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Abstract
It is known that the Clarke generalized directional derivative is

nonnegative along the limit directions generated by directional direct-
search methods at a limit point of certain subsequences of unsuccessful
iterates, if the function being minimized is Lipschitz continuous near
the limit point.

In this paper we generalize this result for non-Lipschitzian func-
tions using Rockafellar generalized directional derivatives (upper sub-
derivatives). We show that Rockafellar derivatives are also nonnega-
tive along the limit directions of those subsequences of unsuccessful
iterates when the function values converge to the function value at
the limit point. This result is obtained assuming that the function is
directionally Lipschitzian with respect to the limit direction.

It is also possible under appropriate conditions to establish more
insightful results by showing that the sequence of points generated by
these methods eventually approaches the limit point along the locally
best branch or step function (when the number of steps is equal to
two).

The results of this paper are presented for constrained optimization
and illustrated numerically.
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1 Introduction

In this paper we consider a constrained minimization problem posed as

min f(x),

s.t. x ∈ Ω,
(1)

where f : Rn → R ∪ {+∞} represents a nonsmooth, extended-real-valued
objective function and Ω ⊆ Rn denotes a nonempty constrained or feasible
region. Our interest relies on the solution of problem (1) by derivative-free
methods, i.e., by methods which make no use of derivatives of the objective
function (or of the functions defining the feasible region), and in particular
by direct-search methods.

Direct-search methods (DSM) can be classified as either directional or
simplicial [6, Chapters 7 and 8]. In this paper we are interested in direc-
tional DSM and will consider their iterations organized around a search step
(optional) and a poll step. We will essentially concentrate on the poll step
since it is responsible for the global convergence properties of the resulting
algorithm. A poll step consists of evaluating the objective function at a set
of points defined by a positive spanning set or, in some methods different
from the ones studied in our paper, defined by a set of positive generators of
a cone related to the constraints. A successful poll step occurs when at least
one poll point exhibits a function value lower than the current one.

A number of directional DSM consider a finite number of such sets of
directions and are referred to as pattern search or generalized pattern search.
Although some of our basic results apply to these methods, we will focus on
those directional DSM, like mesh adaptive direct search (MADS) [4] and
generating set search [9] (under sufficient decrease), which are entitled to use
an infinite number of poll directions.

It is possible to prove for these classes of methods the existence of a
subsequence of unsuccessful iterates (i.e., unsuccessful poll steps) converging
to a limit point and driving the step size or mesh size parameter to zero.
At these refining subsequences one can consider limits of normalized poll
directions which are then called refining directions. Audet and Dennis [4]
have proved that if the objective function is Lipschitz continuous near the
limit point x∗, then the Clarke-Jahn directional derivative is nonnegative
along an appropriate refining direction v:

f ◦C(x∗; v) = lim sup
x′ → x∗, x

′ ∈ Ω
t ↓ 0, x′ + tv ∈ Ω

f(x′ + tv)− f(x′)

t
≥ 0. (2)
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This derivative is essentially the Clarke generalized directional derivative [5]
extended by Jahn [8] to the constrained setting. The refining direction must
belong to the interior of the hypertangent cone to Ω at x∗. If the correspond-
ing set of refining directions for x∗ is dense in the unit sphere, then these
derivatives are proved to be nonnegative for all directions in the tangent cone
to Ω at x∗ (i.e., for all directions on the closure of the hypertangent cone).
A similar result had already been proved for unconstrained optimization and
generalized pattern search [3].

In this paper we will show that this result can be extended to the Rock-
afellar upper subderivative [11] (generalized by us to the constrained case),

f ↑(x∗; v) = lim sup
x′ →f x∗, x

′ ∈ Ω
t ↓ 0

inf
v′ → v

x′ + tv′ ∈ Ω

f(x′ + tv′)− f(x′)

t
≥ 0, (3)

whenever, at the point x∗, the function f is lower semicontinuous and direc-
tionally Lipschitzian with respect to a direction v belonging to the interior
of the hypertangent cone HΩ(x∗). The notation x′ →f x represents x′ → x
and f(x′) → f(x). The function f is said to be directionally Lipschitzian
at x with respect to v if

f ◦◦(x; v) = lim sup
x′ →f x, x′ ∈ Ω

t ↓ 0

sup
v′ → v

x′ + tv′ ∈ Ω

f(x′ + tv′)− f(x′)

t
< +∞.

Examples of directionally Lipschitzian functions are given in [11, Section 6].
In this paper we will also show that when f is lower semicontinuous at

a point x and directionally Lipschitzian at the point with respect to v ∈
int(HΩ(x)), one has f ↑(x; v) = f ◦◦(x; v) = f ◦R(x; v), where

f ◦R(x; v) = lim sup
x′ →f x, x′ ∈ Ω
t ↓ 0, x′ + tv ∈ Ω

f(x′ + tv)− f(x′)

t
. (4)

This result was originally established by Rockafellar [11] for the case Ω =
Rn. Also by extending the results of Rockafellar [11] for the constrained
setting Ω 6= Rn, we will show, under appropriate conditions, that the upper
directional derivative f ↑(x; v), when v is in the tangent cone TΩ(x), is the
limit inferior of derivatives f ◦R(x; w) where w ∈ int(HΩ(x)). This analysis
will allow us then to state a result for directions in the tangent cone TΩ(x∗)
but not necessarily in the interior int(HΩ(x∗)) of the hypertangent one.
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These results apply to discontinuous functions but they do not provide
information about the ability of the algorithms to locally identify the best
branch or step function. It is possible, however, to prove that the algorithms
have the capability to generate an infinite number of iterates in such a step,
provided the number of steps is two around the limit point and the function
has some continuity properties in each step (essentially the step domains
must have nonempty interiors and one must be able to extend the function,
in a Lipschitz continuous way, from a step domain to a neighborhood of the
limit point).

This paper follows the line of others where nonsmooth calculus (in par-
ticular Clarke calculus) has been used to analyze the asymptotic properties
of the sequence of iterates generated by DSM of directional type (besides the
above cited papers [3, 4], see also [2, 7]).

