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Abstract

First variation formula for Lagrangian densities is a central element of the calculus of variations, that relates
the differential of the action functional with both the Euler and Cartan forms, that are geometric objects,
that is, as tensors, they do not depend on the choice of a coordinate system for the dependent or independent
variables, or seen from a different viewpoint, they are invariant with respect to local automorphisms of these
variables. First variation formula leads straightforward to Euler equations that characterize critical points
of the action functional, as well as to Noether currents and conservation laws associated to any infinitesimal
symmetry of the Lagrangian.

This paper sets the scene for discrete variational problems on an abstract cellular complex that serves
as discrete model of R

p and for the discrete theory of partial differential operators that are commom in
the Calculus of Variations. A central result is the construction of a unique decomposition of certain partial
difference operators into two components, one that is a vector bundle morphism and other one that leads
to boundary terms. Application of this result to the differential of the discrete Lagrangian leads to unique
discrete Euler and momentum forms not depending either on the choice of reference on the base lattice or
on the choice of coordinates on the configuration manifold, and satisfying the corresponding discrete first
variation formula. This formula leads to discrete Euler equations for critical points and to exact discrete
conservation laws for infinitesimal symmetries of the Lagrangian density, with a clear physical interpretation.
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1. Introduction

Discrete models in geometry were always present in mathematics both for its intrinsic interest and for
the insight they let for more complicated related problems. This area is receiving in modern mathematics
([1, 5, 8, 14, 28, 32] and references therein) an increasing interest due to the possibilities it offers to, when
combined with modern computational tools, analyze and solve problems with physical or geometrical origin
that involve partial or ordinary differential equations, both if we look for numerical solutions, or if we try
to determine its properties and how they reflect on the smooth case. An important part of these equations
have its origin in a variational principle, with or without constraints [4, 9, 10, 11, 12, 22, 26, 27, 33].
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Historically, the first variational problem introduced by Johann Bernoulli (the determination of the
braquistochrone curve) was solved by him precisely through an approximation with an associated discrete
problem, taking the curve as composed of several rectilinear elements [17]. After a more rigorous formaliza-
tion of the subject by Euler and later by Lagrange, within the language of differential calculus, the doctrine
evolved to its modern state: on the one hand, and thanks to Weierstrass’ foundational work, it represents
a fruitful branch of functional analysis, and on the other hand, following the path marked among others
by Lie, Noether and Cartan, there is the possibility to develop a geometrical study of the equations from a
Lagrangian or Hamiltonian point of view, with a language that is independent of coordinates. The formal-
izing work by Lagrange and later Weierstrass gave it a sound theoretical foundation, while Lie’s theory of
continuous groups led to different key results of ODEs and PDEs theory, for example Noether’s conservation
laws. Application of Cartan’s calculus brought geometrical character to the objects in the theory.

In the modern theory of numerical algorithms that model physical problems it is becoming clear [4, 13,
24, 27, 28, 29, 32, 33] the need of a formalization of the variational theory for a discrete Lagrangian and the
consequent possibility to recover within this theory the discrete objects and its properties that may allow
for a comparison with the corresponding objects that are present in the classical smooth theory. Such a
study is not new [19, 24] but in the past decades has given rise to new numerical integration procedures of
mechanical systems with interesting geometrical and long-term properties [4, 13, 20, 21, 27, 28, 29, 31, 34].
However, for several independent variables, that is, for PDEs of field theories, discrete variational integrators
have been studied only in recent years [2, 13, 22, 23, 26].

We briefly recall the basic initial steps of the Variational Theory in several independent variables. The
interested reader can find details and technicalities for this presentation in [11], other references for this
approach are [9, 10, 12]. Given a fibred manifold π : Y → X over a p-dimensional manifold with volume
element volX ∈ Ωp(X), any function L : J1Y → X on the associated first jet bundle and any compact domain
A ⊂ X of integration leads to a functional LA : y(x) ∈ Γ(A, Y ) 7→ R given by LA(y(x)) =

∫

A
L(j1xy)volX ∈ R.

If we consider a 1-parameter deformation {yt(x)}t∈(−ǫ,ǫ) of a given section y = y0, it induces an infinitesimal

variation δy = d
dtyt(x)

∣
∣
t=0

∈ Γ(A, y∗V Y ), that is, a section of the vertical bundle of Y restricted to y(A).

The value d
dtLA(yt(x))

∣
∣
t=0

only depends on δy, through a first order differential operator:

d

dt
LA(yt(x))

∣
∣
∣
∣
t=0

=

∫

A

(dL ◦ j1y(x))(j1(δy))volX =

∫

A

(dy(x)L)(δy)

where dy(x)L : Γ(X, y∗V Y ) → Ωp(X) is a first order differential operator taking δy ∈ Γ(X, y∗V Y ) to the
p-form (dL ◦ j1y)(j1(δy))volX ∈ Ωp(X) on X (where j1 represents the natural extension of sections and of
vector fields to the first jet bundle). The key step to determine if y(x) is stationary for LA for any possible
variation with compact support is to decompose this first order differential operator with values in densities
into two components, one of them linear, and the other one an exact differential. This can be done with the
introduction of the adjoint operator of dy(x)L, a linear operator E(y(x)) ∈ Γ(X, y∗V ∗Y ) satisfying:

(dy(x)L)(w) = 〈w, E(y(x)) · volX〉 + d
(
〈ωy(x), w〉

)

where E(y(x)) ·volX is a n-form on X with values in y∗V ∗Y , called Euler form associated to the Lagrangian
density L · volX and to the section y(x) ∈ Γ(X,Y ) and where ωy(x) is a (n − 1)-form on X with values
on y∗V ∗Y , the dual vertical bundle along y(x). This formula represents essentially an integration by parts
procedure taking some terms to the boundary while leaving in E(y(x)) the essential part that acts on δy
as a 0-order differential operator, allowing then to apply the main lemma of the calculus of variations:
〈w, E(y(x)) · volx〉 = 0 (∀w ∈ Γ(X, y∗V Y )) ⇔ E(y(x)) = 0 which produces Euler-Lagrange equations that
characterize critical sections. The boundary term (integration of d

(
〈ωy(x), w〉

)
goes to the boundary due

to Stokes’ Theorem) allows then to recover conserved quantities if we have symmetries of the Lagrangian
density [9, 10, 11, 12]. This boundary term defines the momentum form Ω(j1xy) = ωy(x)(x), which is an
horizontal V ∗Y -valued (p − 1)-form on J1Y that leads to the associated Cartan form of the problem, an
ordinary p-form defined as Θ = θ ∧ Ω + LvolX , where θ is the V Y -valued structure 1-form on J1Y . In this
way one may recover the whole Hamilton-Cartan theory, with the characterization of critical sections by
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means of the de Donder-Weyl equations, Poisson bracket for field theories, etc. (see [11, 12]). It is known
that Θ and E can be constructed univocally and covariate with the Lagrangian when we consider the natural
action of any bundle automorphism on these objects.

It is worth mentioning that already 30 years ago [24], an attemp was made to derive the discrete Eu-
ler equation in one independent variable via a variational approach and thereby to generate the proper
boundary terms which are necessary for obtaining conservation theorems. As it was indicated in the work
“The catalytic factor in formulating this approach is a discrete version of Lagrange’s identity for difference
operators and their adjoints”.

Our work, within the spirit of the geometric calculus of variations [9, 10, 11], pretends to formulate, in
the simplest possible context, a variational theory in several discrete independent variables which allows
to recover the basic element of the calculus of variations: the integration by parts mechanism for densities
(depending on a vector field), which allows to decompose the density into a linear term (that does not
depend on derivatives of the vector field) and another term that is an exterior differential, which, using
Stokes theorem, after integration, should depend only on boundary terms. In order to obtain the unique
decomposition the emphasis is set on the geometrical nature of the object, its invariance with respect to
possible automorphisms (change of coordinates) both for the discrete independent variables and for the
smooth dependent ones.

Section 2 introduces the base discrete space where the discrete independent coordinates live, and the
important example of the discrete Euclidean space together with its group of symmetries. In this work we
shall visualize a discrete space as a collection of vertices, oriented line segments, oriented surface elements,
and so on, by which we don’t mean any realization in R

p but rather an abstract cellular complex in the
sense of [3, 18], giving a set of cells, a function that allows to determine the dimension of each cell, and
an incidence mapping determining if one cell is on the boundary of another and if the orientations are
compatible, which allows to compute the oriented boundary. This is the basis for topological computations,
like the determination of adherence, interior and boundary, for the introduction of oriented domains of
integration (or chains) and its oriented boundaries, and for the consideration of discrete forms (or cochains)
together with the duality product (integration) of forms on a domain, satisfying Stokes’ formula. This is
the minimal machinery required to introduce the notion of Lagrangian density and the variational problem
associated to it. It must be indicated that variational problems on cell complexes where also considered
in [14, 20], with preference given to simplicial complexes, and where a central role is given to the discrete
Hodge operator on a simplicial complex and to the dual cell complex, which play no role in our theory.
Though introduction of dual meshes and Hodge operator is seen as essential in these works (“dual meshes
are essential as a means of encoding physically relevant phenomena such as fluxes across boundaries” [20]),
we believe the choice to operate with this machinery to be more a matter of taste.

We concentrate ourselves then on the group of automorphisms: Abstract cellular complexes usually
employed to discretize bodies (which are usually seen through a spatial model rather than in an abstract
sense), as for example in the well established theory of finite elements, tend to be too rigid, in the sense
that its group of automorphisms is not transitive, there is the possibility that different vertices don’t have
the same number of adherent cells, and thus different vertices or k-cells need different treatment when
automorphisms of the grid are considered. In many cases the only symmetry for these cellular complexes is
the identity. We shall avoid this by considering an example of p-dimensional homogeneous abstract cellular
complex with well-known symmetry group: the discrete Euclidean space. The group of symmetries of this
abstract cellular complex, namely the integer Euclidean group, is then studied, with special emphasis on
the natural action of the group on each element of our discrete topological structure.

Section 3 is devoted to the formulation of variational problems on bundles over discrete cellular complexes.
The introduction of a discrete Lagrangian density for these bundles (Definition 3.4) together with the choice
of a domain where variations are taken lead to an action functional that is a function on a finite dimensional
manifold. In the case of the Euclidean space a basic result (Lemma 3.5) shows how to interpolate any
configuration of the discrete theory as a continuous configuration of the smooth theory, and therefore how
to create a discrete Lagrangian density from a continuous one, which is the first step for the comparison of
results of both formalisms. Critical configurations (Definition 3.8) are defined and variations of the action
functional are expressed in terms of a difference operator (formula (3.3) and Lemma 3.9).
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The objective of section 4 is a detailed study of difference operators (Definition 4.1) as indicated in
section 3, and the main theorem (adjointness formula, Theorem 4.5) allows to decompose any such operator
in two terms (formula (4.4)), one concentrated at the vertices and the other one being the differential of a
(p− 1)-cochain. The decomposition is unique if one requires the covariance of the objects. This result plays
a central role in the whole discrete variational theory.

In section 5 this formula is successfully applied to obtain a first variation formula for the action functional
of a discrete variational problem (Theorem 5.2) that relates the differential of the Lagrangian density with
the discrete Euler and momentum forms (Definition 5.1) . As in the continuous case, this variation formula
leads to a characterization of critical configurations (discrete Euler equations, Theorem 5.3) and the analysis
of the boundary term in the case of symmetries of the problem leads to the corresponding [30] Noether
current (Theorem 5.5), which is a (p − 1) form depending on the configuration, whose differential vanishes
if the configuration is critical. We illustrate the meaning of these objects and first variation formula in
the case of 1-dimension and 2-dimension discrete Euclidean spaces. Our result improves previous ones
[6, 7, 15, 16, 22, 23, 25, 26] in being valid in any number of discrete independent or continuous dependent
variables, having variational origin, being a formula on discrete forms (cochains), with local nature (and
not an integral formula for the whole boundary of some domains), and is totally embedded in a geometric
formalism, being independent of the choice of preferred directions and covariant for the whole group of
symmetries.

Section 6 gives a physical interpretation of the discrete Euler equations as a condition of equilibrium of
contact forces at each vertex and an interpretation of Noether theorem as vanishing of the total momentum
of the forces pulling at the boundary from the inner side of certain domains, in the sense made clear in
Theorem 6.4 and in the Remark thereafter. This result is related to previous ones: In [26] the authors,
working in the case of 2 independent discrete variables, propose a way of deriving a first variation formula
leading to various interesting results, among them a discrete theorem of Noether which, due to an interplay
of a quadrilateral lattice and a Lagrangian depending on 3 vertices (which in fact means that a preferred
direction is chosen on each quadrilateral) gives rise to a notion of the momentum that has three components
at every face, loosing some of the symmetry of the base manifold. The resulting discrete Noether’s formula
[26, formula (5.7)] is given only in its integral version, which is a 2-dimensional analogue of (6.4) valid
“on-shell” (i.e. for critical configurations), but not of its non-integral version given in Theorem (5.5), or of
first variation formula (Theorem 5.2, which holds also “off-shell”, valid for any configuration). We relate
our Noether theorem with other conservation laws obtained in [15, 16].

Finally in section 7 we give a simple illustrative example from membrane theory and to some extent the
main similarities and differences with the theory of Asynchronous Variational Integrators [23].

2. Discrete manifolds

Consider an oriented discrete p-dimensional manifold X (or oriented abstract cellular complex). By
this we mean a set X (the cells) together with a mapping dim: X → {0, 1, . . . , p} which allows to define
Xk = {β ∈ X : dim β = k} so that X =

⊔p
k=0Xk (X0 is the set of 0-cells or vertices, X1 is the set of oriented

1-cells or edges, and Xk is the set of oriented k-cells) and an incidence mapping [ : ] : X × X → {±1, 0}
(see [3, 18]). We say a cell α ∈ X is incident to a cell β ∈ X with compatible orientation if [β : α] = 1,
incident with opposite orientations if [β : α] = −1 and non-incident if [β : α] = 0. The incidence mapping is
chosen so that each k-cell β admits only a finite number of incident cells, all with dimension (k − 1), that
is, [β : α] 6= 0 only for a finite number of cells α, all with dimα = dimβ − 1, and such that:

∑

α∈Xk

[βk+1 : α] · [α : γk−1] = 0, ∀k ∈ {1, 2, . . . , p− 1}, βk+1 ∈ Xk+1, γk−1 ∈ Xk−1 (2.1)

The incidence mapping allows to define a topology on the set of cells using the following notion of adherence:

Definition 2.1. We shall say a (k − l)-cell α is adherent to a k-cell β (and write α ≺ β) if α = β or
if there exists a sequence of cells αk−l = α, αk−l+1, αk−l+2, . . . , αk = β each incident to the next one:
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[αk : αk−1] · [αk−1 : αk−2] · . . . · [αk−l+1 : αk−l] 6= 0. Conversely, we shall say the k-cell β “contains” the
(k − l)-cell α if α is adherent to β.

