 2,

b
aiai+1ai

j = ((bai
j )ai+1)ai =

{
1 if j = i or j = i+ 1
bj otherwise

= (bai+1

j )ai = b
ai+1ai

j

and, similarly, bai+1aiai+1

j = b
ai+1ai

j ; finally, for 1 ≤ i, k ≤ n− 1 and |i− k| ≥ 2,

baiak
j = (bai

j )ak =
{

1 if j = i or j = k
bj otherwise

= (bak
j )ai = bakai

j ,

as required.

11
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Now, accordingly with the Theorem 1.8, we have a well defined bilateral semidirect product O−n 1 O+
n

induced by the actions δ and ϕ. Furthermore:

Lemma 2.2 One has bjai = (bj � ai)bai
j in On, for 1 ≤ i, j ≤ n− 1.

Proof. Let 1 ≤ i, j ≤ n− 1. If j = i then biai = ai = ai1 = (bi � ai)bai
i and if j = i+ 1 then bi+1ai = ai+1bi+1 =

bi+1 = 1bi+1 = (bi+1 � ai)bai
i+1. Otherwise, bjai = aibj = (bj � ai)bai

j , as required.

As the left action in O−n 1O+
n preserves A (in fact, the right action also preserves B) and A ∪ B generates

On, then all the hypothesis of the Theorem 1.10 are satisfied and so we have:

Theorem 2.3 The monoid On is a homomorphic image of O−n 1O+
n .

Let O be the pseudovariety of monoids generated by {On | n ∈ N} and let J be the pseudovariety of monoids
generated by {O+

n | n ∈ N} (or by {O−n | n ∈ N}). Notice that it is well-known that J is the pseudovariety of
J-trivial monoids, which are the syntactic monoids of the piecewise testable languages (see e.g. [18]). As an
immediate consequence of the last result, we obtain:

Corollary 2.4 O ⊂ J1J.

Unfortunately, this inclusion is strict. In fact, being R the pseudovariety of all R-trivial monoids, Higgins
[9] showed that R * O and, on the other hand, the equality J ∗ J = J ∗ R is a particular instance of a result of
Almeida and Weil [2, Corollary 8.6]. Hence, as R ⊆ J ∗ R = J ∗ J ⊆ J1J, we have J1J * O.

On the monoid ODn
The monoid ODn was considered by the first author together with Gomes and Jesus in [7]. They have showed
that ODn is generated by its submonoid On together with the reflexion permutation

h =
(

1 2 · · · n− 1 n
n n− 1 · · · 2 1

)
and, moreover, being A, B and R as above, by adding to R the relations

• h2 = 1,

• hai = bn−ih, for 1 ≤ i ≤ n− 1, and

• an−1an−2 · · · a1h = an−1an−2 · · · a1b1b2 · · · bn−1,

we obtain a presentation of ODn in terms of the generating set A ∪ B ∪ {h}. Notice that, as b1b2 · · · bn−1 =
an−1an−2 · · · a1b1b2 · · · bn−1 in On, we may replace the relation an−1an−2 · · · a1h = an−1an−2 · · · a1b1b2 · · · bn−1

by the simpler relation an−1an−2 · · · a1h = b1b2 · · · bn−1.
Let C2 be a cyclic group of order two. Then, C2 is defined by the presentation 〈h | h2 = 1〉 and we may take

C2 as being the submonoid of ODn generated by the transformation h.
Now, we aim to construct a semidirect decomposition and a reverse semidirect decomposition of ODn in

terms of its submonoids C2 and On.
First, by applying the Proposition 1.4 (or 1.5), and considering a trivial right action, let δ1 be the left action

of {h}∗ on (A ∪B)∗ that extends the following action of and on the letters:

h � ai = bn−i and h � bi = an−i,

for 1 ≤ i ≤ n− 1.
Notice that δ1 preserves letters (as well as the trivial right action) and the presentations 〈A ∪ B | R〉 (of

On) and 〈h | h2 = 1〉 (of C2) are letter-irredundant. Moreover, it is routine matter to show that:

Lemma 2.5 The action δ1 preserves the presentations 〈A ∪B | R〉 and 〈h | h2 = 1〉.

12
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Hence, by the Theorem 1.8 (considering a trivial right action), we have a well defined semidirect product
On ∗ C2 induced by the action δ1. On the other hand, we have hai = bn−ih in ODn, for 1 ≤ i ≤ n− 1, and from
these relations and h2 = 1, it follows also hbi = an−ih in ODn, for 1 ≤ i ≤ n− 1. Thus, we have:

Lemma 2.6 For 1 ≤ i ≤ n− 1, hai = (h � ai)h and hbi = (h � bi)h in ODn.