We organize the material of this paper in the following way. In Section 2
we describe the algorithmic setting for direct-search methods. Then, in Sec-
tion 3, we gather the necessary material about the globalization strategies
that we consider and about the notions of refining subsequences and direc-
tions. The main asymptotic results of this paper are contained in Section 4
for functions directionally Lipschitzian with respect to certain directions.
We leave to an appendix all the auxiliary nonsmooth calculus background
needed for these results. In Section 5 we study the behavior of the algorithm
for step discontinuities. We illustrate a number of our results and assump-
tions in Section 6, numerically and for problems in two dimensions. The
paper is concluded in Section 7 with some final remarks.

2 Algorithmic framework

Our algorithmic description follows the one in [6, Chapter 7] for the uncon-
strained case. This framework will encompass both the MADS methodology
(based on integer lattices and where a simple decrease on the function value
suffices to identify a new iterate) and general directional DSM based on ran-
domly generated normalized directions and sufficient decrease for acceptance
of new iterates. Each iteration of the algorithm is organized around a search
step (optional) and a poll step. The evaluation process of the poll step is op-
portunistic moving to a poll point once simple or sufficient decrease is found,
depending on the variant being used.

As we will see later in the convergence theory, the set of directions used
for polling is not required to positively span Rn (although for coherence
with the smooth case we will write it so in the algorithm below) and not
necessarily drawn from a finite set of directions. The algorithm requires an

4



initial feasible point with finite objective function value.
To make the algorithmic description shorter we will make use of the ex-

treme barrier function

fΩ(x) =

{
f(x) if x ∈ Ω,
+∞ otherwise.

Following the terminology in [9], ρ : (0, +∞) → (0, +∞) will represent a
forcing function, i.e., a continuous and non increasing function satisfying
ρ(t)/t → 0 when t ↓ 0. Typical examples of forcing functions are ρ(t) = t1+a,
for a > 0. To write the algorithm in general terms we will use ρ̄(·) to either
represent a forcing function ρ(·) or the constant, zero function.

Algorithm 2.1 (Directional direct-search method)

Initialization
Choose x0 ∈ Ω with f(x0) < +∞, α0 > 0, 0 < β1 ≤ β2 < 1, and γ ≥ 1.
Let D be a (possibly infinite) set of positive spanning sets.

For k = 0, 1, 2, . . .

1. Search step: Try to compute a point with fΩ(x) < f(xk)− ρ̄(αk)
by evaluating the function f at a finite number of points. If such
a point is found then set xk+1 = x, declare the iteration and the
search step successful, and skip the poll step.

2. Poll step: Choose a positive spanning set Dk from the set D.
Order the set of poll points Pk = {xk + αkd : d ∈ Dk}. Start
evaluating fΩ at the poll points following the chosen order. If a poll
point xk + αkdk is found such that fΩ(xk + αkdk) < f(xk)− ρ̄(αk)
then stop polling, set xk+1 = xk + αkdk, and declare the iteration
and the poll step successful. Otherwise declare the iteration (and
the poll step) unsuccessful and set xk+1 = xk.

3. Mesh parameter update: If the iteration was successful then
maintain or increase the step size parameter: αk+1 ∈ [αk, γαk].
Otherwise decrease the step size parameter: αk+1 ∈ [β1αk, β2αk].

3 Behavior of the step size

The global convergence of directional DSM is heavily based on the analysis
of the behavior of the step size parameter αk which must approach zero as
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an indication of some form of stationarity. There are essentially two known
ways of enforcing the existence of a subsequence of step size parameters
converging to zero in DSM of directional type. One way is by ensuring that
all new iterates lie on an integer lattice (rigorously speaking only when the
step size is bounded away from zero). The other form consists of imposing
a sufficient decrease on the acceptance of new iterates. In the former case
we need the iterates to lie in a bounded set and in the latter situation the
objective function must be bounded below.

Assumption 3.1 The level set L(x0) = {x ∈ Ω : f(x) ≤ f(x0)} is bounded.
The function f is bounded below in L(x0).

3.1 Integer lattices (MADS)

Generalized pattern search makes use of a finite set of directions D = D
which satisfy appropriate integrality requirements for globalization by integer
lattices.

Assumption 3.2 The set D of positive spanning sets is finite and the el-
ements of D are of the form Gz̄j, j = 1, . . . , |D|, where G ∈ Rn×n is a
nonsingular matrix and each z̄j is a vector in Zn.

Given the type of non-smoothness and discontinuity of the objective func-
tion which we would like to consider in this paper, we need to make use of
an infinite set of directions D dense (after normalization) in the unit sphere.
MADS makes use of such a set of directions but, since it is also based on
globalization by integer lattices, the set D must then be generated from a
finite set D satisfying Assumption 3.2 (which will be guaranteed by the first
requirement of the next assumption).

Assumption 3.3 Let D represent a finite set of positive spanning sets sat-
isfying Assumption 3.2.

The set D is so that the elements dk ∈ Dk satisfy the following conditions:

1. dk is a nonnegative integer combination of the columns of D.

2. The distance between xk and the point xk + αkdk tends to zero if and
only if αk does:

lim
k∈K

αk‖dk‖ = 0 ⇐⇒ lim
k∈K

αk = 0,

for any infinite subsequence K.

6



3. The limits of all convergent subsequences of D̄k = {dk/‖dk‖ : dk ∈ Dk}
are positive spanning sets for Rn.

In addition, the update of the step size parameter must conform to some
form of integrality.

Assumption 3.4 The step size parameter is updated as follows: Choose
a rational number τ > 1, a nonnegative integer m+ ≥ 0, and a negative
integer m− ≤ −1. If the iteration is successful, the step size parameter is
maintained or increased by taking αk+1 = τm+

k αk, with m+
k ∈ {0, . . . ,m+}.

Otherwise, the step size parameter is decreased by setting αk+1 = τm−
k αk,

with m−
k ∈ {m−, . . . ,−1}.