We define the k-chain space Ck(X,Z) to be the free abelian group generated by Xk. A k-chain c ∈
Ck(X,Z) is obtained when we assign an integer weight c(α) to each k-cell α, where each k-chain takes
nonzero value only on a finite number of k-cells. In particular any k-cell β ∈ Xk can be represented by the
k-chain cβ that maps β to the weight 1 and any other k-cell γ to the weight 0.

The incidence mapping allows to define a boundary operator:

∂k : Ck(X,Z) → Ck−1(X,Z)

by (∂kc)(α) =
∑

β∈Xk
[β : α]·c(β). In this situation the boundary of a k-cell γ is defined to be the (k−1)-chain

∂kcγ =
∑

α∈Xk−1

[γ : α] · cα (2.2)

The boundary of γ ∈ Xk may be considered as the set of its incident cells αk−1 each with positive or negative
weight depending on the compatibility of its orientation and that of γ. The finiteness condition imposed
for the incidence mapping ensures that ∂kc is a chain (any (k − 1)-cell has zero weight except for a finite
number of them), and condition (2.1) imposed for the incidence mapping is equivalent to ∂k ◦ ∂k+1 = 0

∂k∂k+1cβ = ∂k

(
∑

α∈Xk

[β : α]cα

)

=
∑

γ∈Xk−1

∑

α∈Xk

[β : α] · [α : γ] · cγ = 0

therefore we have a chain complex ∂k : Ck(X,Z) → Ck−1(X,Z) that defines homology groups ker ∂k/ Im∂k+1.
In a similar manner (real) k-cochains (or k-forms) ω ∈ Ωk(X) can be defined to be functions ω : β ∈

Xk 7→ ω(β) ∈ R on Xk. There is a natural duality product 〈c, ω〉 =
∑

α∈Xk
c(α) · ω(α) between k-chains

and k-cochains. This product allows to define the differential of a k-form ω as the (k+ 1)-form dω given by
the rule

〈c, dω〉 = 〈∂c, ω〉 (2.3)

If the duality product between cochains and chains is interpreted as the integration of forms on oriented
domains, this definition is essentially Stokes’ Theorem for integration of the differential of a k-form on a
domain and the integration of the k-form on its boundary.

2.1. Main example: The discrete Euclidean space

One of the simplest examples of oriented p-dimensional discrete manifold is the case of the p-dimensional
discrete Euclidean space (or “cartesian lattice”, if we ignore the oriented cell complex structure). The
vertices of this cell complex shall be the lattice X0 = (2Z)p ⊂ R

p. We introduce this factor 2 for convenience
so that any vertex can be indexed with a p-tuple α = (α1, . . . , αp) with even α1, . . . , αp ∈ 2Z. Odd integers
j ∈ 2Z + 1 should be understood as representing intervals rather than points. In this framework, the
discrete Euclidean space is given by cells α ∈ X = Z

p = Ze1 × Ze2 × . . . × Zep where e1, . . . , ep represent
the generators of the grid, and where any element α = (α1, . . . , αp) ∈ Z

p with k odd entries and p− k even
entries represents a k-cell. For an element α = (α1, . . . , αp) ∈ X , we shall denote αodd the ordered sequence
of positions (αodd

1 < . . . < αodd
k ) = (m1 < . . . < mk) corresponding to odd coordinates αmi

, and similarly
αeven represents the ordered sequence corresponding to even coordinates. The dimension mapping is defined
as dimα = ♯αodd (Another common choice in the literature is the use of half-integers to represent intervals
and integers to represent vertices).

As a model, each 0-cell can be seen as the point of R
p with the given coordinates, all of them even

integers, each 1-cell α with one odd entry αi can be seen as the line segment parallel to the ei axis given
by (α1, . . . , αi + λ, . . . , αp)λ∈[−1,1], each 2-cell β with two odd indexes βi, βj as the square parallel to the
ei, ej plane given by (β1, . . . , βi + λ, . . . , βj + µ, . . . , βp)λ,µ∈[−1,1] etc. In this model we interpret each k-cell
endowed with the orientation given by its canonical basis. If e1, . . . , ep is the canonical basis of R

p and
5



if α = (α1, . . . , αp) is a k-cell with odd entries at positions αodd = (m1 < m2 < . . . < mk), then we
say spanα = span(em1 , . . . , emk

) ⊆ R
p is the director subspace, (em1 , . . . , emk

) is the canonical basis and
volα = em1 ∧ . . . ∧ emk

∈ ΛkRp is the canonical orientation associated to the cell α.
For any (k+1)-cell β = (β1, . . . , βp) with odd entries at positions βodd = (n1 < n2 < . . . < nk+1) we say

that a k-cell α is incident to β if and only if β and α differ by an unitary vector of R
p (that is, α−β = ±en,

where the vector α−β is the “outward pointing vector associated to both cells”, and the index n must then
correspond with one of the positions in βodd). The incidence mapping is defined as:

βodd = (n1 < . . . < nk+1),

{

[β : α] = s · (−1)j−1, ∀s ∈ {+1,−1}, α = β + s · enj

[β : α] = 0, ∀α such that α− β 6= ±enj

(2.4)

In this situation a k-cell α is incident to a (k + 1)-cell β iff the distance vector α − β is unitary, and it is
incident with compatible orientation iff the orientation em1 ∧ . . . ∧ emk

associated to α coincides with the
one induced by the orientation en1 ∧ . . . ∧ enk+1

of the cell β and the outward pointing vector α− β:

α ∈ Xk, β ∈ Xk+1, ‖α− β‖ = 1 ⇒ [β : α] · (α− β) ∧ volα = volβ

else [β : α] = 0
(2.5)

For the (k + 1)-cell β, its boundary may be computed following (2.2) as:

∂cβ =
k+1∑

j=1

∑

s=±1

(−1)j−1 · s · cβ+s·enj
, βodd = (n1 < n2 < . . . < nk+1) (2.6)

which extends by Z-linearity to the whole space of (k + 1)-chains Ck+1(X,Z).
The differential of a k-form can be written, following (2.3) and (2.6), as:

(dωk)(β) =

k+1∑

j=1

∑

s=±1

(−1)j−1 · s · ωk(β + s · enj
), β ∈ Xk+1, βodd = (n1 < n2 < . . . < nk+1) (2.7)

Lemma 2.2. With the definition given in (2.5) the mapping [ : ] on the discrete Euclidean space X = Z
p is

an incidence mapping, that is, each (k+1)-cell has only a finite number of incident cells, all with dimension
k, and

∑

α[β : α] · [α : γ] = 0 for any (k + 1)-cell β and (k − 1)-cell γ.

Proof . The first part of the statement is trivial from the definition. We shall only prove that [ : ] satisfies
(2.1). For β ∈ Xk+1 such that βodd = (βodd

1 < . . . < βodd
k+1) we have:

∂ ◦ ∂cβ =
∑

γ∈Xk−1≺α≺β

[β : α] · [α : γ] · cγ

Any γ ∈ Xk−1 ≺ β has the form γ = β+ seβodd
i

+ reβodd
j

(where i 6= j and r, s ∈ {±1}) and there are exactly

two k-cells incident with γ and β, namely α = β + seβodd
i

and ᾱ = β + reβodd
j

. Therefore the cγ-component

in ∂ ◦ ∂cβ is [β : α] · [α : γ] + [β : ᾱ] · [ᾱ : γ]. To prove that this vanishes we may use (2.5) to obtain:

volβ = [β : α](α− β) ∧ volα = [β : α][α : γ](α− β) ∧ (γ − α) ∧ volγ = [β : α][α : γ](seβodd
i

) ∧ (reβodd
j

) ∧ volγ

volβ = [β : ᾱ](ᾱ− β) ∧ volα = [β : ᾱ][ᾱ : γ](ᾱ− β) ∧ (γ − ᾱ) ∧ volγ = [β : ᾱ][ᾱ : γ](reβodd
j

) ∧ (seβodd
i

) ∧ volγ

as both expressions must coincide we conclude that [β : α][α : γ] = −[β : ᾱ][ᾱ : γ], and ∂∂cβ = 0, that is,
∑

α[β : α] · [α : γ] = 0. �

With this result we may conclude that ∂ ◦ ∂ = 0 and d ◦ d = 0.
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2.2. Symmetry group of the discrete Euclidean space:

We turn our attention now to the group of symmetries of this discrete space and how it behaves with re-
spect to the dimension and incidence mappings. The discrete Euclidean space admits a group of symmetries,
the Euclidean group.

Eucl(p,Z) =

{

ϕ =

(
~ϕ b
0 1

)

∈M(p+1)×(p+1)(Z) : ~ϕ ∈Mp×p(Z), ~ϕt · ~ϕ = Idp, b ∈Mp×1(2Z)

}

(2.8)

It must be noted that following ~ϕt·~ϕ = Idp the columns in matrix ~ϕmust be unitary and linearly independent,
therefore column i of matrix ~ϕ is a vector si · eτ(i) where (s1, . . . , sp) is a collection of signs ±1 and τ is
a permutation of the elements {1, . . . , p} depending on ~ϕ (which is the linear component of the affine
morphism ϕ). Each matrix ~ϕ is obtained in a unique way as product Pτ ·Ds of a permutation matrix Pτ
(where τ ∈ Bij({1, . . . , p}) and Pτ is the matrix with columns eτ(1), . . . , eτ(p)) and a diagonal matrix Ds with

entries s1, . . . , sp ∈ {±1} at the diagonal. Elements of the Euclidean group ϕ =

(
Pτ ·Ds b

0 1

)

correspond

one to one with ternaries (τ, s, b) where τ ∈ Bij({1, . . . , p}), s ∈ Map({1, . . . , p}, {±1}), b ∈ Mp×1(2Z). It
can be easily seen that Ds ·Pτ̄ = Pτ̄ ·Ds◦τ̄ , also Ds ·Ds̄ = Ds·s̄, and Pτ ·Pτ̄ = Pτ◦τ̄ . Therefore composition
of movements is achieved by the following product:

(
Pτ ·Ds b

0 1

)

·

(
Pτ̄ ·Ds̄ b̄

0 1

)

=

(
Pτ◦τ̄ ·D(s◦τ̄)·s̄ b+ Pτ ·Ds · b̄

0 1

)

which might also be written as (τ, s, b) · (τ̄ , s̄, b̄) = (τ ◦ τ̄ , (s ◦ τ̄) · s̄, b+ Pτ ·Ds · b̄).
There is an action of ϕ ∈ Eucl(p,Z) on X = Z

p and on the exterior algebra ΛkRp. Any element

ϕ =

(
~ϕ b
0 1

)

= (τ, s, b) takes a cell α = (α1, . . . , αp) and an element volk = en1 ∧ . . . ∧ enk
∈ ΛkRp to the

new cell ϕ(α) = (α′
1, . . . , α

′
p) and ϕ · volk given by:

(
α′

1

)

=

(
~ϕ b
0 1

)

·

(
α
1

)

, α =






α1

...
αp




 , α′ =






α′
1
...
α′
p




 , ϕ · volk = ~ϕ(en1) ∧ . . . ∧ ~ϕ(enk

)

Hence (ϕ(α))i = α′
i = ατ−1(i) · sτ−1(i) + bi. As s ∈ {±1} and bi is even, we may conclude that entry i of

(τ, s, b) · α is odd if and only if i = τ(j) for some j ∈ αodd. Hence (ϕ(α))odd is the set τ(αodd
1 ), . . . , τ(αodd

k )
rearranged into its natural order. We conclude that the director subspace of the cell ϕ(α) is the image by ~ϕ
of the director subspace of α, and both have the same dimension (same number of odd entries, perhaps at
different positions):

dimϕ(α) = dimα, spanϕ(α) = ~ϕ(spanα)

If volα = eαodd
1

∧ . . . ∧ eαodd
k

is transformed by ϕ, we get:

ϕ · volα = (sαodd
1
eτ(αodd

1 )) ∧ . . . ∧ (sαodd
k
eτ(αodd

k
)) = ±volϕ(α)

Hence there is a value sgn(ϕ, α) ∈ {±1} which determines if ~ϕ : spanα → spanϕ(α) respects the natural
orientation chosen in these spaces, defined by:

ϕ · volα = sgn(ϕ, α) · volϕ(α)

The mapping ϕ ∈ Eucl(p,Z) 7→ (ϕ·) ∈ Aut(ΛkRp) is an action of the Euclidean group on the exterior
algebra, that is (ϕ ◦ ψ) · volk = ϕ · (ψ · volk), and this leads to:

sgn(ϕ ◦ ψ, α) = sgn(ϕ, ψ · α) · sgn(ψ, α), sgn(Id, α) = 1, sgn(ϕ−1, ϕ · α) = sgn(ϕ, α) (2.9)
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As ϕ is an isometry on R
p it is clear that ‖ϕ(α) − ϕ(β)‖ = 1 if and only if ‖α − β‖ = 1. Therefore we

conclude:
[β : α] = 0 ⇔ [ϕ(β) : ϕ(α)] = 0, α ≺ β ⇔ ϕ(α) ≺ ϕ(β)

All the structures seem to be preserved by the action of ϕ. However, as we shall see there is the possibility that
two incident cells with compatible orientation are transformed to incident cells with opposite orientations.
Using (2.5) and the fact that ϕ(α)−ϕ(β) = ~ϕ(α− β) we have for any two incident cells (α ∈ Xk−1) ≺ (β ∈
Xk):

sgn(ϕ, β) · volϕ(β) = ϕ · volβ = ϕ · ([β : α](α − β) ∧ volα) = [β : α](ϕ(α) − ϕ(β)) ∧ ϕ · volα =

= [β : α]sgn(ϕ, α)(ϕ(α) − ϕ(β)) ∧ volϕ(α)

If we combine this result with [ϕ(β) : ϕ(α)](ϕ(α) − ϕ(β)) ∧ volϕ(α) = volϕ(β) given by (2.5) we conclude:

[ϕ(β) : ϕ(α)] = sgn(ϕ, β) · sgn(ϕ, α) · [β : α]

and the incidence mapping for cells is not preserved by Euclidean movements, not even in the case det(~ϕ) = 1.
If we want an action of ϕ ∈ Eucl(p,Z) on Ck(X,Z) preserving the boundary operator on chains we may

not simply define ϕ · cβ = cϕ·β . The sign sgn(ϕ, β) must be introduced. There is an action of ϕ ∈ Eucl(p,Z)
on Ck(X,Z) defined by:

ϕ · cα = sgn(ϕ, α) · cϕ(α)

extended by Z-linearity to Ck(X,Z).
With this definition and the covariance formula for the incidence mapping [ : ] one gets for any ϕ ∈

Eucl(p,Z):

∂(ϕ · cγ) = ∂(sgn(ϕ, γ)cϕ(γ)) = sgn(ϕ, γ)
∑

ϕ(α)

[ϕ(γ) : ϕ(α)]cϕ(α) =

=
∑

α

sgn(ϕ, γ)[ϕ(γ) : ϕ(α)]sgn(ϕ, α)ϕ · cα = ϕ · (
∑

α

[γ : α]cα) = ϕ · ∂cγ

Consequently, the boundary morphism is covariant: ϕ · ∂c = ∂(ϕ · c) for any movement ϕ ∈ Eucl(p,Z) and
any chain c ∈ Ck(X,Z).