And, by the Corollary 1.11, it follows:

Theorem 2.7 The monoid ODn is a homomorphic image of On ∗ C2.

Let OD be the pseudovariety of monoids generated by {ODn | n ∈ N}. Let Ab2 be the pseudovariety of
monoids generated by C2 (a pseudovariety of abelian groups). Then:

Corollary 2.8 OD ⊆ O ∗ Ab2.

Now, as C2 is a commutative monoid, the left action of C2 on On may also be considered as a right action
(which coincides with the one induced by the right action of {h}∗ on (A∪B)∗ that extends the following action
of and on the letters: ahi = bn−i and bhi = an−i, for 1 ≤ i ≤ n − 1) and so we also have a well defined reverse
semidirect product On ∗r C2. As, clearly, aih = hbn−i and bih = han−i in ODn, i.e. aih = hahi and bih = hbhi in
ODn, for 1 ≤ i ≤ n− 1, again by Corollary 1.11, we have:

Theorem 2.9 The monoid ODn is a homomorphic image of On ∗r C2.

It follows immediately:

Corollary 2.10 OD ⊆ O ∗r Ab2.

On the monoid OPn
A presentation for the monoid OPn was given by Catarino in [4]: being A ∪ B the set of generators of On
considered above and g the n-cycle permutation(

1 2 · · · n− 1 n
2 3 · · · n 1

)
,

then A ∪B ∪ {g} generates OPn and, by adding the relations

• gn = 1,

• aig = gai+1, for 1 ≤ i ≤ n− 2,

• big = gbi+1, for 1 ≤ i ≤ n− 2,

• an−1g = bn−1bn−2 · · · b1,

• bn−1g = g2a1a2 · · · an−1, and

• gan−1an−2 · · · a1 = an−1an−2 · · · a1,

13
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to any set of defining relations of On in terms of the generating set A ∪ B, we obtain a presentation for OPn
with A ∪B ∪ {g} as set of generators. See also [17, 5, 3].

Let Cn be a cyclic group of order n. Clearly, Cn is defined by the presentation 〈g | gn = 1〉 and may be
considered as the submonoid of OPn generated by the n-cycle g.

Our objective is to construct a bilateral semidirect decomposition of OPn in terms of its submonoids Cn
and On.

By convenience, we consider the (obviously letter-irredundant) presentation

〈C | N〉 = 〈g1, . . . , gn−1 | gn1 = 1, gk1 = gk, 2 ≤ k ≤ n− 1〉

of Cn (with g1 = g, as elements of Cn) and, being an and bn two symbols not in A ∪ B and R as above, the
presentation

〈X | R′〉 = 〈A ∪B ∪ {an, bn} | R, a1a2 · · · an−1 = an, bn−1bn−2 · · · b1 = bn〉

of On. Notice that, as elements of On, we have

an =
(

1 2 3 · · · n
1 1 2 · · · n− 1

)
and bn =

(
1 2 · · · n− 1 n
2 3 · · · n n

)
,

whence 〈X | R′〉 is also letter-irredundant.
Now, consider the left action δ2 of X∗ on C∗ and the right action ϕ2 of C∗ on X∗ that extend, by Proposition

1.4 (or 1.5), the following actions of and on the letters:

ai � gk =


1 if k = 1 and i ∈ {n− 1, n}
gk−1 if k ≥ 2 and i ∈ {n− k, n}
gk otherwise ,

bi � gk =


1 if k = n− 1 and i ∈ {1, n}
gk+1 if k < n− 1 and i ∈ {n− k, n}
gk otherwise ,

agk
i =


ai+k if i < n− k
bn if i = n− k
ai+k−n if n− k + 1 ≤ i ≤ n− 1
bk if i = n ,

bgk
i =


bi+k if i < n− k
an if i = n− k
bi+k−n if n− k + 1 ≤ i ≤ n− 1
ak if i = n ,

for 1 ≤ i ≤ n and 1 ≤ k ≤ n− 1.
Notice that both δ2 and ϕ2 preserve letters. Moreover, we have:

Lemma 2.11 The actions δ2 and ϕ2 preserve the presentations 〈C | N〉 and 〈X | R′〉.

Proof. We begin by showing that the actions preserve 〈C | N〉.
(1) First, we prove that x � gk1 = x � gk in Cn, for x ∈ X and 2 ≤ k ≤ n − 1, by induction on k. Let k ≥ 2.

Let i ∈ {1, . . . , n}. Then

ai � g
k
1 = (ai � g1)(ag1i � gk−1

1 ) =


1(b1 � gk−1

1 ) if i = n

1(bn � gk−1
1 ) if i = n− 1

g1(ai+1 � gk−1
1 ) otherwise

=


b1 � gk−1

1 if i = n

bn � gk−1
1 if i = n− 1

g1(ai+1 � gk−1
1 ) otherwise .