Note that these rules respect those of Algorithm 2.1 by setting β1 = τm−
,

β2 = τ−1, and γ = τm+
.

Finally, the search step is restricted to points in a previously (implicitly
defined) mesh or grid.

Assumption 3.5 The search step in Algorithm 2.1 only evaluates points in

Mk =
⋃

x∈Sk

{x + αkDz : z ∈ N|D|
0 },

where Sk is the set of all the points evaluated by the algorithm previously to
iteration k.

The following result was originally proved by Torczon [12] for pattern
search and extended later to generalized pattern search [3] and MADS [4].

Theorem 3.1 Let Assumption 3.1 hold. Algorithm 2.1 under Assumptions 3.3–
3.5 and ρ̄(·) = 0 (MADS) generates a sequence of iterates satisfying

lim inf
k→+∞

αk = 0.

3.2 Sufficient decrease

An alternative to the use of integer lattices is to impose sufficient rather
than simple decrease as a criterion for accepting new iterates. This can
be simply achieved by selecting ρ̄(·) as a forcing function in Algorithm 2.1.
The following result is relatively classic in nonlinear optimization when using
some form of sufficient decrease. It is proved in [9] and in [6, Section 7.7] in
the context of directional DSM for unconstrained optimization.
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Theorem 3.2 Let Assumption 3.1 hold. Algorithm 2.1, when ρ̄(·) is a forc-
ing function, generates a sequence of iterates satisfying

lim inf
k→+∞

αk = 0.

Note that such a result is derived under no assumptions whatsoever on the
set of directions D. Thus, we are free to use a normalized set of directions D
dense in the unit sphere.

3.3 Refining subsequences and directions

The type of stationarity results which can be derived for DSM of directional
type are established at limit points of the so-called refining subsequences (a
concept formalized in [3]).

Definition 3.1 A subsequence {xk}k∈K of iterates corresponding to unsuc-
cessful poll steps is said to be a refining subsequence if {αk}k∈K converges to
zero.

One can ensure for the two algorithmic settings of this paper (Sections 3.1
and 3.2) the existence of a convergent refining subsequence. Such a result is a
simple and known consequence of Assumption 3.1, Theorems 3.1 or 3.2, and
the scheme that updates the step size parameter (see, e.g., [6, Section 7.3]).

Theorem 3.3 Let Assumption 3.1 hold. Consider a sequence of iterates gen-
erated by Algorithm 2.1 under the scenarios of either Section 3.1 (MADS) or
Section 3.2 (sufficient decrease). Then there is at least a convergent refining
subsequence {xk}k∈K.

The type of directions along which appropriate directional derivatives
will be proved nonnegative are the so-called refining directions (a notion
formalized in [4]).

Definition 3.2 Let x∗ be the limit point of a convergent refining subsequence.
If the limit limk∈L dk/‖dk‖ exists, where L ⊆ K and dk ∈ Dk, and if xk +
αkdk ∈ Ω, for sufficiently large k ∈ L, then this limit is said to be a refining
direction for x∗.

Some of the results of this paper will require for the refining subsequence
under consideration that the associated set of refining directions for x∗ is
dense in the unit sphere (an assumption stronger than just saying that the
normalized set of directions D is dense in the unit sphere).
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4 Results for directionally Lipschitzian func-

tions

Our first convergence result addresses the case where a refining direction is
in the interior of the hypertangent cone to Ω at the limit point.

Definition 4.1 A vector v is said to be hypertangent to Ω at x ∈ Ω if there
exists an ε > 0 such that

x′ + tv ∈ Ω for all x′ ∈ Ω ∩B(x; ε) and t ∈ (0, ε).

The set of all hypertangent vectors to Ω at x is called the hypertangent cone
to Ω at x and is represented by HΩ(x).

The hypertangent cone is convex and contains the origin (see [11, Corol-
lary 2]).

It seems that there is no universal definition of hypertangency in the
literature. In the paper [4], where MADS was proposed, the authors have
used a different definition. In their case, a vector v is said to be hypertangent
to Ω at x if there exists an ε > 0 such that

x′ + tv′ ∈ Ω for all x′ ∈ Ω ∩B(x; ε), v′ ∈ B(v; ε), and t ∈ (0, ε).

Rockafellar [11] calls these vectors those with respect to Ω is epi-Lipschitzian
at x and proves (a fact that results from [11, Corollary 2], see also Proposi-
tion A.2 in the Appendix of our paper) that they coincide with those in the
interior of the hypertangent cone of Definition 4.1. In summary, the inte-
rior of the hypertangent cone of Definition 4.1 is the hypertangent cone used
in [4]. We chose to follow Definition 4.1 since this was the one adopted by
Rockafellar [11] and our analysis is heavily based on his.

As we have seen before, the existence of a convergent refining subsequence
{xk}k∈K is guaranteed by Theorem 3.3. It is then possible to state this
condition as an assumption for deriving asymptotic results at limit points.

Theorem 4.1 Consider a refining subsequence {xk}k∈K converging to x∗ ∈
Ω and a refining direction v for x∗ in int(HΩ(x∗)). Assume that f is lower
semicontinuous at x∗ and directionally Lipschitzian at x∗ with respect to v.
Assume further that limk∈K f(xk) = f(x∗). Then f ↑(x∗; v) = f ◦◦(x∗; v) =
f ◦R(x∗; v) ≥ 0.
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Proof. Since f is directionally Lipschitzian at x∗ with respect to v, we
have that f ◦◦(x∗; v) < +∞. Now let v = limk∈L dk/‖dk‖, with L ⊆ K. Thus,

f ◦◦(x∗; v) = lim sup
x′ →f x∗, x

′ ∈ Ω
t ↓ 0

sup
v′ → v

x′ + tv′ ∈ Ω

f(x′ + tv′)− f(x′)

t

≥ lim sup
k∈L

f(xk + αk‖dk‖(dk/‖dk‖))− f(xk)

αk‖dk‖

= lim sup
k∈L

f(xk + αkdk)− f(xk) + ρ̄(αk)

αk‖dk‖
− ρ̄(αk)

αk‖dk‖
≥ 0.