If we define the action on the cochains ω ∈ Ωk(X) so that 〈c, ω〉 = 〈ϕ · c, ϕ · ω〉, which can be done by
setting (ϕ · ω)(α) = 〈cα, ϕ · ω〉 = 〈ϕ−1 · cα, ω〉 = sgn(ϕ−1, α) · 〈cϕ−1(α), ω〉 = sgn(ϕ−1, α) · ω(ϕ−1(α)), the
differential of cochains is also preserved by our action:

(ϕ · ω)(α) = sgn(ϕ−1, α) · ω(ϕ−1(α)) d(ϕ · ω) = ϕ · (dω)

The Euclidean group acts transitively on the set of k-cells, preserving the boundary and coboundary oper-
ators of chains and cochains.

The following technical result concerning the action of Eucl(X,Z) on cells that share a vertex shall be
used in section 4:

Lemma 2.3. Consider the following 0-cell v0 ∈ X0, (p − 1)-cells αk ∈ Xp−1 (for k = 1, . . . , p) and p-cell
β0 ∈ Xp of the discrete Euclidean space X:

v0 = (0, . . . , 0), αk = (

k
︷ ︸︸ ︷

0,−1, . . . ,−1,

p−k
︷ ︸︸ ︷

1, . . . , 1), β0 = (1, . . . , 1)

For any (p − 1)-cell and p-cell α ∈ Xp−1, β ∈ Xp with a common vertex v ∈ X0 (that is, v ≺ α, v ≺ β)
there exists ϕ ∈ Eucl(p,Z) such that:

ϕ(v) = v0, ϕ(α) = αk, ϕ(β) = β0

Moreover, for any ϕ ∈ Eucl(p,Z) satisfying ϕ(α) = αk, ϕ(β) = β0 there holds:

k = ♯{j : αj 6= βj}, sgn(ϕ, α) · sgn(ϕ, β) = (−1)i−1 · si, where i = αeven, si = βi − αi
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Proof . If we have v ≺ α, v ≺ β, then:

v = (v1, . . . , vp), α = (v1 + r1, . . . , vp + rp), β = (v1 + s1, . . . , vp + sp)

s1, . . . , sp, r1, . . . , ri−1, ri+1, . . . , rp ∈ {±1}, ri = 0 for i = αeven

Consider ϕ1 ∈ Eucl(p,Z) given as a translation by vector b = (−v1, . . . ,−vp). Then ~ϕ1 = Id is the identity
on spanα and spanβ and:

ϕ1 · v = (0, . . . , 0) = v0, ϕ1 · α = (r1, . . . , rp), ϕ1 · β = (s1, . . . , sp), sgn(ϕ1, α) · sgn(ϕ1, β) = 1

Consider now ϕ2 given by ~ϕ2 = Ds and b = (0, . . . , 0). Its linear component ~ϕ2 may change orientation in
spanϕ1(α) = span(e1, . . . , ei−1, ei+1, . . . , ep) and also in spanϕ1(β) = span(e1, . . . , ep). There holds sgn(ϕ2, ϕ1 ·
α) = s1 · . . . · si−1 · si+1 · . . . · sp and sgn(ϕ2, ϕ1 · β) = detDs = s1 · . . . · sp. Then:

ϕ2·ϕ1·v = v0, ϕ2 ·ϕ1·α = (r1s1, . . . , rpsp), ϕ2·ϕ1·β = (1, . . . , 1) = β0, sgn(ϕ2, ϕ1 ·α)·sgn(ϕ2, ϕ1·β) = si

Consider now ϕ3 where ~ϕ3 is the permutation matrix P taking ei to e1 and e1, . . . , ei−1, ei+1, . . . , ep to
e2, . . . , ep (keeping its order). In this case sgn(ϕ3, ϕ2 ·ϕ1 ·α) = 1 (because ϕ3 respects the ordering when the
vectors e1, . . . , ei−1, ei+1, . . . , ep are taken to e2, . . . , ep) and sgn(ϕ3, ϕ2 ·ϕ1 ·β) = detP = (−1)i−1, therefore:

ϕ3 · ϕ2 · ϕ1 · v = v0, ϕ3 · ϕ2 · ϕ1 · α = (0, s1r1, . . . , si−1ri−1, si+1ri+1, . . . , sprp), ϕ3 · ϕ2 · ϕ1 · β = β0

sgn(ϕ3, ϕ2 · ϕ1 · β) · sgn(ϕ3, ϕ2 · ϕ1 · α) = (−1)i−1

We called k = ♯{j : αj 6= βj} = ♯{j : sjrj 6= 1}. Finally consider ϕ4 given by the permutation matrix that
takes e1 to e1 and reorders e2, . . . , ep to eτ(2), . . . , eτ(p) so that

ϕ4 · v
0 = v0, ϕ4 · (0, s1r1, . . . , si−1ri−1, si+1ri+1, . . . , sprp) = (

k
︷ ︸︸ ︷

0,−1, . . . ,−1,

p−k
︷ ︸︸ ︷

1, . . . , 1) = αk, ϕ4 · β
0 = β0

In this case sgn(ϕ4, (0, s1r1, . . . , si−1ri−1, si+1ri+1, . . . , sprp)) = sgn(ϕ4, β
0) because our permutation affects

only the vectors e2, . . . , ep, which are both on the respective director spaces of the (p− 1)-cell ϕ3 ·ϕ2 ·ϕ1 ·α
and of the p-cell β0, keeping e1 invariant. Therefore:

sgn(ϕ4, ϕ3 · ϕ2 · ϕ1 · α) · sgn(ϕ4, ϕ3 · ϕ2 · ϕ1 · β) = 1

Hence ϕ = ϕ4 ◦ ϕ3 ◦ ϕ2 ◦ ϕ1 satisfies the requirements: ϕ(v) = v0, ϕ(α) = αk, ϕ(β) = β0, with k and
sgn(ϕ, α) · sgn(ϕ, β) as indicated.

There remains to prove that any other ϕ̄ that takes α to some αj , β to β0 has j = k and sgn(ϕ̄, α) ·
sgn(ϕ̄, β) = (−1)i−1 · si. Taking into account the behavior of sgn(ϕ, ·) with respect to composition, we only
need to consider ψ = ϕ̄ ◦ ϕ−1 and prove that for any ψ taking αk to αj and β0 to β0 there holds k = j and
sgn(ψ, αk) · sgn(ψ, β0) = 1.

Proving k = j is trivial as ψ is an isometry and ‖αk − β0‖2 = 1 + 4(k − 1), ‖αj − β0‖2 = 1 + 4(j − 1).

Proving the second part is easy: as ψ(αk) = αk and ψ(β0) = β0 we conclude that ~ψ(β0 − αk) = β0 − αk,

and as the only odd entry in β0 − αk is the leading term 1, we may conclude (remember that ~ψ is the

composition of a permutation matrix with a diagonal matrix defined by entries si ∈ {±1}) that ~ψ(e1) = e1.

We repeat now the same argument as for ϕ4: the remaining component of ~ψ is a linear automorphism ~ψ
of 〈e2, . . . , ep〉 = spanαk = spanαj . The sign sgn(ψ, αk) and sgn(ψ, β0) is in both cases the same value, the

determinant of ~ψ. Therefore sgn(ψ, αk) · sgn(ψ, β0) = 1, as we wanted to prove. �

3. Variational problems on discrete manifolds

Consider the discrete p-dimensional Euclidean space X = X0⊔X1⊔. . .⊔Xp as introduced in the previous
section. We shall consider all possible configurations of this discrete space into a given configuration space.
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Definition 3.1. Given a p-dimensional oriented abstract cellular complex X , we call configuration bundle
of vertices any bundle π0 : Y0 → X0. By this we mean a projection where the fiber (Y0)v on each vertex v ∈ X0

is a nonempty differentiable manifold. Sections y ∈ Γ(X0, Y0) of the bundle shall be called configurations
of vertices. The bundle π : V Y0 → Y0 whose fiber at a configuration qv ∈ Y0 of the vertex v ∈ X0 is the
tangent space of the fiber Tqv

(Y0)v shall be called the vertical bundle associated to Y0. In a similar way
a configuration bundle of k-cells is any bundle πk : Yk → Xk, a configuration of k-cells a section yk of
this bundle, and the vertical bundle V Yk associated to Yk has fiber Tyk(β)(Yk)β at any point yk(β) ∈ Yk,
configuration of the k-cell β ∈ Xk.

For a n-dimensional manifold Q (“the configuration space”) we shall call the trivial bundle Y0 = X0 ×Q
the configuration bundle associated to Q. A configuration of X into Q is any section of this bundle y ∈
Γ(X0, Y0). Therefore a configuration is defined if we give a mapping y : v ∈ X0 7→ y(v) = (v, qv) ∈ Y0 =
X0 ×Q, that is, if we give a set of points qv ∈ Q indexed by vertices v ∈ X0 of the cell complex.

In the general case each configuration of vertices y ∈ Γ(X0, Y0) is given as a set of configurations
qv ∈ (Y0)v, one for each vertex v ∈ X0. If we consider Γ(X0, Y0) as a (infinite dimensional) manifold,
we may introduce its tangent space at a point y = (qv)v∈X0 ∈ Γ(X0, Y0) as the product of the tangent
spaces of the fibers

∏

v∈X0
Tqv

(Y0)v. Any one-parameter deformation of the configuration y can be written
as y(t) = (qv(t))v∈X0 and its first order approximation δy = (∂qv/∂t)v∈X0(t = 0) is given by a set of
tangent vectors δqv ∈ Tqv

(Y0)v, one for each vertex, that is, a section δy ∈ Γ(X0, V Y0) over the section
y = (qv) ∈ Γ(X0, Y0).

Definition 3.2. For any section y : X0 → Y0 the fibred product of π : V Y0 → Y0 with y : X0 → Y0 defines
a vector bundle y∗V Y0 → X0, that we call the bundle of infinitesimal variations of y, whose fiber at any
v ∈ X0 is the vector space Ty(v)Y0. We shall call any section δy ∈ Γ(X0, y

∗V Y0) of this bundle a infinitesimal
variation of the configuration y.

Given a configuration bundle of k-cells πk : Yk → Xk and any configuration yk ∈ Γ(Xk, Yk) the fibred
product of π : V Yk → Yk with yk : Xk → Yk shall be denoted y∗kV Yk and called bundle of infinitesimal
variations of yk. Its fiber at any k-cell β is the tangent space Tyk(β)(Yk)β at yk(β) of the fiber (Yk)β . A
section δyk of the bundle y∗kV Yk shall be called infinitesimal variation of yk.

For any configuration bundle of vertices π0 : Y0 → X0 one may construct induced configuration bundles
of edges π1 : Y1 → X1, and k-cells in general πk : Yk → Xk as follows. For any k-cell β ∈ Xk we may consider
the vertices v ∈ X0 adherent to β. The bundle of configurations of k-cells Yk induced by Y0 is defined to be
the bundle whose fiber (Yk)β at any k-cell β ∈ Xk is the product

∏

v∈X0≺β

(Y0)v. Given a configuration bundle

of vertices Y0 and the induced bundles Yk, any configuration of vertices y ∈ Γ(X0, Y0) allows to define a
configuration of k-cells defined by yk : β ∈ Xk 7→ (y(v))v≺β ∈ (Yk)β =

∏

v≺β(Y0)v. There are obviously
sections of Yk that are not extensions of any y ∈ Γ(X0, Y0). In order that a section yk of Yk is induced by
some section y of Y0 it is necessary and sufficient that for any two k-cells β, β′ ∈ Xk that share a common
vertex v ∈ X0 the v-components of yk(β) ∈ (Yk)β and yk(β

′) ∈ (Yk)β′ coincide. These sections shall be
called holonomic sections (they play a similar role to holonomic sections on jet bundles).

Consider the space of infinitesimal variations for each of the bundles of configurations Yk → Xk induced
by Y0, where following definition 3.2 any section yk ∈ Γ(Xk, Yk) has its own space of infinitesimal variations
Γ(Xk, y

∗
kV Yk). In the same way as Y0 induces bundles Yk, the vector bundle y∗V Y0 → X0 has induced

vector bundles (y∗V Y0)k → Xk that can be naturally identified with y∗kV Yk when we use the identity:

Tyk(β)




∏

v≺β

(Y0)v



 =
∏

v≺β

Ty(v)(Y0)v, β ∈ Xk, yk(β) = (y(v))v≺β

Any infinitesimal variation δy ∈ Γ(X0, y
∗V Y0) of y ∈ Γ(X0, Y0) naturally extends to a section (δy)k ∈

Γ(Xk, (y
∗V Y0)k) = Γ(Xk, y

∗
kV Yk), which is an infinitesimal variation of yk ∈ Γ(Xk, Yk). In a similar way,

any vertical vector field D ∈ Γ(Y0, V Y0) on the bundle Y0 naturally extends to a vertical vector field
Dk ∈ Γ(Yk, V Yk) on the bundle Yk.
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Example 3.3. In the case of the discrete Euclidean space, vertices adherent to the k-cell β are α ∈ X0 =
(2Z)p such that max(|βi − αi|) = 1. Therefore:

(Yk)β =
∏

s1,...,sk∈{±1}

(Y0)βs1...sk
, β ∈ Xk, βs1...sk

= β + s1eβodd
1

+ . . .+ skeβodd
k

∈ X0

where the expressions βs1...sk
∈ X0 represent precisely the set of all vertices adherent to β. In the case

of a trivial configuration space Y0 = X0 × Q defined by a manifold Q and the discrete Euclidean space
X = Z

p, a point of Y1 is given by an edge β ∈ X1 and a configuration on Q for each of the two vertices
β− = β − eβodd

1
, β+ = β + eβodd

1
∈ X0 adherent to β. In a similar way, a point of Yk is given by a k-cell

β ∈ Xk and a configuration on Q for each of the 2k vertices adherent to β. The extension y1 of a section
y ∈ Γ(X0, Y0) is defined as y1 : β ∈ X1 7→ (y(β−), y(β+)) ∈ (Y1)β = (Y0)β−

× (Y0)β+ where β−, β+ ∈ X0 are
the two vertices adherent to β ∈ X1. In a similar way, the configuration y allows to define a configuration
of k-cells defined by yk : β ∈ Xk 7→ (y(βs1...sk

)) ∈ (Yk)β =
∏

s1,...,sk∈{±1}(Y0)βs1...sk
.