Thus, for k = 2, we have

ai � g
2
1 =


b1 � g1 if i = n
bn � g1 if i = n− 1
g1(ai+1 � g1) otherwise

=


g1 if i = n
g2 if i = n− 1
g11 if i = n− 2
g2
1 otherwise

=
{
g1 if i = n or i = n− 2
g2 otherwise

= ai � g2 .

Similarly, we may prove that bi � g2
1 = bi � g2.
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Next, we admit by induction hypothesis that, for some 2 ≤ k < n− 1, x � gk1 = x � gk in Cn, for x ∈ X. Then

ai � g
k+1
1 =


b1 � gk1 if i = n
bn � gk1 if i = n− 1
g1(ai+1 � gk1 ) otherwise

=


b1 � gk if i = n
bn � gk if i = n− 1
g1(ai+1 � gk) otherwise

=


gk if i = n
gk+1 if i = n− 1
g1gk−1 if i = n− (k + 1)
g1gk otherwise

=
{
gk if i = n or i = n− (k + 1)
gk+1 otherwise

= ai � gk+1 .

Similarly, we may prove that bi � gk+1
1 = bi � gk+1.

(2) Next, we prove that x � gn1 = x � 1(= 1) in Cn, for x ∈ X. Let i ∈ {1, . . . , n}. Then, by using the relations
proved above, we have

ai � gn1 =


b1 � gn−1

1 if i = n

bn � gn−1
1 if i = n− 1

g1(ai+1 � gn−1
1 ) otherwise.

=


b1 � gn−1 if i = n
bn � gn−1 if i = n− 1
g1(ai+1 � gn−1) otherwise.

=
{

1 if i = n or i = n− 1
g1gn−1 otherwise.

= 1 = ai � 1

and, similarly, bi � gn1 = 1 = bi � 1.
(3) Now, we prove that xg

k
1 = xgk in On, for x ∈ X and 2 ≤ k ≤ n− 1, by induction on k. Let k ≥ 2. Let

i ∈ {1, . . . , n}. Then

b
gk
1
i = (bg1i )g

k−1
1 =


a
gk−1
1

1 if i = n

a
gk−1
1
n if i = n− 1

b
gk−1
1
i+1 otherwise .

So, for k = 2, we have

b
g21
i =


ag11 if i = n
ag1n if i = n− 1
bg1i+1 otherwise

=


a2 if i = n
b1 if i = n− 1
an if i = n− 2
bi+2 otherwise

= bg2i

and, similarly, ag
2
1
i = ag2i .

Next, we admit by induction hypothesis that, for some 2 ≤ k < n− 1, xg
k
1 = xgk in On, for x ∈ X. Then

b
gk+1
1
i =


a
gk
1

1 if i = n

a
gk
1
n if i = n− 1

b
gk
1
i+1 otherwise

=


agk

1 if i = n
agk
n if i = n− 1
bgk
i+1 otherwise

=


ak+1 if i = n
bk if i = n− 1
bi+k+1−n if n− k ≤ i ≤ n− 2
an if i = n− (k + 1)
bi+k+1 otherwise

=


ak+1 if i = n
bi+k+1−n if n− k ≤ i ≤ n− 1
an if i = n− (k + 1)
bi+k+1 otherwise

= b
gk+1

i

and, similarly, ag
k+1
1
i = a

gk+1

i .
(4) Finally, we prove that xg

n
1 = x1(= x) in On, for x ∈ X. Let i ∈ {1, . . . , n}. Then, by using the relations

proved above, we have

b
gn
1
i =


a
gn−1
1

1 if i = n

a
gn−1
1
n if i = n− 1

b
gn−1
1
i+1 otherwise .

=


a
gn−1

1 if i = n
a
gn−1
n if i = n− 1
b
gn−1

i+1 otherwise .
= bi = b1i
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and, similarly, ag
n
1
i = ai = a1

i .
Now, it remains to prove that the actions preserve the presentation 〈X | R′〉. We just present the proof for

the actions of and on the letter g ≡ g1 of C. For the other letters the proof is analogous (though a little bit
more involved).

(i) On the relations aibi = biai−1, with 2 ≤ i ≤ n− 1:

(aibi) � g = ai � (bi � g) =
{
ai � g2 if i = n− 1
ai � g if i ≤ n− 2

=
{
g2 if i = n− 1
g if i ≤ n− 2

= bi � g = bi � (ai−1 � g) = (biai−1) � g

and, as a1an = an = anan−1 in On,

(aibi)g = abi�gi bgi =
{
ag2n−1an if i = n− 1
agi bi+1 if i ≤ n− 2

=
{
a1an if i = n− 1
ai+1bi+1 if i ≤ n− 2

=
{
anan−1 if i = n− 1
bi+1ai if i ≤ n− 2

= bgi ai = b
ai−1�g
i agi−1 = (biai−1)g .