The first inequality follows from {xk}k∈L being a feasible refining subsequence
with limk∈L f(xk) = f(x∗) and the fact that xk + αkdk is feasible for k ∈ L
sufficiently large. The limit limk∈L ρ̄(αk)/(αk‖dk‖) is 0 for both globalization
strategies (Sections 3.1 and 3.2). In the case of MADS (Section 3.1), one uses
ρ̄(·) = 0. When imposing sufficient decrease (Section 3.2), since ‖dk‖ = 1 for
all k, this limit follows from the properties of the forcing function.

The fact that f ↑(x∗; v) = f ◦◦(x∗; v) = f ◦R(x∗; v) is showed in the Appendix
(Theorem A.1).

Now we need to address the case where the directions are in the tangent
cone to Ω at the limit point but not necessarily in its interior.

Definition 4.2 A vector v is said to be tangent to Ω at x if for all sequences
{yk} ⊂ Ω converging to x and for all sequences {tk} with tk ↓ 0, there exists
a sequence of vectors {wk} converging to v such that yk + tkwk ∈ Ω for all k.

The set of all tangent vectors to Ω at x is called the tangent cone to Ω
at x and is represented by TΩ(x).

The tangent cone TΩ(x) is the closure of both HΩ(x) and int(HΩ(x)). It
can be also defined by the limit inferior of a multifunction (see the Appendix
for details).

Theorem 4.2 Consider a refining subsequence {xk}k∈K converging to x∗ ∈
Ω. Let v be in TΩ(x∗) (but not necessarily in int(HΩ(x∗))). Assume that f is
lower semicontinuous at x∗ and directionally Lipschitzian at x∗ with respect
to v. Assume further that limk∈K f(xk) = f(x∗).

If f is directionally Lipschitzian with respect to all directions in the in-
tersection of a ball centered at v with int(HΩ(x∗)) and the set of refining
directions for x∗ is dense in this intersection, then f ↑(x∗; v) ≥ 0.
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Proof. First we apply Theorem 4.1 to obtain that f ◦R(x∗; w) ≥ 0 for all
the refining directions w in the intersection of the ball centered at v with
int(HΩ(x∗)). Then, from the result proved in the Appendix (Theorem A.1)

f ↑(x∗; v) = lim inf
w → v

w ∈ int(HΩ(x∗))

f ◦R(x∗; w) ≥ 0.

5 Results for non-Lipschitzian functions

We are now interested in studying the behavior of directional DSM when
the objective function is defined by several branches or steps, in particular
to know if the algorithm can identify the locally best step. We will give an
affirmative answer provided the number of steps is two, the step domains
have nonempty interiors, and their borders exhibit a minimum of regularity
(the exterior cone property).

The condition stated below covers a wide range of discontinuities.

Assumption 5.1 The function f is such that there exists a neighborhood B
of x∗ (a limit point of a refining subsequence) which admits a finite partition

B =

nB⋃
i=1

Bi,

such that, for all i ∈ {1, . . . , nB},

1. int(Bi) 6= ∅,

2. cl(Bi) has the exterior cone property (see Definition 5.1),

3. f is Lipschitz continuous in int(Bi) and can be continuously extended
to ∂Bi.

It can be easily seen that if we extend a Lipschitz continuous function in
the interior of a set to the boundary, in a continuous way, the extension is
also Lipschitz continuous on the closure of the set.

Proposition 5.1 Let f be a locally Lipschitz function in int(S), with Lips-
chitz constant L. The continuous extension of f to cl(S) is locally Lipschitz
continuous with Lipschitz constant 3L + 2 .
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Proof. Let x ∈ ∂S and consider a neighborhood N of x. The value of
the extended function in any point y ∈ ∂S ∩N can be given as the limit of
{f(yj)} for any sequence of points {yj} ⊆ int(S) ∩N converging to y.

Let us consider two points z and w in ∂S ∩N . Let ε ≤ ‖z − w‖. Then,
there exist zε, wε ∈ int(S) ∩ N , with ‖z − zε‖ ≤ ε and ‖w − wε‖ ≤ ε, such
that:

|f(z)− f(w)| ≤ |f(z)− f(zε)|+ |f(zε)− f(wε)|+ |f(wε)− f(w)|
≤ ε + L‖zε − wε‖+ ε ≤ ε + 3L‖z − w‖+ ε

≤ (2 + 3L)‖z − w‖.

The case where one point is in int(S) ∩ N and the other in ∂S ∩ N can be
proved analogously (the result is trivial when both points are in int(S)∩N).

The precise form of the exterior cone property which we will use is stated
below.

Definition 5.1 A set S has the exterior cone property if at any point z ∈
∂S there exist a cone Cz with nonempty interior, an angle θz > 0, and a
neighborhood Nz of z such that Ez = Nz ∩{z′ = z + c, c ∈ Cz, c 6= 0} ⊂ Rn\S
and the angle between all the vectors in Ez − {z} and all the vectors in
Sz − {z}, with Sz = S ∩N , is larger than θz.

We will also need the following auxiliary result.

Proposition 5.2 Let S be a set with the exterior cone property and g a
function Lipschitz continuous in S. Let also z ∈ ∂S ∩ S.

Then there exists an extension g̃ of g from S to Rn which is Lipschitz
continuous in Rn and locally strictly decreasing along all directions emanating
from z and belonging to a cone with nonempty interior.

Proof. Consider the sets Cz, Nz, Ez, and Sz as in Definition 5.1. Define
an auxiliary function g̃ which coincides with g in Sz and is linear and strictly
decreasing from z to the interior of Ez. We will show first that this function
is Lipschitz continuous in Sz ∪Ez. Let L1 be the Lipschitz constant of g = g̃
in Sz and L2 the Lipschitz constant of g̃ in Ez. Now consider a point y ∈ Sz

and a point w ∈ Ez. One can derive that

|g̃(y)− g̃(w)| ≤ |g(y)− g(z)|+ |g̃(w)− g̃(z)|
≤ max{L1, L2} (‖y − z‖+ ‖w − z‖)
≤ max{L1, L2}M‖y − w‖,
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where the last equality follows from ‖y − z‖ + ‖w − z‖ ≤ M‖y − w‖, with
M =

√
2π/θz. The cases where both points lie in Sz or Ez are straightforward

to analyze. We then obtain that |g̃(y)−g̃(w)| ≤ max{L1, L2}max{1, M}‖y−
w‖, for all y and w in Sz ∪ Ez.