With these structures in mind, a variational problem can be formulated as finding configurations y ∈
Γ(X0, Y0) that are critical (in some sense) for the functional defined by a given Lagrangian density, in the
sense we shall state in the following.

Definition 3.4. Given a configuration bundle of vertices of a discrete p-dimensional manifold X , that is, a
bundle π0 : Y0 → X0, we call discrete Lagrangian density any function L : Yp → R on the associated bundle
of configurations of p-cells.

A Lagrangian density can be determined when we give a real number for any given p-cell β and configurations
qv for each of its adherent vertices:

(β, (qv)v≺β) ∈ Yp 7→ L(β, (qv)v≺β) ∈ R

Most of the problems modelled on the discrete Euclidean space Z
p will be given by a trivial bundle Y0 =

X0 ×Q and Lagrangian densities that do not depend on the particular p-cell, but only on the configuration
of the vertices. These Lagrangians are determined when we give a function:

L :
∏

s1,...,sp∈{±1}

Q→ R

In dimension 2, these Lagrangians shall be given by funcions L(q−−, q+−, q−+, q++) : Q−− ×Q+− ×Q−+ ×
Q++ → R, that define a Lagrangian density L : Y2 → R taking a given 2-cell β = (i1, i2), and configurations
(qβ−−

, qβ+−
, qβ−+ , qβ++) of its adherent vertices β−− = (i1 − 1, i2 − 1), β+− = (i1 + 1, i2 − 1), β−+ =

(i1 − 1, i2 + 1), β++ = (i1 + 1, i2 + 1) to the real number L(qβ−−
, qβ+−

, qβ−+ , qβ++).
In the case that Q = R

n and X is the discrete p-dimensional Euclidean space, any mapping y : R
p → R

n

induces a section y ◦ i : X0 → Y0 of the trivial bundle Y0 = X0 × Q, when we consider the natural immer-
sion i : X0 →֒ R

p defined by (α1, . . . , αp) ∈ X0 7→ (α1, . . . , αp) ∈ R
p. Therefore any discrete Lagrangian

density L : Yp → R on X allows to define a non-continuous functional L : C∞(Rp,Rn) 7→ R defined as
∑

β∈Xp
L ((y ◦ i)p(β)). This functional makes sense only when the (infinite) sum can be done and is concen-

trated at points of the (2Z)p grid, leading to a (non-smooth) variational problem on the space C∞(Rp,Rn).
Conversely, if we have a first order variational problem in the space of differentiable mappings y(x) : R

p →
R
n, that is, a function L(xν , yi, yi,ν) (1 ≤ ν ≤ p, 1 ≤ i ≤ n) and consider the corresponding functional
∫
L(x, y(x), dy(x))dx, there are several ways of determining a discrete version of the problem (see [13, 33, 34]

for example), some of them substitute the values yi and yi,ν by some expressions depending on (qv)v≺β
that serve as good interpolations of the values yi and its derivatives. Another methods [34] take as value
L(β, (qv)v≺β) for the discrete Lagrangian at some configuration (qv)v≺β the actual value of the functional
for some mapping y(x) : Dβ → Q that serves as a model for the configuration (qv)v≺β of the abstract cell
β ∈ Xp. We mean:

L(β, (qv)v≺β) :=

∫

Dβ

L(xν , yi(x), ∂yi(x)/∂xν)
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for some domain Dβ ⊂ R
p and differentiable function y(x) : Dβ → R

n depending on the configuration
(qv)v≺β . This is basically the choice we make to discretize a continuous Lagrangian density, by means of
the following result:

Lemma 3.5. Given a p-cell β = (β1, . . . , βp) of the p-dimensional discrete Euclidean space and a con-
figuration (qv)v≺β = (qs1...sp

)s1,...,sp∈{±1} of β on the space Q = R
n, there exists a unique mapping

y(x) : Dβ =
∏p
i=1[βi− 1, βi + 1] ⊆ R

p → R
n that is affine separately on each of the variables x1, . . . , xp such

that for each vertex βr1...rp
∈ X0 adherent to β holds:

y(i(βr1...rp
)) = qr1...rp

, r1, . . . , rp ∈ {±1}

where i : (2Z)p →֒ R
p is the natural immersion of the (2Z)p grid into R

p.
The equations of y(x) are:

y(x1, . . . , xp) = ∆0q+
∑

i

∆1
i q ·(xi−βi)+

∑

i<j

∆2
ijq ·(xi−βi)(xj−βj)+. . .+∆p

1...pq ·(x1−β1) . . . (xp−βp) (3.1)

where

∆0q =
1

2p

∑

s1,...,sp∈{±1}

qs1...sp
, ∆k

i1...ikq =
1

2p

∑

s1,...,sp∈{±1}

si1 · . . . sik · qs1...sp

Proof . If we consider the point i(βr1...rp
) ∈ Dβ (where r1, . . . , rp ∈ {±1} are fixed), whose coordinates

satisfy xi − βi = ri, we want to prove that y(x1, . . . , xp) = qr1...rp
. When we use (3.1) and compute

y(x1, . . . , xp) we get:

y(x1, . . . , xp) =
∑

s1,...,sp∈{±1}

1

2p
cs1...sp

qs1...sp

Where cs1...sp
= 1 +

∑

i1

ri1si1 +
∑

i1<i2

ri1ri2si1si2 +
∑

i1<i2<i3

. . .+ r1 · . . . · rp · s1 · . . . · sp

We want to prove that cs1...sp
is 2p when s1 . . . sp coincides with r1, . . . rp and 0 in any other case. If we call

αi = si · ri we want to prove that:

1 +

p
∑

i1

αi1 +

p
∑

i1<i2

αi1 · αi2 +
∑

. . .+ α1 · . . . · αp =

{

2p for α = (1, . . . , 1)

0 for any other α ∈ {±1}p

This can be seen by induction on p. For p = 1, it is clear that 1 + α is 2 when α = 1 and 0 in the case
α = −1. For any (α1, . . . , αp) ∈ {±1}p it can be seen:

1 +

p
∑

i1

αi1 +

p
∑

i1<i2

αi1 · αi2 +
∑

. . .+ α1 · . . . αp =

=

(

1 +

p−1
∑

i1

αi1 +

p−1
∑

i1<i2

αi1 · αi2 +
∑

. . .+ α1 · . . . · αp−1

)

+

+ αp

(

1 +

p−1
∑

i1

αi1 +

p−1
∑

i1<i2

αi1 · αi2 +
∑

. . .+ α1 · . . . · αp−1

)

Whenever (α1, . . . , αp−1) ∈ {±1}p−1 is different from (1, . . . , 1) this is 0 + αp · 0 = 0, by induction, and
whenever αp = −1, we are adding and substracting the same quantity, leading also to zero. In the case
α1 = . . . = αp−1 = αp = 1 the result, by induction, would be 2p−1 + 2p−1 = 2p.
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For the uniqueness, it must be noted that if ȳ(x) is affine on each separate variable, then it must have
the form:

ȳ(x) = d0 +

p
∑

i=1

d1
i (xi − βi) +

p
∑

i<j=1

d2
ij(xi − βi)(xj − βj) + . . .+ dp1...p(x1 − β1) · . . . · (xp − βp), dki1...ik ∈ R

If the values of ȳ(x) at the vertices are the chosen ones, they coincide with those given by our function y(x),
so y(x) − ȳ(x) = 0 whenever xi − βi = ±1. Therefore for any choice of (r1, . . . , rp) ∈ {±1}p holds:

(d0 − ∆0q) +

p
∑

i=1

(d1
i − ∆1

i q)ri +

p
∑

i<j=1

(d2
ij − ∆2

ijq)rirj + . . .+ (dp1...p − ∆p
1...pq)r1 · . . . · rp = 0

We may conclude that dki1...ik = ∆k
i1...ik

q if we prove that the system of 2p equations

z0 +

p
∑

i1=1

z1
i1ri1 +

p
∑

i1<i2=1

z2
i1i2ri1ri2 + . . .+ zp1...pr1 · . . . · rp = 0, ∀r1, . . . , rp = ±1 (3.2)

has only the solution zki1...ik = 0, which we prove again by induction. In the case p = 1 it is obvious:

z0 + z1
1 = 0, z0 − z1

1 = 0 ⇒ z0 = 0, z1
1 = 0

For any other p, equations (3.2) for rp = +1, rp = −1 lead to:

(

z0 +

p−1
∑

i1=1

z1
i1ri1 +

p−1
∑

i1<i2=1

z2
i1i2ri1ri2 + . . .+ zp−1

1...p−1r1 · . . . · rp−1

)

+

+

(

z1
p +

p−1
∑

i1=1

z2
i1pri1 +

p−1
∑

i1<i2=1

z3
i1i2pri1ri2 + . . .+ zp1...(p−1)pr1 · . . . · rp−1

)

= 0

(

z0 +

p−1
∑

i1=1

z1
i1ri1 +

p−1
∑

i1<i2=1

z2
i1i2ri1ri2 + . . .+ zp−1

1...p−1r1 · . . . · rp−1

)

+

+ (−1) ·

(

z1
p +

p−1
∑

i1=1

z2
i1pri1 +

p−1
∑

i1<i2=1

z3
i1i2pri1ri2 + . . .+ zp1...(p−1)pr1 · . . . · rp−1

)

= 0

∀r1, . . . , rp−1 = ±1

which mean:
(

z0 +

p−1
∑

i1=1

z1
i1ri1 +

p−1
∑

i1<i2=1

z2
i1i2ri1ri2 + . . .+ zp−1

1...p−1r1 · . . . · rp−1

)

= 0

(

z1
p +

p−1
∑

i1=1

z2
i1pri1 +

p−1
∑

i1<i2=1

z3
i1i2pri1ri2 + . . .+ zp1...(p−1)pr1 · . . . · rp−1

)

= 0

∀r1, . . . , rp−1 = ±1

and by induction hypothesis, zki1...ik = 0, zk+1
i1...ikp

= 0 for any i1 < . . . < ik ∈ {1, . . . , p− 1}. �

It must be noted that for two neighboring p-cells β, β̃ = β + 2ej with the common (p− 1)-cell α = β + ej ,
the domains Dβ and Dβ̃ intersect as

∏p
i=1[βi− 1, βi+1]∩ (xj = βj +1). For two configurations (β, (qv)v≺β)

and (β̃, (q̃v)v≺β̃) we may consider the unique mapping y(x) affine on each variable and taking the vertices

v ≺ β to qv, and the unique mapping ỹ(x) affine on each variable taking the vertices v ≺ β̃ to q̃v. The
restriction of y(x) and ỹ(x) to Dβ∩Dβ̃ is in both cases an affine function, and if (qv)v≺β , (q̃v)v≺β̃ were chosen
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so that qv = q̃v for each common vertex v ≺ β, v ≺ β̃, then both restrictions coincide on all the vertices
adherent to Dβ ∩ Dβ̃ . Using the uniqueness indicated in the previous lemma for the (p − 1)-dimensional

case (where (xj = βj + 1) ⊂ R
p can be seen as R

p−1), we may conclude that y(x) coincides with ỹ(x) in
the intersection. Therefore any configuration of vertices y0 : X0 → Y0 = X0 ×Q determines a configurations
of p-cells yp, and each yp(β) defines a mapping yβ(x) : Dβ → R

n, all compatible among themselves, that
allow to univocally construct y(x) : R

p → R
n continuous, affine on each separate variable on each domain

Dβ =
∏p
i=1[βi − 1, βi + 1] ⊆ R

p and such that y(i(v)) = y0(v) for any vertex v. This space of continuous
mappings y(x) : R

p → R
n that are affine on each separate variable on each domain Dβ is in one to one

correspondence with the space of configurations y ∈ Γ(X0, Y0).

Example 3.6. The movement of a rectilinear spring is given by a function y(s, t) : R
2 → R. The action

that defines the dynamics of a rectilinear spring is given by the Lagrangian density:

L : y(s, t) 7→
1

2
m

(
∂y

∂t

)2

−
1

2
k

(
∂y

∂s

)2

A discretized version of this situation arises when we consider discrete configurations as mappings y : X0 →
R, were X0 is the space of vertices of the bidimensional discrete euclidean space. These are sections of the
bundle X0 × R → X0.

If we consider a configuration at β ∈ X2, (β, q−−, q+−, q−+, q++) ∈ X2×R
4 = Y2, the associated mapping

on the domain Dβ ⊆ R
2 is:

y(s, t) = ∆0q + (s− β1)∆
1
1q + (t− β2)∆

1
2q + (s− β1)(t− β2)∆

2
12q

∆0q =
1

4
(q−− + q+− + q−+ + q++), ∆1

1q =
1

4
(−q−− + q+− − q−+ + q++),

∆1
2q =

1

4
(−q−− − q+− + q−+ + q++), ∆2

12q =
1

4
(q−− − q+− − q−+ + q++),

We saw in the previous theorem that y(s, t) is affine on each separate variable s, t and at the points (β1 ±
1, β2 ± 1) the function takes the values q±±.

Taking the integral of L(y(s, t)) on the domain Dβ = [β1 − 1, β1 + 1] × [β2 − 1, β2 + 1] we get a discrete
Lagrangian density:

L(β, q−−, q+−, q−+, q++) = 2m(∆1
2q)

2 − 2k(∆1
1q)

2 +
2

3
(−k +m)(∆2

12q)
2

This would be a discrete version of the Lagrangian when we interpret the domain associated to β as Dβ

(which has diameter 2, reflected in the multiplication by a factor 4). We may interpret ∆1
1q as a discrete

version of ∂y
∂s , ∆1

2q as a discrete version of ∂y
∂t and ∆2

12q as a discrete version of the second derivative

operator ∂2y
∂s∂t .

Another method to obtain a discrete Lagrangian L would be the substitution of ∂y/∂s by the constant

value
(
q+++q+−

2 − q−++q−−

2

)

/2 (analogous for ∂y/∂t). Here the inner factor 1
2 reflects the consideration of

the mean value to approximate y on the edge (β1 + 1, β2) and on the edge (β1 − 1, β2), the difference of both
terms may be interpreted as the computation of the increment of y between both edges, and the second 1

2
factor is due to the fact that s increments its value in two units when we go from (β1 −1, β2) to (β1 +1, β2).
That is, L could be obtained by direct substitution of ∂y/∂s by ∆1

1q and of ∂y/∂t by ∆1
2q (so y(s, t) would

not depend on s, t). Integration of this constant value over the domain Dβ (which has volume 4) would lead
to a different discrete version of the continuous Lagrangian density:

L(β, q−−, q+−, q−+, q++) = 2m(∆1
2q)

2 − 2k(∆1
1q)

2

Which might be a simpler expression to work with but some information is lost if we want to relate the
discrete and smooth variational problems. Both expressions coincide when ∆2

12q vanishes, which happens only
14



when y(s, t) is affine on s, t, that is, when the four vertices (β−−, q−−), (β+−, q+−), (β−+, q−+), (β++, q++)
determine a parallelogram.