(ii) On the relations biai = aibi+1, with 1 ≤ i ≤ n− 2:

(biai) � g = bi � (ai � g) = bi � g = g =
{
an−2 � g2 if i = n− 2
ai � g if i ≤ n− 3

= ai � (bi+1 � g) = (aibi+1) � g

and, as bnan = an−1 = bn−1an−1 in On,

(biai)g = bai�g
i agi = bgi ai+1 = bi+1ai+1 =

{
bn−1an−1 if i = n− 2
ai+1bi+2 if i ≤ n− 3

=
{
bnan if i = n− 2
agi bi+2 if i ≤ n− 3

=
{
ag2n−2an if i = n− 2
agi bi+2 if i ≤ n− 3

= a
bi+1�g
i bgi+1 = (aibi+1)g .

(iii) On the relations aibi = bi, for 1 ≤ i ≤ n− 1:

(aibi) � g = ai � (bi � g) =
{
ai � g2 if i = n− 1
ai � g if i ≤ n− 2

=
{
g2 if i = n− 1
g if i ≤ n− 2

= bi � g

and, as a1an = an in On,

(aibi)g = abi�gi bgi =
{
ag2n−1an if i = n− 1
agi bi+1 if i ≤ n− 2

=
{
a1an if i = n− 1
ai+1bi+1 if i ≤ n− 2

=
{
an if i = n− 1
bi+1 if i ≤ n− 2

= bgi .

(iv) On the relations biai = ai, for 1 ≤ i ≤ n− 1:

(biai) � g = bi � (ai � g) =
{
bi � 1 if i = n− 1
bi � g if i ≤ n− 2

=
{

1 if i = n− 1
g if i ≤ n− 2

= ai � g

and, as bn−1bn = bn in On,

(biai)g = bai�g
i agi =

{
b1n−1bn if i = n− 1
bgi ai+1 if i ≤ n− 2

=
{
bn if i = n− 1
bi+1ai+1 if i ≤ n− 2

=
{
bn if i = n− 1
ai+1 if i ≤ n− 2

= agi .

(v) On the relations bjai = aibj , for 1 ≤ i, j ≤ n− 1 and j /∈ {i, i+ 1}:

(bjai) � g = bj � (ai � g) =
{
bj � 1 if i = n− 1
bj � g if i ≤ n− 2

=


1 if i = n− 1, j ≤ n− 2
g2 if i < n− 2, j = n− 1
g if i, j ≤ n− 2, j /∈ {i, i+ 1}

=
{
ai � g2 if j = n− 1
ai � g if j ≤ n− 2

= ai � (bj � g) = (aibj) � g
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and, as bjbn = bnbj+1, 1 ≤ j ≤ n− 2, and anai = ai+1an, 1 ≤ i ≤ n− 2, in On,

(bjai)g = bai�g
j agi =

{
b1jbn if i = n− 1
bgjai+1 if i ≤ n− 2

=


bjbn if i = n− 1, j ≤ n− 2
anai+1 if i < n− 2, j = n− 1
bj+1ai+1 if i, j ≤ n− 2, j /∈ {i, i+ 1}

=


bnbj+1 if i = n− 1, j ≤ n− 2
ai+2an if i < n− 2, j = n− 1
ai+1bj+1 if i, j ≤ n− 2, j /∈ {i, i+ 1}

=
{
ag2i an if j = n− 1
agi bj+1 if j ≤ n− 2

= a
bj �g
i bgj = (aibj)g .

(vi) On the relation an−1an−2an−1 = an−1an−2:

(an−1an−2an−1) �g = an−1 � (an−2 � (an−1 �g)) = an−1 � (an−2 �1) = 1 = an−1 �g = an−1 � (an−2 �g) = (an−1an−2) �g

and, as an−1an−2bn = bnan−1 in On,

(an−1an−2an−1)g = (an−1an−2)an−1�gagn−1 = (an−1an−2)1bn = an−1an−2bn
= bnan−1 = agn−1an−1 = a

an−2�g
n−1 agn−2 = (an−1an−2)g .

(vii) On the relation b1b2b1 = b1b2:

(b1b2b1) � g = (b1b2) � (b1 � g) = (b1b2) � g

and, as b2b3b2 = b2b3 in On,

(b1b2b1)g = (b1b2)b1�gbg1 = (b1b2)gb2 = bb2�g
1 bg2b2 = bg1b3b2 = b2b3b2 = b2b3 = bg1b

g
2 = bb2�g

1 bg2 = (b1b2)g .