It is known that any Lipschitz function in a set can be extended to the
whole space with the same Lipschitz constant (see [10, Theorem 1]). Thus,
one can now extend g̃ from Sz ∪Ez to Rn, and in particular to Nz, with the
same Lipschitz constant.

We are now ready for the main result of this section. Recall that the ex-
istence of a convergent refining subsequence {xk}k∈K is guaranteed by The-
orem 3.3.

Theorem 5.1 Consider a refining subsequence {xk}k∈K converging to x∗ ∈
Ω. Assume that f is lower semicontinuous at x∗ and satisfies Assumption 5.1.
Let the corresponding set of refining directions for x∗ be dense in the unit
sphere.

If x∗ belongs to the interior of a partition set in {B1, . . . , BnB
}, then

f ◦C(x∗; v) ≥ 0 for all refining directions v ∈ TΩ(x∗).
Otherwise, there exists a subsequence K ′ ⊂ K and a partition set B′ ∈

{B1, . . . , BnB
} such that {xk}k∈K′ ⊂ cl(B′) and there is an infinite number

of poll points corresponding to iterates in K ′ belonging to both int(B′) and
Rn\ cl(B′).

Proof. The proof is done for the case of MADS (Section 3.1) but the
case of sufficient decrease (Section 3.2) is obtained from this one with minor
modifications.

Consider first the neighborhood B guaranteed by Assumption 5.1. If x∗
belongs to int(Bl), for some l ∈ {1, . . . , nB}, the Lipschitz continuity of f
near x∗ would allows to apply the known results from [4].

So, let us assume that x∗ belongs to the boundary of Bl, for some l ∈
{1, . . . , nB}. Since the partition is finite, by passing at a subsequence K1 ⊂ K
if necessary, one can state the existence of an i ∈ {1, . . . , nB} such that
x∗ ∈ ∂Bi and {xk}k∈K1 ⊂ cl(Bi) with K1 ⊂ K.

By using Assumption 5.1 and Proposition 5.1, we can extend f from Bi

to cl(Bi) in a continuous way and ensuring that the extended function f̄ is
Lipschitz continuous in cl(Bi).

Let us assume that all poll points associated with the refining subsequence
belong to cl(Bi). We will see that this leads us to a contradiction. So, let
us assume that there exists a k̄ ∈ K1 such that xk + αkd ∈ cl(Bi) for all
k ∈ K1 with k ≥ k̄ and for all d ∈ Dk. We now apply Proposition 5.2 using
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g = f̄ and S = cl(Bi). Let f̃ be the extended function (and L its Lipschitz
constant). We then obtain that

f̃ ◦C(x∗; v)

≥ lim sup
k → +∞
k ∈ K1

f̃(xk + αkdk)− f̃(xk)

αk‖dk‖
+

f̃(xk + αk‖dk‖v)− f̃(xk + αkdk)

αk‖dk‖

≥ lim sup
k → +∞
k ∈ K1

f(xk + αk dk)− f(xk)

αk‖dk‖
− Lαk‖dk‖‖v − (dk/‖dk‖)‖

αk‖dk‖

≥ 0,

for all refining directions v, which is a contradiction since these directions are
dense in the unit sphere and f̃ is locally strictly decreasing from x∗ along all
directions in a cone of nonempty interior.

So, one can build a sequence of points K2 ⊂ K1 for which there exists
dk ∈ Dk such that

fΩ(xk + αkdk) ≥ f(xk), xk + αkdk /∈ cl(Bi), (5)

for all k ∈ K2.
Given that Bi has a nonempty interior and that the set of refining direc-

tions for x∗ is dense in the unit sphere, there must exist an infinite number
of poll points associated with a subsequence K3 ⊂ K2 belonging to int(Bi).

The proof is completed by setting B′ = Bi and K ′ = K3.
When the number of steps is equal to two (nB = 2) it is possible to prove

a stronger result.

Corollary 5.1 Under the assumptions of Theorem 5.1 and when nB = 2,
there exists a subsequence K∗ ⊂ K and a partition set B∗ ∈ {B1, B2} such
that, when x∗ is in the border of the two partition sets,

1. B∗ satisfies the properties stated for B′ in Theorem 5.1,

2. B∗ is the partition set where the lowest values of f are attained around x∗,

3. limk∈K∗ f(xk) = f(x∗),

4. the function f can be extended from B∗ to a neighborhood of x∗ in a
Lipschitz continuously way so that F ◦

C(x∗; v) ≥ 0 for all refining direc-
tions v ∈ TΩ(x∗), where F denotes the extended function (in particular
this property holds for all refining directions v ∈ TΩ∩B∗(x∗)).
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Proof. The proof of the corollary is a continuation of the proof of the
Theorem 5.1.

First we note that {f(xk)} is decreasing and bounded below and thus it
converges, say to f∗. Since f is lower semicontinuous, f(x∗) ≤ f∗.

We can now show that it is along B′ (see the proof of Theorem 5.1) that
the value of f is attained, i.e., that f∗ = limk∈K3 f(xk) = f(x∗). If this was
not true, then there would exist an ε > 0 and a bordering B′′ (since nB = 2,
the remaining one) and a neighborhood N of x∗ for which f(y) > f(z) + ε,
for all y ∈ B′ ∩N ∩ Ω and z ∈ B′′ ∩N ∩ Ω. But this contradicts (5).

From (5), we also conclude that B∗ = B′ is the partition set where f
attains the lowest feasible values around x∗.