There is still the possibility of a simpler expression, substituting ∂y/∂s by the constant value 1
2 (q+−−q−−)

and ∂y/∂t by 1
2 (q++ − q+−) and integrate on Dβ to derive the discrete Lagrangian from the continuous one

(as can be found in [26] except for the correcting factor 1/2 due to the diameter 2 of our domains), ignoring
then the configuration q−+ for each face, and obtaining.

L(β, q−−, q+−, q−+, q++) = 2m

(
q+− − q−−

2

)2

− 2k

(
q++ − q+−

2

)2

=
1

2
m(q+− − q−−)2 −

1

2
k(q++ − q+−)2

This expression also coincides with the previous ones if the four vertices determine a parallelogram.
After deriving the discrete Lagrangian in any of the above indicated ways, we might study the discrete

action and the associated variational problem: A configuration y = (qi,j)i,j∈2Z extends to a configuration
y2 : X2 → Y2, that transforms any 2-cell β = (i, j) into (qi−1,j−1, qi+1,j−1, qi−1,j+1, qi+1,j+1) ∈ Q × Q ×
Q × Q. Each of these configurations of the 2-cells β allows to compute L(y2(β)), and the original action
∫
(1/2)m(∂y/∂t)2 − (1/2)k(∂y/∂s)2 may be substituted in the discrete formalism by

∑
L(y2(β)).

3.1. Critical sections:

Given a Lagrangian density L : Yp → R, any configuration y : X0 → Y0 allows to define a p-cochain
(discrete p-form) on X by y∗pL : β ∈ Xp 7→ L(yp(β)) ∈ R. For any p-chain c ∈ Cp(X,Z) one may try to
determine a configuration y ∈ Γ(X0, Y0) for which 〈c, y∗pL〉 is minimal. However, this minimality condition
for arbitrary variations of y is usually too strong. A weaker condition appears if we want to determine the
minimum only among a subset of “admissible” variations of y, for example if we consider minimality among
those sections whose values coincide with those of y at any vertex of the boundary of c. We shall make this
point clear with the following definitions.

Definition 3.7. Given a k-chain c ∈ Ck(X,Z) we call support of c the finite set of vertices v ∈ X0 such
that v ≺ β for some k-cell β with c(β) 6= 0, we call frontier of the chain c the support of the boundary ∂c
of c, and interior of the chain c the set of vertices that are in the support of c and not in its frontier. We
denote these objects by supp(c), fr(c) and int(c) respectively:

supp(c) = {v ∈ X0 : ∃β ∈ Xk, v ≺ β, c(β) 6= 0}, c ∈ Ck(X,Z)

fr(c) = supp(∂c)

int(c) = supp(c) \ supp(∂c)

For each chain its support, frontier and interior are finite sets of vertices.

For any p-chain c ∈ Cp(X,Z) and Lagrangian density L : Yp → R it is clear that 〈c, y∗pL〉 =
∑

β c(β)·(y∗pL)(β)
only depends on y through the values of y∗pL on p-cells β where c(β) 6= 0, and this only depends on the
values of y at vertices v ∈ supp(c).

For a choice of y ∈ Γ(X0, Y0) and a choice of c ∈ Cp(X,Z) we may study the behavior of 〈c, ȳ∗pL〉 for
arbitrary configurations ȳ ∈ Γ(X0, Y0) that differ from y only at vertices v ∈ int(c). That is, we may consider
the space:

Γy,c(X0, Y0) = {ȳ : X0 → Y0 : ȳ(v) = y(v), ∀v /∈ int(c)}

where the domain can be identified with Γ(int(c), Y0) =
∏

v∈int(c)(Y0)v, a finite-dimensional manifold, whose
tangential space at the point ȳ is

Tȳ(Γy,c(X0, Y0)) = {δy ∈ Γ(X0, ȳ
∗V Y0) : δy(v) = 0 ∀v /∈ int(c)} = Γ(int(c), ȳ∗V Y0) ⊆ Γ(X0, ȳ

∗V Y0)

Definition 3.8. We say a configuration of vertices y ∈ Γ(X0, Y0) is critical for the discrete variational
problem defined by the Lagrangian density L : Yp → R and domain c ∈ Cp(X,Z) if it is a critical point for
the function:

Ly,c : Γy,c(X0, Y0) → R

ȳ 7→ 〈c, ȳ∗pL〉
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that is, if dyLy,c = 0.
We say that y is critical for the variational problem defined by L : Yp → R if it is critical for any domain

c ∈ Cp(X,Z).

Critical configurations y ∈ Γ(X0, Y0) for a given domain c ∈ Cp(X,Z) are then characterized by the vanishing
of dyLy,c on the finite dimensional space Ty (Γy,c(X0, Y0)) = Γ(int(c), y∗V Y0).

This justifies the introduction of the linear operator:

dyL : Γ(X0, y
∗V Y0) → Ωp(X)

δy 7→ 〈dL ◦ yp, (δy)p〉
(3.3)

where 〈dL ◦ yp, (δy)p〉 represents the cochain that takes at β ∈ Xp the value 〈dyp(β)L, (δy)p(β)〉, given by
duality product of dyp(β)L ∈ T ∗

yp(β)(Yp) and (δy)p(β) ∈ Typ(β)(Yp)

Lemma 3.9. A configuration y ∈ Γ(X0, Y0) is critical for the variational problem given by the Lagrangian
L and domain c ∈ Cp(X,Z) if and only if:

〈c, (dyL)(δy)〉 = 0, ∀δy ∈ Γ(int(c), y∗V Y0)

A configuration y ∈ Γ(X0, Y0) is critical for the variational problem defined by L if and only if:

〈c, (dyL)(δy)〉 = 0, ∀c ∈ Cp(X,Z), ∀δy ∈ Γ(int(c), y∗V Y0)

Proof . If one considers an infinitesimal variation δy ∈ Γ(int(c), y∗V Y0) whose value at some fixed vertex
v ∈ int(c) is chosen arbitrarily δvy ∈ (y∗V Y0)v = Ty(v)(Y0)v, and which vanishes at any other vertex, it is
straightforward from the definition of Ly,c and the chain rule for the differential of L ◦ ȳp that:

(dyLy,c) (δy) =
∑

v≺β

c(β) · 〈(dyp(β)L)v, δvy〉 =
∑

v≺β

c(β) · 〈dyp(β)L, (δy)p(β)〉

therefore (dyLy,c)(δy) = 〈c, (dyL)(δy)〉. As the chosen infinitesimal variations δy generate the finite-
dimensional space Γ(int(c), y∗V Y0) we conclude that this formula holds for any chain c ∈ Cp(X,Z) and
any infinitesimal variation δy ∈ Γ(int(c), y∗V Y0), so the result follows from the definition of criticality. �

Definition 3.10. We call bundle of admissible infinitesimal variations Var → Y0 on the bundle of configu-
rations π : X0 → Y0 any vector sub-bundle of V Y0. We say a configuration y0 is critical for the Lagrangian
L : Y0 → R and admissible variations Var if 〈c, (dyL)(δy)〉 vanishes for any chain c and any admissible
infinitesimal variation δy ∈ Γ(int(c), y∗Var).

Typical examples of bundles of admissible infinitesimal variations Var shall be the whole V Y0, or the bundle
with fibre V Y0 on certain vertices and 0 on other vertices (this “fixed boundary” vertices are not allowed
to vary), or a bundle that coincides with V Y0 on certain vertices and some sub-space of Vy(v)Y0 on other
vertices (this “restricted boundary” vertices are allowed to vary along some sub-manifold Sv ⊂ (Y0)v of the
fiber): this situation corresponds to variational problems with holonomic constraints.

To characterize critical configurations by means of difference equations we need a deeper comprehension
of mappings like dyL, that take sections of a vector bundle y∗V Y to p-forms. This is the objective of next
section.

4. Vector bundles and difference operators on the discrete Euclidean space

We recall from the differentiable theory that in the presence of a connection on a differentiable vector
bundle E → X over an oriented p-dimensional manifoldX , any first order differential operator F : Γ(X,E) 7→
Ωp(X) taking vector fields D ∈ Γ(X,E) to densities F (D) ∈ Ωp(X) can be decomposed so that:

F (D) = d(ωF (D)) + LF (D) · volX
16



where ωF : Γ(X,E) → Ωp−1(X) is a linear operator taking vector fields to (p − 1)-forms, LF : Γ(X,E) →
C∞(X) is a bundle morphism (the linear component of F ) and volX is a fixed volume element on X .

In this section we shall consider any vector bundle E0 → X0 on the set X0 of vertices of the p-dimensional
discrete Euclidean space, whose fibers will be vector spaces Ev. The extension of E0 to the space of k-cells
defines new vector bundles Ek → Xk. Any element eα ∈ Ek is given by a k-cell α ∈ Xk and an element
eα,v ∈ Ev for each v ≺ α. When we consider its dual bundle E∗

k , taking into account that a k-cell only
has a finite number of adherent vertices, (

∏

v≺αEv)
∗ =

∏

v≺αE
∗
v , and elements fα ∈ E∗

k are determined by
α ∈ Xk and fα,v ∈ E∗

v for each v ≺ α.
A section D ∈ Γ(Xk, Ek) is given when we choose eα ∈ (Ek)α for each α ∈ Xk, and this amounts to

giving (eα,v)(v∈X0)≺(α∈Xk) with eα,v ∈ Ev. In a similar way a section F ∈ Γ(Xk, E
∗
k) is given when we

choose (fα,v)(v∈X0)≺(α∈Xk) with fα,v ∈ E∗
v .

Definition 4.1. We call first order difference operator from E0 to the space Ωk(X) any section F ∈
Γ(Xk, E

∗
k). A first order difference operator allows to define a mapping taking any vector field D ∈ Γ(X0, E0)

to the k-form F (D) ∈ Ωk(X) whose value at the k-cell α ∈ Xk is:

(F (D))(α) = 〈F (α), Dk(α)〉 =
∑

v≺α

fα,v(ev), F = (fα,v)v≺α, D = (ev)v∈X0

where Dk ∈ Γ(Xk, Ek) stands for the natural extension of D ∈ Γ(X0, E0) and 〈 , 〉 is the duality product
between E∗

k and Ek.

Consider the group Aut(E0) of automorphisms of E0. By this we mean any vector bundle automorphism
ϕ : E0 → E0 fibred over ϕX ∈ Eucl(p,Z). Giving ϕ ∈ Aut(E0) is equivalent to giving ϕX ∈ Eucl(p,Z) and
vector space isomorphisms ϕv : Ev → EϕX ·v for each v ∈ X0. Elements ϕ = (ϕX , (ϕv)v∈X0) ∈ Aut(E0) act
on Xk, on Ck(X,Z), on Ωk(X), on Ek and on E∗

k as follows:

ϕ · α = ϕX(α), ∀α ∈ Xk

ϕ · cα = sgn(ϕX , α) · cϕ·α, ∀α ∈ Xk, cα ∈ Ck(X,Z)

(ϕ · ωk)(c) = ωk(ϕ
−1 · c), ∀ωk ∈ Ωk(X), ∀c ∈ Ck(X,Z)

ϕ · ev = ϕv(ev) ∈ Eϕ·v, ∀ev ∈ Ev ⊂ E0

ϕ · eα = (ϕ · eα,v)v≺α ∈ (Ek)ϕ·α, ∀eα = (eα,v)v≺α ∈ (Ek)α, eα,v ∈ Ev

ϕ · fα = sgn(ϕX , α) · (fα,v ◦ ϕ
−1
v )v≺α ∈ (E∗

k)ϕ·α, ∀fα = (fα,v)v≺α ∈ (E∗
k)α, fα,v ∈ E∗

v

Recall the definition of the operator D ∈ Γ(X0, E0) 7→ F (D) ∈ Ωk(X) and how ϕX acts on chains and
cochains (in particular on F (D)). For the action on E∗

k the inclusion of sgn(ϕX , α) might seem unnecessary,
but it is natural to do so if one wants to define actions on Γ(Xk, Ek) and on Γ(Xk, E

∗
k):

ϕ · F = (ϕ · fϕ−1·α)α∈Xk
, ∀F = (fα)α∈Xk

∈ Γ(Xk, E
∗
k)

ϕ ·D = (ϕ · eϕ−1·v)v∈X0 , ∀D = (ev)v∈X0 ∈ Γ(X0, E0)

in such a way that:

ϕ · (F (D)) = (ϕ · F )(ϕ ·D), ∀F ∈ Γ(Xk, E
∗
k), D ∈ Γ(X0, E0), F (D) ∈ Ωp(X)

In a more explicit way:

F = (fα,v)(v∈X0)≺(α∈Xk) ⇒ ϕ · F =
(

sgn(ϕ−1
X , α) · fϕ−1·α,ϕ−1·v ◦ ϕ

−1
ϕ−1·v

)

(v∈X0)≺(α∈Xk)
, ∀F ∈ Γ(Xk, E

∗
k)

(4.1)

Definition 4.2. For any 0-cochain g ∈ Ω0(X) = Map(X0,R), we call gvolX ∈ Ωp(X) the p-form defined
by:

(gvolX) (α) =
∑

v≺α

g(v), α ∈ Xp

17



As sgn(ϕ, v) = 1 for any vertex and any ϕ ∈ Eucl(p,Z), it is clear that (ϕ · g)(v) = g(ϕ−1 · v) and that
(ϕ · (gvolX)) (α) = sgn(ϕ, α) ((ϕ · g)volX) (α). Covariance of g ∈ Ω0(X) and covariance of gvolX ∈ Ωp(X)
for some ϕ ∈ Eucl(p,Z) are different concepts.

Proposition 4.3. Let X be the p-dimensional discrete Euclidean space, E0 → X0 a vector bundle and
x1, . . . , xp real numbers. The mapping Ω: Γ(Xp, E

∗
p) → Γ(Xp−1, E

∗
p−1) that takes F = (fβ,v)(v∈X0)≺(β∈Xp) ∈

Γ(Xp, E
∗
p) to ωF ∈ Γ(Xp−1, E

∗
p−1) given by:

(ωF )α,v =
∑

v≺β∈Xp

xα,β · fβ,v, ∀(v ∈ X0) ≺ (α ∈ Xp−1)

where xα,β = (−1)i−1 · si · xk for i = αeven, si = βi − αi ∈ {±1}, k = ♯{j : αj 6= βj}

(4.2)

is covariant for any ϕ ∈ Aut(E0), that is: ϕ · ωF = ωϕ·F .
Moreover, if the projection ϕ ∈ Aut(E0) → ϕX ∈ Eucl(p,Z) is surjective (which holds in the case that

all fibers are isomorph) then any linear covariant mapping Γ(Xp, E
∗
p ) → Γ(Xp−1, E

∗
p−1) is given by (4.2) for

some choice of x1, . . . , xp ∈ R.