(viii) On the relation a1a2 · · · an−1 = an:

(a1a2 · · · an−1) � g = (a1a2 · · · an−2) � (an−1 � g) = (a1a2 · · · an−2) � 1 = 1 = an � g .

Similarly, also for 2 ≤ i ≤ n− 1, we have (ai · · · an−1) � g = 1. On the other hand, as a1a2 · · · an−2bn = b1 in On,

(a1a2 · · · an−1)g = a
(a2···an−1)�g
1 a

(a3···an−1)�g
2 · · · aan−1�g

n−2 agn−1 = a1
1a

1
2 · · · a1

n−2bn = a1a2 · · · an−2bn = b1 = agn .

(ix) On the relation bn−1bn−2 · · · b1 = bn: as bi � g = g, for 1 ≤ i ≤ n − 2, then (bn−2 · · · b1) � g = g (indeed,
we have (bi · · · b1) � g = g, for 1 ≤ i ≤ n− 2), whence

(bn−1bn−2 · · · b1) � g = bn−1 � ((bn−2 · · · b1) � g) = bn−1 � g = g2 = bn � g

and, as anbn−1bn−2 · · · b2 = a1 in On,

(bn−1bn−2 · · · b1)g = b
(bn−2···b1)�g
n−1 b

(bn−3···b1)�g
n−2 · · · bb1�g

2 bg1 = bgn−1b
g
n−2 · · · b

g
2b
g
1 = anbn−1 · · · b3b2 = a1 = bgn ,

as required.

Now, by applying the Theorem 1.8, we have a well defined bilateral semidirect product Cn1On induced by
the actions δ2 and ϕ2. Furthermore, as aig = gai+1 and big = gbi+1, for 1 ≤ i ≤ n − 2, an−1g = bn, bn−1g =
g2an = g2an, ang = a1a2 · · · an−2an−1g = a1a2 · · · an−2bn = b1 and bng = bn−1bn−2 · · · b1g = bn−1gbn−1 · · · b2 =
g2anbn−1 · · · b2 = g2a1 = g2a1 in OPn, it follows immediately:

Lemma 2.12 For 1 ≤ i ≤ n, aig = (ai � g)(agi ) and big = (bi � g)(bgi ) in OPn.

As the right action in Cn1On preserves X and {g} ∪X generates OPn, by the Theorem 1.10, we have:

Theorem 2.13 The monoid OPn is a homomorphic image of Cn1On.

Let OP be the pseudovariety of monoids generated by {OPn | n ∈ N} and let Ab be the pseudovariety (of
monoids) of all abelian groups. Then:

Corollary 2.14 OP ⊆ Ab1O.
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On the monoid ORn

The monoid ORn was studied by McAlister in [17] and by Catarino and Higgins in [5]. A presentation for ORn
was given by Arthur and Ruškuc [3] (see also [6]). We obtain a set of generators of ORn by adding to a set of
generators of On the n-cycle permutation g and the reflexion permutation h considered above. Therefore, On,
ODn, OPn, C2 and Cn are submonoids of ORn. Let D2n be a dihedral group of order 2n. Then, D2n is defined
by the presentation 〈g, h | h2 = 1, gn = 1, hg = gn−1h〉 and, clearly, may be considered as the submonoid of
ORn generated by the permutations g and h.

In the remaining of this paper we construct some bilateral semidirect decompositions of ORn in terms of
its submonoids mentioned above.

First, we consider D2n and On. By convenience, we consider the letter-irredundant presentation

〈D | N ′〉 = 〈g1, . . . , gn−1, h | h2 = 1, gn1 = 1, hg1 = gn−1h, g
k
1 = gk, 2 ≤ k ≤ n− 1〉

of D2n and again the letter-irredundant presentation 〈X | R′〉 of On.
Let δ3 the left action of X∗ on D∗ and ϕ3 the right action of D∗ on X∗ that extend, by Proposition 1.4 (or

1.5), the following actions of and on the letters:

• x � h and xh as in (A ∪B)∗ ∗r {h}∗ (which induces the reverse semidirect product On ∗r C2 considered in
the Theorem 2.9), for x ∈ A ∪B;

• an � h = bn � h = h (thus x � h = h, for x ∈ X), ahn = bn and bhn = an;

• x � gk and xgk as in C∗1X∗ (which induces Cn1On), for x ∈ X and 1 ≤ k ≤ n− 1.

Observe that the actions δ3 and ϕ3 preserve letters. We also have:

Lemma 2.15 The actions δ3 and ϕ3 preserve the presentations 〈D | N ′〉 and 〈X | R′〉.