Finally, the last point of the corollary can be easily proved by extending f
from cl(B∗) to B in a Lipschitz continuous form.

Other forms of results could have been stated at the fourth point of
this corollary. For instance, we could have mixed here the analysis of this
and the previous section, and consider vectors with respect to which the
objective function is directionally Lipschitzian at x∗ and then restrict these
vectors to the hypertangent and tangent cones to Ω∩B∗ at this point (as in
Theorems 4.1 and 4.2).

6 Numerical illustrations

To illustrate the ability of Algorithm 2.1 in finding local minimizers for
lower semicontinuous functions we ran some examples in MATLAB. We
included examples which violate some of the assumptions required to en-
sure convergence. Five problems of the form (1) were considered, where
Ω = [−1, 1]× [−1, 1] was partitioned into a finite number of disjoint subsets
Ω =

⋃nB

i=1 Ωi, with nB = 2 in four of the cases and nB = 4 in the last prob-
lem. The minimizer, when exists, is unique and corresponds to x∗ = (0, 0).
Figures 1-5 depict plots of each one of the functions considered.

Problem 1: A lower semicontinuous function of the form

f1(x) =

{
x2 + y2 if x

2
≤ y ≤ 2x,

10 + x2 + y2 otherwise,

and steps Ω1 and Ω2 with nonempty interior. Near x∗, the distance between
function values in the two steps remains constant.

Problem 2: A lower semicontinuous function of the form

f2(x) =

{
10x2 + 10y2 if x < 0,

10x2 + y2 otherwise,
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Figure 1: Plot of function f1.

and steps Ω1 and Ω2 with nonempty interior. Near x∗, the distance between
function values in the steps converges to zero.

Problem 3: An upper semicontinuous function of the form

f3(x) =

{
x2 + y2 if x

2
< y < 2x,

10 + x2 + y2 otherwise,

and steps Ω1 and Ω2 with nonempty interior. The upper semicontinuity,
prevents x∗ = (0, 0) from being considered as a local minimizer.

Problem 4: A lower semicontinuous function of the form

f4(x) =

{
x2 + y2 if y = 2x,

10 + x2 + y2 otherwise,

where one of the steps has empty interior.
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Figure 2: Plot of function f2.

Problem 5: A lower semicontinuous function of the form

f5(x) =


x2 + y2 if x

2
≤ y ≤ 2x,

5 + x2 + y2 if x ≤ 0 ∧ y ≤ 0 ∧ (x, y) 6= (0, 0),

10 + x2 + y2 if y < x
2
∧ x > 0,

15 + x2 + y2 otherwise,

and steps Ωi, i ∈ {1, 2, 3, 4}, with nonempty interior. Near x∗, the distance
between function values in any of the steps remains constant. The number of
steps considered exceeds two, which violates one of the conditions required
in Section 5 to establish the asymptotic results.

We tested NOMADm [1], version 4.6, a Matlab implementation of MADS
(which fits into Algorithm 2.1, see Section 3.1) and a very simple imple-
mentation of Algorithm 2.1 with a globalization strategy based on sufficient
decrease (as in Section 3.2). In both algorithms, the search step was empty,
the initial step size parameter was set to one, and the run stopped once the
step size reached the threshold 10−7. In the implementation of the variant
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Figure 3: Plot of function f3.

which requires sufficient decrease, the poll set Dk was set equal to [Qk −Qk],
where Qk is an orthogonal matrix computed by randomly generating the
first column. In MADS, the positive spanning set considered corresponds
to the implementation LTMADS, with a total of 2n directions. Since our
main concern is (proper) convergence rather than efficiency, the poll points
were evaluated following the consecutive order of storage. As a forcing func-
tion, in the case of the sufficient decrease variant, we considered ρ(t) = t2

(other variants were tested, but with worse results in what concerns the total
number of function evaluations required).

Given the random behavior of both algorithms, a sequence of 10 runs was
considered for each problem. The initial point was set to x0 = (−0.4,−0.5).
A summary of the computational experiments is reported in Table 1.

When any of the algorithms failed to converge to the function minimizer,
the final iterate corresponded generally to a point near the minimizer of the
function when restricted to a higher step. The exception occurred with f4

where there were cases of convergence to points lying on the line of discon-
tinuity.
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Figure 4: Plot of function f4.

Algorithm 2.1
MADS Suff. Decrease

function #failures #fevals #failures #fevals

f1 0 233 0 175.6
f2 0 193.9 0 494.6
f3 0 228.8 0 175.6
f4 10 173.7 10 144.4
f5 2 220.6 1 177.7

Table 1: Number of failures in identifying a local minimizer and corresponding
average number of function evaluations required. See the text for a description
about the type of successes obtained for f3.

In any of the 10 runs performed for each algorithm, the final iterate com-
puted for the function f3 corresponded to a function value near zero. Even
if this point can be considered as a good numerical value for minimization
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Figure 5: Plot of function f5.

purposes, we note that it is not the function minimizer, given the upper
semicontinuity. By changing the initial point provided to the optimizer to
x0 = (−0.5,−0.5), we observed cases of convergence to the minimum value
of f3 when restricted to the highest step (a behavior similar to what was
noticed for the other functions in case of failure of convergence).

In order to access the dependency of the results from the initial point
provided to the methods, we considered a grid of 100 points, equally spaced
in Ω = [−1, 1]× [−1, 1], and run Algorithm 2.1 with a globalization strategy
based on sufficient decrease. For each of the five problems and for each of
the initial points, we ran the algorithm 10 times, yielding a total of 1000
runs for each problem. The number of failures in detecting the minimizer
is reported in Table 2. It is possible to state with some level of certainty
that there were basically no failures for the first three problems and that the
failures observed in Table 1 for last two were not by chance.

The numerical results support the theoretical analysis developed in the
previous sections. Failures in locating the minimizer occur only when at least
one of the assumptions required for establishing convergence is violated.
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function #failures

f1 2
f2 0
f3 2
f4 1000
f5 61

Table 2: Number of failures of Algorithm 2.1 (sufficient decrease variant, see
Section 3.2), for a sequence of 1000 runs, starting from different initial points. See
the text for a description about the type of successes obtained for f3.