Proof . Let us prove first the covariance of expression (4.2). Consider any F = (fβ,v)(v∈X0)≺(β∈Xp) and
any ϕ = (ϕX , (ϕv)v∈X0) ∈ Aut(E0). We know by (4.1):

ϕ · F =
(

sgn(ϕ−1
X , β) · fϕ−1·β,ϕ−1·v ◦ ϕ

−1
ϕ−1·v

)

(v∈X0)≺(β∈Xp)

and applying Ω given by (4.2):

(ωϕ·F )α,v =
∑

v≺β∈Xp

xα,β · sgn(ϕ−1
X , β) · fϕ−1·β,ϕ−1·v ◦ ϕ

−1
ϕ−1·v

On the other hand ωF is a (p− 1)-form whose components are those in (4.2) and when transformed by ϕ,
following (4.1) and calling β = ϕ−1 · β̄ one gets:

(ϕ · (ωF ))α,v = sgn(ϕ−1
X , α) ·

∑

ϕ−1·v≺ϕ−1·β̄∈Xp

xϕ−1·α,ϕ−1·β̄ · fϕ−1·β̄,ϕ−1·v ◦ ϕ
−1
ϕ−1·v

Therefore to prove ϕ · (ωF ) = ωϕ·F for any F ∈ Γ(Xp, E
∗
p) and any ϕ ∈ Aut(E0) is equivalent to prove that

xα,β = sgn(ϕ−1
X , α) · sgn(ϕ−1

X , β) · xϕ−1·α,ϕ−1·β for any ϕ−1 ∈ Aut(E0) and any α ∈ Xp−1 and β ∈ Xp with
a common vertex v ≺ α, v ≺ β.

Now Lemma 2.3 shows that the definition of xα,β as given in (4.2) can be written as:

xαk,β0 = xk, xα,β = sgn(ϕX , α) · sgn(ϕX , β) · xαk,β0, ∀ϕX ∈ Eucl(p,Z) s.t. ϕX · α = αk, ϕX · β = β0

Moreover, no pair αk ∈ Xp−1, β
0 ∈ Xp with a common vertex can be transformed into a different pair

αj , β0 (j 6= k). This alternative description of xα,β together with the properties (2.9) of sgn(ϕ, ·) shows that
xα,β = sgn(ψ, α) · sgn(ψ, β)xψ·α,ψ·β for any α ∈ Xp−1, β ∈ Xp and ψ ∈ Eucl(p,Z), finishing then our proof
of the covariance of formula (4.2).

Now we want to prove that any covariant Ω has necessarily the form given by (4.2). First we want to
prove that with our covariance assumption the component ωα,v of ωF ∈ Γ(Xp−1, E

∗
p−1) does not depend on

the components fβ,v̄ of F ∈ Γ(Xp, E
∗
p ) for v̄ 6= v. Let us fix v ∈ X0. For any choice of F whose (β, v)-

components vanish, when we consider ϕ ∈ Aut(E0) over ϕX = Id ∈ Eucl(p,Z) and such that ϕv = −Id,
ϕv̄ = Id (for any v̄ 6= v), we have by formula (4.1) applied to F ∈ Γ(Xp, E

∗
p) that ϕ · F = F , because

fβ,v̄ ◦ Id = fβ,v̄ ∈ (E0)
∗
v̄ and 0β,v ◦ (−Id) = 0β,v ∈ (E0)

∗
v. Hence ωϕ·F = ωF . On the other hand following

(4.1) applied to ωF ∈ Γ(Xp−1, E
∗
p−1), and that automorphism ϕ ∈ Aut(E∗

0 ) one has:

(ϕ · ωF )α,v̄ =

{

(ωF )α,v̄, ∀v̄ 6= v

− (ωF )α,v, v̄ = v
18



As ωF = ωϕ·F must coincide with ϕ ·ωF , we conclude that (ωF )α,v vanishes when all the (β, v)-components
of F vanish.

Therefore the (α, v)-component of ωF depends linearly on the fβ,v̄ components of F , and only on those

with v̄ = v. There exist then linear morphisms Ω̄v≺βv≺α : (E0)
∗
v → (E0)

∗
v that allow to write the (α, v)-

component of ωF as:

(ωF )α,v =
∑

v≺β

Ω̄v≺βv≺α(fβ,v)

Taking the transpose morphisms, we conclude that there are morphisms Ωv≺βv≺α : (E0)v → (E0)v such that

(ωF )α,v =
∑

v≺β

fβ,v ◦ Ωv≺βv≺α

Moreover, when we consider F = (fβ,v) ∈ Γ(Xp, E
∗
p) with only one non-vanishing component fβ,v and any

automorphism over Id ∈ Eucl(p,Z) whose component at (E0)v is ϕv, we may compute the (α, v)-component
of ωϕ·F = ϕ · ωF and deduce:

fβ,v ◦ ϕ
−1
v ◦ Ωv≺βv≺α = fβ,v ◦ Ωv≺βv≺α ◦ ϕ−1

v

which implies that Ωv≺βv≺α commutes with any automorphism ϕv : (E0)v → (E0)v therefore Ωv≺βv≺α = xα,v,β ·Idv
for some real numbers xα,v,β . The morphism Ω: F ∈ Γ(Xp, E

∗
p) → ωF ∈ Γ(Xp−1, E

∗
p−1) has the form:

Ω: F = (fβ,v)v≺β 7→ ωF =




∑

v≺β

xα,v,β · fβ,v





v≺α

In the same manner as before, if Ω has this form and is covariant then:

xα,v,β = sgn(ϕX , α) · sgn(ϕX , β) · xϕ·α,ϕ·v,ϕ·β ∀ϕ ∈ Aut(E0)

As ϕX ∈ Eucl(p,Z) is arbitrary when we consider all ϕ ∈ Aut(E0), using Lemma 2.3 again we may conclude
that xα,v,β has the form given by (4.2) with xk = xαk,v0,β0 which completes our proof. �

Proposition 4.4. Let X be the p-dimensional discrete Euclidean space, E0 → X0 a vector bundle and z a
real number. The mapping L : Γ(Xp, E

∗
p) → Γ(X0, E

∗
0 ) that takes F = (fβ,v)(v∈X0)≺(β∈Xp) ∈ Γ(Xp, E

∗
p) to

LF ∈ Γ(X0, E
∗
0 ) given by:

(LF )v =
∑

v≺β∈Xp

z · fβ,v, ∀(v ∈ X0) (4.3)

is covariant for any ϕ ∈ Aut(E0), that is: ϕ · (LFvolX) = Lϕ·FvolX .
Moreover, if the projection morphism ϕ ∈ Aut(E0) 7→ ϕX ∈ Eucl(p,Z) is surjective, then any linear

mapping Γ(Xp, E
∗
p) → Γ(X0, E

∗
0 ) covariant in this sense, is given by (4.3) for some choice of z ∈ R.

Proof . This is a simpler version of the previous proposition, and the proof is a straightforward adaptation
of the previous one for this case, where now for any pair (v ∈ X0) ≺ (β ∈ Xp) there is a movement that
takes v to v0 and β to β0. The covariance condition is not meant for LF , but rather for F and LFvolX , so
it can be written in terms of p-forms. Therefore the appearance of sgn(ϕX , β) · sgn(ϕX , β̃) (which is always
1) for p-cells β, β̃ sharing a vertex means no problem when handling with the signs. �

Theorem 4.5 (Adjointness formula). There exists a linear morphism

Γ(Xp, E
∗
p) → Γ(Xp−1, E

∗
p−1) ⊕ Γ(X0, E

∗
0 )

F 7→ (ωF , LF )

that is covariant for any bundle automorphism ϕ : E0 → E0, in the following sense:

ωϕ·F = ϕ · ωF , Lϕ·FvolX = ϕ · (LFvolX)
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and such that for any D ∈ Γ(X0, E0) holds the adjointness formula:

F (D) = d(ωF (D)) + LF (D)volX (4.4)

This decomposition is given by formulas (4.2), (4.3) with

z =
1

2p
, xk =

−1

2p · k

((
p
0

)
+ . . .+

(
p

p−k

)

(
p

p−k

)

)

, k = 1, . . . , p (4.5)

and is unique if all fibers of E0 are isomorph.

Proof . Following the previous results and the covariance, formulae (4.2) and (4.3) for some z, x1, . . . , xp ∈
R are possible choices to define the morphism F 7→ (ωF , LF ) (and are the only choices if all fibers of E0 are
isomorph). Given F = (fβ,v)(v∈X0)≺(β∈Xp), D = (ev)v∈X0 , if we compute the values at some p-cell β̃ ∈ Xp,
we have:

(LF (D)volX) (β̃) =
∑

v≺β̃

LF (D)(v) =
∑

v≺β̃

∑

v≺β

z · fβ,v(ev)

(ωF (D)) (α) =
∑

v≺α

∑

v≺β

xα,β · fβ,v(ev), α ∈ Xp−1

(d(ωF (D))) (β̃) =
∑

α≺β̃

[β̃ : α] (ωF (D)) (α) =
∑

α≺β̃

∑

v≺α

∑

v≺β

[β̃ : α]xα,β · fβ,v(ev)

(F (D)) (β̃) =
∑

v≺β̃

fβ̃,v(ev)

where xα,β = (−1)i−1 · si · xk only depends on i = αeven, si = βi − αi; k = ♯{j : αj 6= βj}.

Considering adjointness formula (4.4) at any β̃, for any choice of F and any choice ofD, for the adjointness
formula to hold there should exist a choice of z, x1, . . . , xp ∈ R such that, for any fixed β̃ ∈ Xp, any β ∈ Xp

and any v ≺ β, v ≺ β̃ holds:

z +
∑

v≺α≺β̃

[β̃ : α]xα,β = 1, if β̃ = β

z +
∑

v≺α≺β̃

[β̃ : α]xα,β = 0, if β̃ 6= β
(4.6)

We want to prove that this system of linear equations (one equation for each v ∈ X0 and each β, β̃ with
v ≺ β, v ≺ β̃) has only one solution (z, x1, . . . , xp).

The sign of ϕ ∈ Eucl(p,Z) at different p-cells does not depend on the cell: sgn(ϕ, β̃) = det ~ϕ = sgn(ϕ, β).
As we know:

[β : α] = sgn(ϕ, β) · sgn(ϕ, α) · [ϕ · β : ϕ · α], xα,β = sgn(ϕ, β) · sgn(ϕ, α) · xϕ·β,ϕ·α

therefore:
[β̃ : α]xα,β = [ϕ · β̃ : ϕ · α]xϕ·α,ϕ·β , ∀ϕ ∈ Eucl(p,Z)

Hence we do not need to verify our equations for every β, β̃ with a common vertex. For the pair
of cells ϕ · β, ϕ · β̃ the equations are the same. It suffices to prove the existence and uniqueness for a
solution of the equations (4.6) appearing in the case when β̃ = β0 = (1, . . . , 1), v = v0 = (0, . . . , 0),
β = βk = (−1, . . . ,−1, 1, . . . , 1) = β0 − 2e1 − 2e2 − . . .− 2ek (Where k = 0, . . . , p).

In this case, (p−1)-cells α with v0 ≺ α ≺ β̃ are α0,j = (1, . . . , 1, 0, 1, . . . , 1) = β0−ej (where j = 1, . . . , p).
Simple computations give then:

[β̃ : α0,j ] = (−1)j ,

xα0,j ,βk =

{

(−1) · (−1)j−1 · xk if j ≤ k

1 · (−1)j−1 · xk+1 if j > k

, [β̃ : α0,j ] · xα0,j ,βk =

{

xk if j ≤ k

−xk+1 if j > k
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Therefore we may reduce our system of equations (4.6) to:






z − px1 = 1,

z + k · xk − (p− k) · xk+1 = 0, k = 1, . . . , p− 1

z + pxp = 0

We try now to determine if this system has unique solution z, x1, . . . , xp. Indeed the system of equations is:















1 −p 0 0 . . . 0

1 1 1 − p
. . .

...

1 0 2 2 − p
. . .

...
...

...
. . . 3

. . . 0
...

...
. . .

. . . −1
1 0 . . . . . . 0 p















·








z
x1

...
xn








=








1
0
...
0








Consider the matrix associated to this system. If we substitute the first line L1 of this matrix by L1 + pL2,
we get rid of −p on the second position but obtain p · (1 − p) on the third position. If we add again
(p(p − 1)/2) · L3 we get rid of this entry but obtain p · (p − 1) · (2 − p)/2 on the fourth position. We may
continue adding again (p(p− 1)(p− 2)/(2 · 3)) · L4 on the first line, and so on until we obtain:











(
p
0

) (
p
1

) (
p
2

)
. . .

(
p
p

)

0 1 0 . . . 0
...

. . . 1
. . .

...
...

. . .
. . . 0

0 . . . . . . 0 1











·












1 −p 0 . . . 0 1

1 1 1 − p
. . .

... 0

1 0 2
. . . 0

...
...

...
. . .

. . . −1
...

1 0 . . . 0 p 0












=












2p 0 0 . . . 0 1

1 1 1 − p
. . .

... 0

1 0 2
. . . 0

...
...

...
. . .

. . . −1
...

1 0 . . . 0 p 0












because
∑p

k=0

(
p
k

)
= 2p and

(
p
k

)
· (k − p) +

(
p
k+1

)
· (k + 1) = 0 for any k = 0, . . . , p − 1. The system to be

solved is then: 













2p 0 0 0 . . . 0

1 1 1 − p
. . .

...

1 0 2 2 − p
. . .

...
...

...
. . . 3

. . . 0
...

...
. . .

. . . −1
1 0 . . . . . . 0 p















·








z
x1

...
xp








=








1
0
...
0








that can be solved first for z = 1/2p and then by a backwards substitution procedure beginning with the
determination of xp, and substituting backwards until determining x1. In fact, simple computations show
that (4.5) is the (unique) solution. �

5. First variation formula. Noether Theorem

In the previous sections we introduced the discrete version of the usual analytical machinery of the
variational theory. Recall that, given a configuration bundle π : X0 → Y0, a discrete Lagrangian density is
any function L : Yp → R on the induced bundle of configurations of p-cells (definition 3.4). This leads to a
variational problem, consisting on the determination of critical configurations in the sense of definition 3.8.
We want to study the mapping:

L : Γ(X0, Y0) → Ωp(X)
y 7→ L ◦ yp
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which induces the linear operator dyL given in (3.3). As we already indicated, it is the vanishing of
〈c, dyL(δy)〉 for any chain c ∈ Cp(X,Z) and any admissible variation δy ∈ Γ(int(c), y∗V Y0) that determines
if y ∈ Γ(X0, Y0) is critical for the discrete Lagrangian L.