Proof. By the Lemma 2.11 and the “dual” of Lemma 2.5 (see the paragraph between the Corollary 2.8 and
the Theorem 2.9), it remains to show that:

(i) (a1 · · · an) � h = an � h, (bn−1 · · · b1) � h = bn � h, (a1 · · · an)h = ahn and (bn−1 · · · b1)h = bhn;

(ii) an � h2 = an � 1, bn � h2 = bn � 1, ah
2

n = a1
n and bh

2

n = b1n; and

(iii) x � (hg1) = x � (gn−1h) and xhg1 = xgn−1h, x ∈ X.

The first two relations from (i) are obvious (as w � h = h, for w ∈ X∗). On the other hand,

(a1a2 · · · an−1)h = a
(a2···an−1)�h
1 a

(a3···an−1)�h
2 · · · aan−1�h

n−2 ahn−1 = ah1a
h
2 · · · ahn−2a

h
n−1 = bn−1bn−2 · · · b2b1 = bn = ahn

and, similarly, (bn−1 · · · b1)h = bhn. The relations from (ii) are easy to prove. Next, we prove the relations from
(iii) for x ∈ {a1, . . . an}. For x ∈ {b1, . . . , bn} the proof is similar. Then, for i = 1, we have

a1 � (hg1) = (a1 � h)(ah1 � g1) = h(bn−1 � g1) = hg2 = gn−2h = (a1 � gn−1)(agn−1

1 � h) = a1 � (gn−1h)

and
ahg11 = (ah1)g1 = bg1n−1 = an = bhn = (agn−1

1 )h = a
gn−1h
1 .

For 2 ≤ i ≤ n− 1, we have

ai � (hg1) = (ai � h)(ahi � g1) = h(bn−i � g1) = hg1 = gn−1h = (ai � gn−1)(agn−1

i � h) = ai � (gn−1h)

and
ahg1i = (ahi )g1 = bg1n−i = bn−i+1 = ahi−1 = (agn−1

i )h = a
gn−1h
i .
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Finally, for i = n, we have

an � (hg1) = (an � h)(ahn � g1) = h(bn � g1) = hg2 = gn−2h = (an � gn−1)(agn−1
n � h) = an � (gn−1h)

and
ahg1n = (ahn)g1 = bg1n = a1 = bhn−1 = (agn−1

n )h,

as required.

Once again, by applying the Theorem 1.8, we have a well defined bilateral semidirect product D2n 1On
induced by the actions δ3 and ϕ3. Furthermore, as anh = hbn (and bnh = han), we have anh = (an � h)(ahn) and
bnh = (bn � h)(bhn) in ORn. Hence, by taking in consideration the Lemma 2.12 and the observation before the
Theorem 2.9, it follows immediately:

Lemma 2.16 For x ∈ X, xg = (x � g)(xg) and xh = (x � h)(xh) in ORn.

As the right action in D2n1On preserves X and {g, h} ∪X generates ORn, by the Theorem 1.10, we have:

Theorem 2.17 The monoid ORn is a homomorphic image of D2n1On.

Let OR be the pseudovariety of monoids generated by {ORn | n ∈ N} and let Dih be the pseudovariety of
monoids (groups) generated by {D2n | n ∈ N}. Then:

Corollary 2.18 OR ⊆ Dih1O.

Next, we consider the submonoids Cn and ODn of ORn together with the letter-irredundant presentations
〈C | N〉 of Cn and

〈Y | R1〉 = 〈X ∪ {h} | R′, h2 = 1, an−1an−2 · · · a1h = b1b2 · · · bn−1, hai = bn−ih, 1 ≤ i ≤ n− 1〉

of ODn.
Let δ4 the left action of Y ∗ on C∗ and ϕ4 the right action of C∗ on Y ∗ that extend, by Proposition 1.4 (or

1.5), the following actions of and on the letters:

• x � gk and xgk as in C∗1X∗ (which induces Cn1On), for x ∈ X and 1 ≤ k ≤ n− 1;

• h � gk = gn−k and hgk = h, for 1 ≤ k ≤ n− 1.

Notice that, both the actions δ4 and ϕ4 preserve letters. Furthermore, we also have:

Lemma 2.19 The actions δ4 and ϕ4 preserve the presentations 〈C | N〉 and 〈Y | R1〉.