7 Final remarks

In this paper we tried to shed some light on the convergence properties of
direct-search methods (DSM) of directional type for lower semicontinuous
functions not necessarily Lipschitz continuous. We divided our analysis into
two main parts. In the first part, we derive results for refining directions
with respect to which the function is directionally Lipschitzian at the limit
point of the underlying refining subsequence. These results were derived for
the constrained case which forced us to redo the analysis in [11] for upper
subderivatives in the presence of constraints.

In the second part of the analysis, we considered a class of discontinuous
functions and showed that when the number of branches or steps is two and
the function has some continuity properties in each step, these DSM identify
the best local step around the limit point. The problem in extending this
result to more than two local steps or branches lies on the fact that the speed
at which the poll points approach the border of a step domain can be slower
than the speed at which these points approach the iterates. We were able
to prove, by extending continuously the function and taking limits, that an
infinite number of poll points jump out of the step domain. However, they
could only visit a neighbor step and thus one can only infer results when the
number of steps is equal to two.

A Appendix

In this section we provide the rigorous definitions of the various generalized
directional derivatives used throughout this paper.
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Definition of upper subderivative

The upper subderivative (3) was defined by Rockafellar [11] for the case
Ω = Rn. To extend it to the constrained case Ω 6= Rn, let g(s, y) be an
extended-real-valued function defined on (Rn ×R× [0, +∞))×Rn. Let also
s ∈ S ⊂ Rn × R× [0, +∞). Define

h(s, y) = lim sup
s′ → s
s′ ∈ S

inf
y′ → y

y′ ∈ ΓΩ(p(s′))

g(s′, y′)

as
sup

Y ∈N(y)

inf
U∈N(s)

sup
s′∈S∩U

inf
y′∈ΓΩ(p(s′))∩Y

g(s′, y′),

where N(y) and N(s) denote, respectively, a family of sufficiently small neigh-
borhoods around y and s, p(·) denotes the projection from Rn×R× [0, +∞)
onto Rn × [0, +∞), and

ΓΩ(x, t) =

{
t−1 (Ω− x) if t > 0,
Rn if t = 0.

To define the upper subderivative f ↑(x; v) one proceeds similarly as in [11]
and chooses

g(x′, α′, t, v′) =

{
f(x′+tv′)−α′

t
if t > 0,

−∞ if t = 0,
(6)

s = (x, f(x), 0), s′ = (x′, α′, t), y = v, and y′ = v′. In the constrained
case, however, one has now S = epi(f)(Ω) × [0, +∞). These choices result
then in the definition f ↑(x; v) = h((x, f(x), 0), v). We use the following
expression to more easily grasp the essential of the definition of the upper
subderivative f ↑(x; v):

f ↑(x; v) = lim sup
(x′, α′) ↓f x, x′ ∈ Ω

t ↓ 0

inf
v′ → v

x′ + tv′ ∈ Ω

f(x′ + tv′)− α′

t
.

The notation (x′, α′) ↓f x represents (x′, α′) → (x, f(x)) with α′ ≥ f(x′).
When f is lower semicontinuous at x, the derivative f ↑(x; v) can be equiv-

alently defined by

f ↑(x; v) = lim sup
x′ →f x, x′ ∈ Ω

t ↓ 0

inf
v′ → v

x′ + tv′ ∈ Ω

f(x′ + tv′)− f(x′)

t
,

where, recall, x′ →f x represents x′ → x and f(x′) → f(x).
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A characterization of the epigraph of the upper sub-
derivative

The following proposition extends [11, Proposition 1] to the constrained case
Ω 6= Rn.

Proposition A.1 For each s′ ∈ S ⊂ Rn ×R× [0, +∞), let Γ(s′) denote the
set in Rn × R which is the epigraph of y → g(s′, y) restricted to ΓΩ(p(s′)):

Γ(s′) = epi(g(s′, ·))(ΓΩ(p(s′))).

Let also
∆(s) = lim inf

s′ → s
s′ ∈ S

Γ(s′).

Then ∆(s) is the epigraph of y → h(s, y) restricted to TΩ(s):

epi(h(s, ·))(TΩ(s)) = ∆(s).

Proof. From its definition, the point (y, β) is in ∆(s) if and only if

∀Y ∈ N(y),∀ε > 0,∃U ∈ N(s) : ∀s′∈S∩U∃(y′, β′) :

y′ ∈ ΓΩ(p(s′)) ∩ Y, β′ ∈ (β − ε, β + ε), g(s′, y′) ≤ β′.

which is equivalent to

∀Y ∈ N(y),∀ε > 0,∃U ∈ N(s) : ∀s′∈S∩U∃y′ :
y′ ∈ ΓΩ(p(s′)) ∩ Y, g(s′, y′) ≤ β + ε.

Thus, (y, β) is in ∆(s) if and only if y ∈ TΩ(s) and

∀Y ∈ N(y),∀ε > 0,∃U ∈ N(s) : sup
s′∈S∩U

inf
y′∈ΓΩ(p(s′))∩Y

g(s′, y′) ≤ β + ε.

This last condition is the same as saying that h(s, y) ≤ β.
Note that the epigraph of y → g(s′, y) restricted to ΓΩ(p(s′)) in the

case (6) considered for the upper subderivatives is:

Γ(x′, α′, t) =

{
t−1 (epi(f)(Ω)− (x′, α′)) if t > 0,
Rn × R if t = 0.

Thus, from Proposition A.1,

lim inf
(x′, α′) ↓f x, x′ ∈ Ω

t ↓ 0

Γ(x′, α′, t) = epi(f ↑(x; ·))(TΩ(x)).
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On the other hand, from the definition of tangent cone

lim inf
(x′, α′) ↓f x, x′ ∈ Ω

t ↓ 0

Γ(x′, α′, t) = Tepi(f)(Ω)(x, f(x)).