The mapping dyL has the form D 7→ F (D) indicated in definition 4.1, if we consider the first order
difference operator F from E0 = y∗V Y to Ωp(X), given by F = dL ◦ yp ∈ Γ(Xp, E

∗
p).

Definition 5.1. Given a bundle of configurations π : X0 → Y0 and a Lagrangian density L : Yp → R we
call discrete Euler form and discrete momentum form associated to L the mappings:

EL : Γ(X0, Y0) → Γ(X0, V
∗Y0)

y 7→ L(dL◦yp)
,

ωL : Γ(X0, Y0) → Γ(Xp−1, (V
∗Y0)p−1)

y 7→ ω(dL◦yp)

respectively, where L(dL◦yp) and ω(dL◦yp) represent the objects associated to F = dL ◦ yp in Theorem 4.5,
which are determined univocally by the Eucl(p,Z)-covariance condition.

Using (4.2), (4.3) and the solution (4.5) found in theorem 4.5, these objects EL(y) ∈ Γ(X0, y
∗V ∗Y0) and

ωL(y) ∈ Γ(Xp−1, (y
∗V ∗Y0)p−1) can be given by the explicit formulas:

(EL(y))v =
∑

v≺β

1

2p
(y∗pdL)β,v,

(ωL(y))α,v =
∑

v≺β

xα,β · (y∗pdL)β,v, xα,β = (−1)i · si ·
1

k · 2p
·

((
p
0

)
+ . . .+

(
p

p−k

)

(
p

p−k

)

) (5.1)

where i, si, k in the last expression depends on α, β by i = αeven ∈ {1, . . . , p}, si = βi − αi ∈ {±1},
k = ♯{j : αj 6= βj} ∈ {1, . . . , p}.

These explicit formulas show that EL(y) depends on each vertex v ∈ X0 only on the configurations yp(β)
of the p-cells β containing the vertex v. Analogously, ωL(y) depends on each (p − 1)-cell α only on the
configurations yp(β) of the faces that share a vertex with α. The dependence on L at some vertex v ∈ X0

appears only trough the values of dyp(β)L for p-cells containing the vertex v. The following result is a direct
consequence of the definitions, using the adjointness formula theorem:

Theorem 5.2. For any configuration y ∈ Γ(X0, Y0) the difference operators dL ◦ yp ∈ Γ(Xp, (y
∗V ∗Y )p),

ωL(y) ∈ Γ(Xp−1, (y
∗V ∗Y )p−1) and EL(y) ∈ Γ(X0, y

∗V ∗Y0) satisfy the following fundamental discrete first

variation formula:

(dyL)(δy) = (dL ◦ yp)(δy) = d ((ωL(y))(δy)) + ((EL(y))(δy)) · volX ∀δy ∈ Γ(X0, y
∗V Y0) (5.2)

As for the continuous calculus of variations, first variation formula leads straightforward to the character-
ization of critical configurations and to the construction of Noether currents associated to any infinitessimal
symmetries. This can be done as follows:

Theorem 5.3 (Discrete Euler equations). A configuration y ∈ Γ(X0, Y0) is critical for the Lagrangian
L : Y0 → R and admissible variations Var if and only if:

EL(y)|y∗Var = 0

Proof . For any chain c ∈ Cp(X,Z) and any infinitesimal variation δy ∈ Γ(int(c), y∗V Y0) we may apply
(5.2) and integrate on c to get:

〈c, (dyL)(δy)〉 = 〈c, d ((ωL(y))(δy))〉 + 〈c, ((EL(y))(δy)) · volX〉 =

= 〈∂c, ((ωL(y))(δy))〉 + 〈c, ((EL(y))(δy)) · volX〉 =

= 0 + 〈c, ((EL(y))(δy)) · volX〉
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where the equality 〈∂c, ((ωL(y))(δy))〉 = 0 holds because whenever (∂c)(α) 6= 0 for some α ∈ Xp−1, all the
adherent vertices v ≺ α must lie in supp(∂c), outside of int(c), thus each δvy must be zero for v ≺ α and
(δy)p−1(α) = 0, which tells us that either (∂c)(α) = 0 or ((ωL(y))(δy)) (α) = 0 and the duality product
〈∂c, ((ωL(y))(δy))〉 vanishes.

If we know EL(y)|y∗Var = 0, then (EL(y))v(δvy) = 0 for any choice of v ∈ X0 and δvy ∈ Vary(v) =
(y∗Var)(v). Therefore 〈c, (dyL)(δy)〉 = 0 for any c ∈ Cp(X,Z) and δy ∈ Γ(int(c), y∗Var), and y is a critical
configuration.

Conversely, if we know that y is critical, we may consider any δy ∈ Γ(X0, y
∗V Y0) whose value is 0

everywhere except for the vertex v ∈ X0, where (δy)(v) = δvy ∈ Vy(v)Y0 is chosen to be arbitrary in Vary(v)
and consider also the chain c =

∑

v≺β cβ ∈ Cp(X,Z) (“the sphere with center v”). It is obvious that
v ∈ supp(c), v /∈ supp(∂c), therefore δy ∈ Γ(int(c), y∗Var). Applying our previous result:

〈c, (dyL)(δy)〉 = 〈c, ((EL(y))(δy)) · volX〉

We know that (EL(y))(δy) ∈ Ω0(X) vanishes at any vertex except at v. Therefore

〈c, ((EL(y))(δy)) · volX〉 =
∑

v≺β

((EL(y))(δy) · volX) (β) =
∑

v≺β

∑

v̄≺β

(EL(y))v̄(δy(v̄)) = 2p · (EL(y))v(δvy)

where the 2p factor represents the number of p-cells containing the vertex v ∈ X0. This proves that for any
critical section holds (EL(y))v(δvy) = 0 for any choice of v ∈ X0 and δvy ∈ Vary(v) = (y∗Var)(v), as we
wanted. �

In a similar way to the continuous case, first variation formula for the discrete Lagrangian leads to a
momentum map taking any infinitesimal symmetry of the problem to a (p−1)-form that is closed on critical
sections.

Definition 5.4. Given a configuration bundle π : Y0 → X0, and a discrete Lagrangian density L : Yp → R,
we call infinitesimal symmetry of the Lagrangian any vector field D ∈ X(Y0) whose extension Dp ∈ X(Yp)
to the bundle Yp → Xp verifies:

〈dL,Dp〉 = 0 ∈ C∞(Yp)

It must be noted that the restriction to yp ∈ Γ(Xp, Yp) of the function 〈dL,Dp〉 ∈ C∞(Yp) determines a p-form
(yp)

∗〈dL,Dp〉 ∈ Map(Xp,R) = Ωp(X) which coincides with 〈dyL, y
∗D〉 where y∗D = D ◦ y ∈ Γ(X0, y

∗V Y0).

Theorem 5.5 (Discrete Noether theorem). Let L : Yp → R be a discrete Lagrangian density and D ∈
X(Y0) be an infinitesimal symmetry of L. If y ∈ Γ(X0, Y0) is a critical section for the variational problem
with Lagrangian L and admissible variations Var and if y∗D = D ◦ y ∈ Γ(X0, y

∗V Y0) is admissible (that is,
(D ◦ y)(v) ∈ Vary(v)), then ((ωL(y))(y∗D)) is a closed discrete (p− 1)-form.

Proof . As D is a symmetry, we know that 〈dL,Dp〉 = 0, which restricted to points yp(β) ∈ Yp tells us
that (dyL)(y∗D) = 0. Moreover, y is critical for admissible variations Var and y∗D ∈ Γ(X0, y

∗Var), so we
have EL(y)(y∗D) = 0. The result is then a direct consequence of (5.2). �

The following two examples illustrate the meaning of the previous results and its relation with the work
of other authors:

Example 5.6. In the 1-dimensional case a variational problem is given by a Lagrangian density L : X1×Q×
Q→ R. That is, we have a sequence of functions L1+2i(q−, q+) : Q×Q→ R, one for each edge 1 + 2i ∈ X1

limited by the vertices 2i, 2i+ 2 ∈ X0. The T ∗
q−Q and T ∗

q+Q components of d(q−,q+)L2i+1 ∈ T ∗
q−Q ⊕ T ∗

q+Q

are accordingly represented by (dL)− and (dL)+. In this case the values z, x1 indicated in theorem 4.5 are
z = 1/2, x1 = −1/2 and for a given configuration y = (q2i) of vertices the associated Euler form and
momentum form are:

(EL(y))v =
1

2

(
d(qv−2,qv)Lv−1

)+
+

1

2

(
d(qv ,qv+2)Lv+1

)−
∈ T ∗

qv
Q

(ωL(y))v =
1

2

(
d(qv−2,qv)Lv−1

)+
+

−1

2

(
d(qv ,qv+2)Lv+1

)−
∈ T ∗

qv
Q

(

v ∈ 2Z = X0 = Xp−1

v − 1, v + 1 ∈ X1 = Xp

)
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The discrete first variation formula (which can be proven by direct computation) only states that:
(
d(qv ,qv+2)Lv+1

)
(δvy, δv+2y) = (ωL(y))v+2 (δv+2y) − (ωL(y))v (δvy) +

[
(EL(y))v (δvy) + (EL(y))v+2 (δv+2y)

]

and Noether’s theorem states that, given y ∈ Γ(X0, Y0) critical and δy = D ◦ y defined by some symmetry
D ∈ X(Y ) of the Lagrangian density, there holds (ωL(y))v(δvy) = (ωL(y))v+2(δv+2y) for any vertex v ∈
X0 = 2Z. It must be indicated that, for critical configurations (EL(y))v(δvy) = 0 and we might take

(ωL(y))v(δvy) = (ωL(y) + EL(y))v(δvy) =
(
d(qv−2,qv)Lv−1

)+
(δvy)

which is the expression that can be found overall in the literature as conserved quantity in one discrete
independent variable (see [24] or [33] for example, or [6] in a different context).

Example 5.7. In the 2-dimensional case a variational problem is given by a Lagrangian density L : X2×Q×
Q×Q×Q→ R. That is, we have a family of functions L(1+2i,1+2j)(q−−, q+−, q−+, q++) : Q×Q×Q×Q→ R,
one for each face (1+2i, 1+2j) ∈ X2 limited by the edges (2i, 1+2j), (2+2i, 1+2j), (1+2i, 2+2j), (1+2i, 2+
2j) ∈ X1, with adherent vertices (2i, 2j), (2 + 2i, 2j), (2i, 2 + 2j), (2 + 2i, 2 + 2j) ∈ X0. The T ∗

q−−
Q, T ∗

q+−
Q,

T ∗
q−+

Q and T ∗
q++

Q components of d(q−−,q+−,q−+,q++)L(1+2i,1+2j) ∈ T ∗
q−−

Q ⊕ T ∗
q+−

Q ⊕ T ∗
q−+

Q ⊕ T ∗
q++

Q are

accordingly represented by (dL)−−, (dL)+−, (dL)−+ and (dL)++. In this case the values z, x1, x2 indicated
in theorem 4.5 are z = 1/2, x1 = −3/8, x2 = −1/8 and for a given configuration y = (q(2i,2j)) of vertices
the associated Euler form and momentum form (for brevity we give only the component at an horizontal
edge α = (1 + 2i, 2j) ∈ X1 and its initial vertex v = (2i, 2j) ∈ X0, hence these expressions are elements of
T ∗
qv
Q) are:

(EL(y))v =
1

4

(

d(qv ,qv+(2,0),qv+(0,2),qv+(2,2))Lv+(1,1)

)−−

+
1

4

(

d(qv+(−2,0),qv ,qv+(−2,2),qv+(0,2))Lv+(−1,1)

)+−

+

+
1

4

(

d(qv+(0,−2) ,qv+(2,−2),qv ,qv+(2,0))Lv+(1,−1)

)−+

+
1

4

(

d(qv+(−2,−2),qv+(0,−2),qv+(−2,0),qv)Lv+(−1,−1)

)++

(ωL(y))α,v =
3

8

(

d(qv ,qv+(2,0),qv+(0,2),qv+(2,2))Lv+(1,1)

)−−

+
1

8

(

d(qv+(−2,0),qv ,qv+(−2,2),qv+(0,2))Lv+(−1,1)

)+−

+

−
3

8

(

d(qv+(0,−2) ,qv+(2,−2),qv ,qv+(2,0))Lv+(1,−1)

)−+

−
1

8

(

d(qv+(−2,−2),qv+(0,−2),qv+(−2,0),qv)Lv+(−1,−1)

)++

all remaining components of the momentum form can be computed using the symmetries in Eucl(2,Z), as
indicated in the following diagram

1/8⋆ 3/8⋆ 3/8⋆ 1/8⋆

−1/8⋆ −3/8⋆ −3/8⋆ −1/8⋆

1/4⋆ 1/4⋆

1/4⋆ 1/4⋆

v α
v(ωL(y))α (EL(y))v ⋆ = (dy2(β)Lβ)v

In this case, first variation formula states that the differential of the Lagrangian at a given face β ∈ X2

(which has 4 components, one at each adherent vertex) is just the sum of Euler form for each of the vertices
with the momentum forms corresponding to each of the four oriented edges that form the boundary of the
face, which can be interpreted by the following diagram (where each number appearing at a face β of the
2-dimensional grid, next to a vertex v, represents the appearance of 1

8 (dy2(β)Lβ)v(δvy) for the corresponding
vertex and face)

+ + + + =
31

−1 −3

3 1

−1−3

3 −3

1 −1

3 −3

1 −1

3 1

−3 −1

31

−3−1 1−1

3−3

3−3

1−1 2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

0 0 0 0

0 8 8 0

0 8 8 0

0 0 0 0

[d(ωL(y)(δy))]
β

=
∑

α≺β
[β : α](ωL(y)(δy))α (EL(y)(δy) · volX)β ((dL ◦ y2)(δy))
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In this context it is worth mentioning that, to our knowledge, while some authors derive conservation
laws –local or global– in integral form (see [23, 26] and compare its results with those indicated in section
6), the only authors that, similar to our work, consider conservation laws in differential form (in terms
of discrete forms and its differentials, though not always in an explicit way) for several discrete variables
are Hydon and Mansfield [15, 16, 25]. The results indicated in these references are centered in the theory
of the discrete variational complex, while in [15, 16] the derivation of conservation laws is directly done
from the discrete Euler equations using a certain homotopy operator (whose explicit formula in the smooth
case is considered in [15] as “very cumbersome”, while for the discrete case “At least in principle, it is
possible to construct conservation laws systematically using the homotopy operator, but the complexity of
the calculations is even more fearsome than for PDEs!”) and is not given with an explicit formula. In this
context there is not a momentum mapping determining one single conservation law for each symmetry, but
rather a family of conserved quantities that can be derived from the discrete Euler-Lagrange equations, and
different possibilities arise depending on the choice we make about the nature of the conserved quantity.
However many results can be compared with the ones presented here, as the theory developed in both
cases deals with functions depending on several discrete independent variables living in the lattice X = Z

p

and several continuous dependent variables, where the translation morphisms Sk : v ∈ X 7→ v + ek ∈ X
(symmetries of the lattice) play an essential role. The notion given by Hydon/Mansfield of a 2-dimensional
conservation law as being a expression (S1 − Id) · F + (S2 − Id) · G = 0 for some F,G depending on
dependent and independent variables can be seen in our context as a condition that certain discrete 1-form
is closed. Indeed if ω is a 1-form in our lattice, it can be represented by certain functions F (i, j) and
G(i, j) if we denote the components of ω at vertical edges and horizontal edges as ω(2i, 2j − 1) = −F (i, j)
and ω(2i − 1, 2j) = G(i, j), respectively. The condition (dω)(2i − 1, 2j − 1) = 0 can be written then as
0 = ((S1 − Id) · F + (S2 − Id) ·G)(i,j) = F (i − 1, j) − F (i, j) + G(i, j − 1) − G(i, j). The article [25] gives
conserved quantities from symmetries and a discrete variational principle: a similar notion of conservation
law in several discrete variables is introduced, together with the integration by parts procedure (see also
[24]) that corresponds with our adjointness formula in one discrete variable. A conservation law is derived if
the group action commutes with all discrete translations, though its local expressions are again not explicitly
given. Our formalism, more geometric, doesn’t impose these conditions on the group action.