Proof. By the Lemma 2.11, it remains to show that:

(i) h � gk1 = h � gk and hg
k
1 = hgk , for 2 ≤ k ≤ n− 1;

(ii) h � gn1 = h � 1 and hg
n
1 = h1;

(iii) h2 � gk = 1 � gk, for 1 ≤ k ≤ n− 1;

(iv) (hai) � gk = (bn−ih) � gk, for 1 ≤ i, k ≤ n− 1;

(v) (an−1an−2 · · · a1h) � gk = (b1b2 · · · bn−1) � gk, for 1 ≤ k ≤ n− 1.
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First, notice that, as hgk = h, for 1 ≤ k ≤ n− 1, the second equalities of (i) and (ii) are immediate.
We begin by proving that h � gk1 = h � gk, for 2 ≤ k ≤ n− 1, by induction on k. For k = 2, we have

h � g2
1 = (h � g1)(hg1 � g1) = gn−1(h � g1) = gn−1gn−1 = gn−1gn−1 = gn−2 = gn−2 = h � g2.

Then, assume by induction hypothesis that, h � gk−1
1 = h � gk−1, for some 2 < k ≤ n− 1. Hence

h �gk1 = (h �g1)(hg1 �gk−1
1 ) = gn−1(h �gk−1

1 ) = gn−1(h �gk−1) = gn−1gn−k+1 = gn−1gn−k+1 = gn−k = gn−k = h �gk.

Next, we finish the proof of (ii):

h � gn1 = (h � g1)(hg1 � gn−1
1 ) = gn−1(h � gn−1

1 ) = gn−1(h � gn−1) = gn−1g1 = gn−1g = 1 = h � 1.

In order to prove (iii), let 1 ≤ k ≤ n− 1. Then h2 � gk = h � (h � gk) = h � gn−k = gk = 1 � gk.
Now, we prove (iv): for 1 ≤ i, k ≤ n− 1, we have

(hai) � gk = h � (ai � gk) =


h � 1 if k = 1, i = n− 1
h � gk−1 if k ≥ 2, i = n− k
h � gk otherwise

=


1 if k = 1, i = n− 1
gn−k+1 if k ≥ 2, i = n− k
gn−k otherwise

=


1 if n− k = n− 1, n− i = 1
gn−k+1 if n− k ≤ n− 2, n− i = k
gn−k otherwise

= bn−i � gn−k = bn−i � (h � gk) = (bn−ih) � gk.

Finally, we prove the last equality. Let 1 ≤ k ≤ n− 1. Then

(an−1an−2 · · · a1h) � gk = an−1 � (an−2 � (· · · � (a1 � (h � gk)))) = an−1 � (an−2 � (· · · � (a1 � gn−k)))
= an−1 � (an−2 � (· · · � (ak � gn−k))) = an−1 � (an−2 � (· · · � (ak+1 � gn−(k+1))))
= an−1 � g1 = 1 = b1 � gn−1 = b1 � (b2 � (· · · � (bn−(k+1) � gk+1)))
= b1 � (b2 � (· · · � (bn−k � gk))) = b1 � (b2 � (· · · � (bn−1 � gk))) = (b1b2 · · · bn−1) � gk,

as required.

Thus, by the Theorem 1.8, we have a well defined bilateral semidirect product Cn 1ODn induced by the
actions δ4 and ϕ4. On the other hand, as hg = gn−1h, then hg = (h � g)hg in ORn and so, by taking also in
consideration the Lemma 2.12, it follows immediately:

Lemma 2.20 For x ∈ Y , xg = (x � g)(xg).

As the right action in Cn1ODn preserves Y and {g} ∪ Y generates ORn, by the Theorem 1.10, we have:

Theorem 2.21 The monoid ORn is a homomorphic image of Cn1ODn.

It follows that:

Corollary 2.22 OR ⊆ Ab1OD.

Now, consider the submonoids C2 and OPn of ORn and the letter-irredundant presentations 〈h | h2 = 1〉 of
C2 and

〈Z | R2〉 = 〈A ∪B ∪ C | R,N, an−1g1 = bn−1bn−2 · · · b1, g1an−1an−2 · · · a1 = an−1an−2 · · · a1,
bn−1g1 = g2a1a2 · · · an−1, aig1 = g1ai+1, big1 = g1bi+1, 1 ≤ i ≤ n− 2〉

of OPn.
By applying the Proposition 1.4, or 1.5, and considering a trivial right action, let δ5 be the left action of

{h}∗ on Z∗ that extends the following action of and on the letters:
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• h � ai = bn−i and h � bi = an−i, for 1 ≤ i ≤ n− 1 (as the left action δ1 of {h}∗ on (A ∪B)∗);

• h � gk = gn−k, for 1 ≤ k ≤ n− 1.

Notice that δ5 preserves letters (as well as the trivial right action). Moreover, we have:

Lemma 2.23 The action δ5 preserves the presentations 〈Z | R2〉 and 〈h | h2 = 1〉.