Thus,
epi(f ↑(x; ·))(TΩ(x)) = Tepi(f)(Ω)(x, f(x)). (7)

The relation (7) extends, to the constrained case, the part of [11, Theorem 2]
which we need for what comes in Theorem A.1 below.

Definitions of other generalized directional derivatives

To define the generalized directional derivative f ◦R(x; v) introduced in (4), in
the constrained case, one first considers

h(s, y) = lim sup
s′ → s

s′ ∈ S : y ∈ ΓΩ(p(s′))

g(s′, y)

as
inf

U∈N(s)
sup

s′∈S∩U :y∈ΓΩ(p(s′))

g(s′, y).

The derivative is then defined as f ◦R(x; v) = h((x, f(x), 0), v) by setting g as
in (6), s = (x, f(x), 0), s′ = (x′, α′, t), and y = v and, given the constrained
case, S = epi(f)(Ω)× [0, +∞). We will also use a more friendly description
for this definition:

f ◦R(x; v) = lim sup
(x′, α′) ↓f x, x′ ∈ Ω
t ↓ 0, x′ + tv ∈ Ω

f(x′ + tv)− α′

t
.

When f is lower semicontinuous at x, the derivative f ◦R(x; v) can be equiv-
alently defined by

f ◦R(x; v) = lim sup
x′ →f x, x′ ∈ Ω
t ↓ 0, x′ + tv ∈ Ω

f(x′ + tv)− f(x′)

t
.

Finally, if f is Lipschitz continuous near x, this derivative coincides with the
Clarke-Jahn generalized directional derivative (2):

f ◦R(x; v) = f ◦C(x; v) = lim sup
x′ → x, x′ ∈ Ω

t ↓ 0, x′ + tv ∈ Ω

f(x′ + tv)− f(x′)

t
.
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A characterization for the upper subderivatives

We reproduce below, in the space Rm, the part of [11, Corollary 2] which
will be needed later. Recall, from Definition 4.1, the notion of a vector
hypertangent to a set at a point of the set and, from the discussion after this
definition, the concept of a set epi-Lipschitzian with respect to a vector at a
point of the set.

Proposition A.2 Let C ⊂ Rm and y ∈ C. If C is epi-Lipschitzian at y with
respect to some w, then the vectors w with this property form int(HC(y)) and
one has TC(y) = cl(HC(y)).

Finally, we prove the results needed for Theorems 4.1 and 4.2.

Theorem A.1 Let f be an extended-real-valued function and x a point in Ω
with f(x) < +∞.

The function f is directionally Lipschitzian at x with respect to all vectors
in

{v′ ∈ int(HΩ(x)) : f ◦R(x; v′) < ∞} . (8)

In this set, f ↑(x; ·) is continuous and

f ↑(x; ·) = f ◦◦(x; ·) = f ◦R(x; ·).

Further, for all vectors in v ∈ TΩ(x) which are approachable from (8),
one has

f ↑(x; v) = lim inf
v′ → v

v′ ∈ int(HΩ(x))
f ◦◦(x; v′) < +∞

f ◦R(x; v′). (9)

Proof. Let us apply Proposition A.2 to C = epi(f)(Ω) at (x, f(x)) ∈
(Ω, R). The hypertangent cone Hepi(f)(Ω) consists of all vectors (v, β) such
that

∃ε > 0 : (x′, α′) + t(v, β) ∈ epi(f)(Ω),

∀t ∈ (0, ε), (x′, α′) ∈ epi(f)(Ω) ∩B((x, f(x)); ε).

Note that (x′, α′) + t(v, β) ∈ epi(f)(Ω) is the same as

x′ + tv ∈ Ω and
f(x′ + tv)− α′

t
≤ β.
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Thus, one can see directly from this definition that

int(Hepi(f)(Ω)(x, f(x)))

= {(v, β) : v ∈ int(HΩ(x)), f ◦R(x; ·) < β in a neigh. of v} .

The set of vectors for which epi(f)(Ω) is epi-Lipschitzian w.r.t., at the
point (x, f(x)), is

{(v, β) : v ∈ int(HΩ(x)), f ◦◦(x; v) < β} .

Note that this set is the same as

{(v, β) : v ∈ int(HΩ(x)), f ◦◦(x; ·) < β in a neigh. of v}

and, from Proposition A.2, we also obtain

int(Hepi(f)(Ω)(x, f(x)))

= {(v, β) : v ∈ int(HΩ(x)), f ◦◦(x; ·) < β in a neigh. of v} .

Thus,

{(v, β) : v ∈ int(HΩ(x)), f ◦R(x; ·) < β in a neigh. of v}
= {(v, β) : v ∈ int(HΩ(x)), f ◦◦(x; ·) < β in a neigh. of v} .

or, in other words,

int [epi(f ◦R(x; ·))(int(HΩ(x)))] = int [epi(f ◦◦(x; ·))(int(HΩ(x)))] .

We conclude that f ◦R(x; ·) and f ◦◦(x; ·) coincide in int(HΩ(x)).
One can see from its epigraph that f ◦R(x; ·) is convex. Also, since f ◦R(x; ·)

is bounded above in a neighborhood of at least a point in int(HΩ(x)) and
since it is convex, it is necessarily continuous in

{v′ ∈ int(HΩ(x)) : f ◦R(x; v′) < ∞} .

We have seen in this proof that the epigraph of

v → lim inf
v′ → v

v′ ∈ int(HΩ(x))
f ◦◦(x; v′) < +∞

f ◦R(x; v′)

in TΩ(x) is the closure of Hepi(f)(Ω)(x, f(x)). On the other hand, from Propo-
sition A.2 and (7) and we know that

cl[Hepi(f)(Ω)(x, f(x))] = Tepi(f)(Ω)(x, f(x)) = epi(f ↑(x; ·))(TΩ(x)).

Thus, we have established (9) for all vectors in v ∈ TΩ(x) which are ap-
proachable from (8). This also shows that f ↑(x; v) = f ◦R(x; v) in int(HΩ(x))
whenever f ↑(x; v) < +∞.
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