Proof. By the Lemma 2.5, it remains to show that:

(i) h2 � gk = 1 � gk, for 1 ≤ k ≤ n− 1;

(ii) h � gn1 = h � 1;

(iii) h � gk1 = h � gk, for 2 ≤ k ≤ n− 1;

(iv) h � (an−1g1) = h � (bn−1bn−2 · · · b1);

(v) h � (g1an−1an−2 · · · a1) = h � (an−1an−2 · · · a1);

(vi) h � (bn−1g1) = h � (g2a1a2 · · · an−1);

(vii) h � (aig1) = h � (g1ai+1) and h � (big1) = h � (g1bi+1), for 1 ≤ i ≤ n− 2.

The proofs of (i) to (iii) are similar to the proofs of (i) to (iii) of Lemma 2.19.
First, we prove (iv): as b1gn−1 = a1a2 · · · an−1 in OPn, we have

h � (an−1g1) = (h � an−1)(han−1 � g1) = b1(h � g1) = b1gn−1 = a1a2 · · · an−1 = (h � bn−1)(h � bn−2) · · · (h � b1)
= (h � bn−1)(hbn−1 � bn−2)(hbn−1bn−2 � bn−3) · · · (hbn−1bn−2···b2 � b1) = h � (bn−1bn−2 · · · b1).

Next, as b1b2 · · · bn−1 = gn−1b1b2 · · · bn−1 (notice that b1b2 · · · bn−1 is a right zero in OPn), then

h � (g1an−1an−2 · · · a1) = (h � g1)(hg1 � an−1)(hg1an−1 � an−2) · · · (hg1an−1···a2 � a1)
= (h � g1)(h � an−1)(h � an−2) · · · (h � a1) = gn−1b1b2 · · · bn−1 = b1b2 · · · bn−1

= (h � an−1)(h � an−2) · · · (h � a1) = (h � an−1)(han−1 � an−2) · · · (han−1···a2 � a1),

which proves (v).
Now, we prove (vi), using the fact that a1gn−1 = gn−2bn−1 · · · b1 in OPn. Hence

h � (bn−1g1) = (h � bn−1)(hbn−1 � g1) = a1gn−1 = gn−2bn−1...b1 = (h � g2)(h � a1)(h � a2) · · · (h � an−1)
= (h � g2)(hg2 � a1)(hg2a1 � a2) · · · (hg2a1···an−2 � an−1) = h � (g2a1a2 · · · an−1).

Finally, as bn−ign−1 = gn−1bn−i−1 and an−ign−1 = gn−1an−i−1, for 1 ≤ i ≤ n − 2, in OPn, it follows that
h � (aig1) = h � (g1ai+1) and h � (big1) = h � (g1bi+1), for 1 ≤ i ≤ n− 2, as required.

Thus, by the Theorem 1.8 (considering a trivial right action), we have a well defined semidirect product
OPn ∗ C2 induced by the action δ5. On the other hand, we have hgk = gn−kh, whence hgk = (h � gk)h, for
1 ≤ k ≤ n− 1. So, by taking also in consideration the Lemma 2.6, it follows immediately:

Lemma 2.24 For x ∈ A ∪B ∪ C, hx = (h � x)h in ORn.

Now, by the Corollary 1.11, we have:

Theorem 2.25 The monoid ORn is a homomorphic image of OPn ∗ C2.
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It follows immediately:

Corollary 2.26 OR ⊆ OP ∗ Ab2.

Once again, as C2 is a commutative monoid, the left action of C2 on OPn may also be considered as a right
action (which coincides with the one induced by the right action of {h}∗ on (A ∪ B ∪ C)∗ that extends the
following action of and on the letters: ahi = bn−i and bhi = an−i, ghi = gn−i, for 1 ≤ i ≤ n − 1) and so we also
have a well defined reverse semidirect product OPn ∗r C2. As, clearly, xh = hxh in ORn, for x ∈ A ∪ B ∪ C,
again by Corollary 1.11, we have:

Theorem 2.27 The monoid ORn is a homomorphic image of OPn ∗r C2.

And, so:

Corollary 2.28 OR ⊆ OP ∗r Ab2.

Conjectures

We finish this paper by formulating some conjectures:

Conjecture 2.29 OD = O ∗ Ab2 = O ∗r Ab2.

Conjecture 2.30 OP = Ab1O.

Conjecture 2.31 OR = Dih1O = Ab1OD = OP ∗ Ab2 = OP ∗r Ab2.
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V. Silva, World Scientific, (2002), 363–378.

[7] V.H. Fernandes, G.M.S. Gomes and M.M. Jesus, Presentations for some monoids of partial transformations
on a finite chain, Comm. Algebra 33 (2005), 587–604.

[8] G.M.S. Gomes and J.M. Howie, On the ranks of certain semigroups of order-preserving transformations,
Semigroup Forum 45 (1992), 272–282.

22



P
ré
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