6. Physical interpretation.

We shall give an interpretation of our discrete Euler equations and Noether theorem in terms of the
components of dL, that, motivated by our example in section 7 and with a little abuse of language, we call
contact forces.

Definition 6.1. Given some configuration bundle Y0 on the discrete p-dimensional Euclidean space X0 =
(2Z)p, a discrete Lagrangian L : Yp → R, and a configuration of vertices y ∈ Γ(X0, Y0), we shall denote the

components of dL ◦ yp ∈ Γ(Xp, (y
∗V ∗Y )p) at any p-cell β ∈ Xp by (dyp(β)L) = (fL,yβ,v )v≺β ∈ T ∗

yp(β)(Yp)β =

⊕v≺βT
∗
y(v)(Y0)v and we shall call contact force pulling from the p-cell β at the vertex v ≺ β, for the

configuration y, the element:
fL,yβ,v = (dyp(β)L)v ∈ T ∗

y(v)(Y0)v

We may observe from formula (5.1) that Euler form may be written as:

(EL(y))v =
1

2p

∑

v≺β

fL,yβ,v (6.1)

Vanishing of Euler form for any δvy ∈ Vary(v) can be interpreted as the condition that the sum of all
contact forces pulling at the vertex v is incident to any infinitesimal admissible variation δvy ∈ Vary(v).
Critical configurations appear when the total contact force pulling at any vertex vanishes when applied to
any admissible infinitesimal variation ∂vy ∈ Vary(v) of the vertex.
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After this interpretation of Euler equations it is also possible to give a physically meaningful interpretation
of Noether’s Theorem for certain p-chains associated to sets of p-cells. Consider any finite subset of p-cells
on Xp, say A ⊆ Xp.

Definition 6.2. For any finite set of p-cells, A ⊂ Xp, we call characteristic chain associated to A and
denote by cA ∈ Cp(X,Z) the p-chain cA =

∑

α∈A cα, whose values at any cell are:

cA(β) =

(
∑

α∈A

cα

)

(β) =

{

0 if β /∈ A

1 if β ∈ A

Lemma 6.3. For any finite set of cells A ⊂ Xp and any interior vertex v ∈ int(cA) of its characteristic
chain there holds β ∈ A for every p-cell β containing the vertex v.

Proof . We have v ∈ int(cA), therefore v ∈ supp(cA) and hence there exists a p-cell β̃ with v ≺ β̃, which
has the form β̃ = v + (s1, . . . , sp) with si ∈ {±1} and cA(β̃) 6= 0, so β̃ ∈ A. Imagine there exists a p-
cell β ∈ Xp containing v with β /∈ A: It has the form β = v + (r1, . . . , rp) with ri ∈ {±1}. We shall

prove that v ∈ supp(∂cA). In fact, it suffices to consider the following p-cells: β0 = β̃ = v + (s1, . . . , sp),
β1 = v+(r1, s2, . . . , sp),... βi−1 = v+(r1, . . . , ri−1, si, . . . , sp),... βp = β = v+(r1, . . . , rp). As the first one is
in A and the last one is not in A, we conclude that for some i, βi−1 = v+(r1, . . . , ri−1, si, si+1, . . . , sp) ∈ A and
βi = v+(r1, . . . , ri−1, ri, si+1, . . . , sp) /∈ A. In this case the (p−1)-cell α = v+(r1, . . . , ri−1, 0, si+1, . . . , sp) ∈
A is incident only to these two p-cells, and therefore (∂cA)(α) = cA(βi−1) · [βi−1 : α] + cA(βi) · [βi : α] =
[βi−1 : α] ∈ {±1}. As v is adherent to α and (∂cA)(α) 6= 0, we conclude that v ∈ supp(∂cA), which is in
contradiction with the hypothesis v ∈ int(cA) = supp(cA)\ supp(∂cA). Therefore the only possibility is that
every p-cell containing v belongs to A. �

From (6.1) we may in particular conclude:
∑

v≺β

(dyp(β)L)v =
∑

v≺β

fL,yβ,v =
∑

v≺β

(EL(y))v, ∀v ∈ X0 (6.2)

because the number of p-cells containing v is precisely 2p. Combining this result with the previous lemma
and first variation formula of the Lagrangian density leads to:

Theorem 6.4. Let A ⊂ Xp be a finite subset of p-cells on X and cA ∈ Cp(X,Z) its characteristic p-chain.
For any Lagrangian density L : Yp → R defined on the configuration bundle Y0 → X0, any configuration
y ∈ Γ(X0, Y0) and any admissible variation δy ∈ Γ(X0, y

∗V Y0) holds:

〈∂cA, ωL(y)(δy)〉 =
∑

v∈fr(cA)

∑

v≺β∈A

fL,yβ,v (δvy) −
∑

v∈fr(cA)

ρ(v,A) · (EL(y))v(δvy) (6.3)

where ρ(v,A) = ♯{β ∈ Xp : v ≺ β ∈ A} represents the number of p-cells belonging to A containing v.

Proof . Taking the integral of first variation formula (5.2) on cA we get:

〈∂cA,(ωL(y))(δy)〉 = 〈cA, (dL ◦ yp)(δy) − (EL(y))(δy) · volX〉 =
∑

β∈A

∑

v≺β

(
(dyp(β)L)v − (EL(y))v

)
(δvy) =

=
∑

v∈fr(cA)

∑

v≺β∈A

(
(dyp(β)L)v − (EL(y))v

)
(δvy) +

∑

v∈int(cA)

∑

v≺β∈A

(
(dyp(β)L)v − (EL(y))v

)
(δvy)

where the last equality holds because vertices v such that v ≺ β for some β ∈ A are precisely those in the
support of cA, which might be either in int(cA) or in fr(cA). On the other hand, we know by Lemma 6.3
that v ∈ int(cA), v ≺ β ⇒ β ∈ A so:

〈∂cA, ωL(y)(δy)〉 =
∑

v∈fr(cA)

∑

v≺β∈A

(
(dyp(β)L)v − (EL(y))v

)
(δvy) +

∑

v∈int(cA)

∑

v≺β

(
(dyp(β)L)v − (EL(y))v

)
(δvy)

Applying formula (6.2) we conclude that the summation for v ∈ int(cA) vanishes, leading to (6.3). �
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Remark . In the case that δvy is admissible and y ∈ Γ(X0, Y0) is critical, we know that (EL(y))(δy) = 0,
therefore (6.3) says:

〈∂cA, (ωL(y))(δy)〉 =
∑

v∈fr(cA)

∑

v≺β∈A

〈fL,yβ,v , δvy〉 (6.4)

which shows that for critical configurations y ∈ Γ(X0, Y0) and any p-chain cA given by a finite subset
A ⊆ Xp, when we consider the Noether current associated to some admissible infinitesimal variation δy,
computing the integral of this Noether current (ωL(y))(δy) on the boundary ∂cA is nothing more than to
compute at each vertex v ∈ fr(cA) of the boundary the δvy-component of the contact forces pulling at v
from p-chains inside of A and summing them.

In the case that the admissible infinitesimal variation δy is the restriction D ◦ y of some infinitesimal
symmetry D ∈ X(Y0) of the problem, for any critical configuration and any finite subset A ⊂ Xp Noether’s
Theorem states that 〈∂cA, (ωL(y))(δy)〉 = 〈cA, d(ωL(y))(δy)〉 = 0 therefore the total δy-component of the
contact forces pulling at vertices v ∈ fr(cA) from cells inside A vanishes, which is the physical meaning of
Noether’s Theorem in this discrete context.

For critical configurations y ∈ Γ(X0, Y0) holds
∑

v≺β∈A f
L,y
β,v +

∑

v≺β/∈A f
L,y
β,v = 0 at any vertex v ∈ X0,

therefore we may give analogous results for forces pulling from outside A.

〈∂cA, (ωL(y))(δy)〉 = −
∑

v∈fr(cA)

∑

v≺β/∈A

〈fL,yβ,v , δvy〉

and in the case of an infinitesimal symmetry, Noether’s Theorem also states that the total δy-component of
the contact forces pulling at vertices v ∈ fr(cA) from cells outside A also vanishes.

7. Example

Let us finish with a simple illustrative example of the theory: Consider the possible configurations of a
membrane in Q = R

3. We shall assume that our membrane is composed of several quadrilateral membrane
elements indexed by β ∈ X2, where X is the 2-dimensional discrete Euclidean space, and that the configura-
tion of each quadrilateral element onQ is determined by the position of each of its vertices. The configuration
of the membrane may then be modelled as a mapping y ∈ Γ(X0, Y0), where Y0 = X0×Q is the configuration
space associated to Q. Each configuration y2(β) ∈ (Y2)β = Q−− × Q+− × Q−+ × Q++ of a membrane
element has an internal energy that can be obtained as a function L(y2(β)) = L(β, q−−, q+−, q−+, q++).

In a simple situation we may consider that this internal energy is generated by a system of springs joining
its vertices, in particular, if there were two springs connecting the two diagonals of the quadrilateral, the
internal energy of a membrane element β ∈ X2 with configuration y2(β) would be given by:

L(y2(β)) = L(β, q−−, q+−, q−+, q++) =
−1

2
k‖q++ − q−−‖

2 +
−1

2
k‖q+− − q−+‖

2

being k Hooke’s constant for the springs and ‖ ‖ the Euclidean norm in Q = R
3.

In this situation, for a given configuration y2(β) = (β, q−−, q+−, q−+, q++) the components of dy2(β)L
(which have a clear interpretation as contact forces of the system) are:

(dy2(β)L)++ = k(q−− − q++), (dy2(β)L)+− = k(q−+ − q+−),

(dy2(β)L)−+ = k(q+− − q−+), (dy2(β)L)−− = k(q++ − q−−)

where we make the natural identification T ∗
q R

3 = TqR
3 = R

3 given by the Euclidean metric in R
3. These

represent the contact forces exerted at each vertex by the membrane element configuration y2(β), which is
due to the spring that joins each vertex with the opposite one.

As indicated in section 6, if we don’t impose boundary conditions, critical configurations y = (qv)v∈X0 ∈
Γ(X0, Y0) are then characterized by the vanishing of the total contact force fv pulling at a given vertex
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v ∈ (2Z)2:

fv = (dy2(v+(1,1))L)−− + (dy2(v+(−1,1))L)+− + (dy2(v+(1,−1))L)−+ + (dy2(v+(−1,−1))L)++ =

= k(qv+(2,2) − qv) + k(qv+(−2,2) − qv) + k(qv+(2,−2) − qv) + k(qv+(−2,−2) − qv) = 0

If we impose boundary conditions, say that each vertex v has a configuration lying on some submanifold
Sv ⊂ R

3, then critical configurations (qv)v∈X0 are characterized by the condition that the total contact force
fv ∈ Tqv

R
3 at each vertex v should be orthogonal to the tangent space Tqv

Sv.
Let us explore Noether’s conservation law. It is obvious that L admits as symmetries the whole 3-

dimensional Euclidean group. In fact 〈dy2(β)L,D2〉 = 0 for any vector field D = a ∂
∂x + b ∂∂y + c ∂∂z ∈ X(R3)

can be seen as the condition that:

k(q−− − q++) · (a, b, c) + k(q−+ − q+−) · (a, b, c) + k(q+− − q−+) · (a, b, c) + k(q++ − q−−) · (a, b, c) = 0

which represents only the equilibrium of any (a, b, c)-component of the forces that all the points of a face
induce on the remaining points. In this way, covariance of the lagrangian with respect to translations is
some way of stating that Newton’s third law of action-reaction is valid for springs.

For the vector field D(x,y,z) = (~v × (x, y, z)) · ( ∂∂x ,
∂
∂y ,

∂
∂z ) ∈ X(R3) representing infinitesimal rotations

generated by ~v ∈ R
3, holds 〈dy2(β)L,D2〉 = 0 which means:

k det ((q−− − q++), q++, ~v) + k det ((q−+ − q+−), q+−, ~v)+

+ k det ((q+− − q−+), q−+, ~v) + k det ((q++ − q−−), q−−, ~v) = 0

representing thus that the total angular momentum with respect to the origin of the forces that all the
points of a face induce on the remaining points vanishes, which is a different form of Newton’s third law, in
this case for angular momenta rather than linear momenta, which is also valid for our springs. In a similar
way, in general, validity of Newton’s third law for a mechanical system on a manifold (where in principle
forces at different points may not be summed or compared as in Newton’s law) can be seen as a symmetry
condition for the Lagrangian of the system with respect to some group of diffeomorphisms.

For any of these symmetries and any finite subset of membrane elements A ⊆ X2 we may apply Theorem
6.4 and the remark afterwards to conclude that if y ∈ Γ(X0, Y0) is critical, then for any constant vector field
D = (a, b, c) the component in the direction D of all the forces pulling at the vertices v ∈ fr(cA) from the
membrane elements β ∈ A must vanish. That is, the linear momentum in any direction induced by these
forces pulling at the boundary vanishes. In the same manner, using infinitesimal rotations we conclude that
the total angular momentum with respect to the origin (also with respect to any other point) of the forces
pulling at v ∈ fr(cA) from the membrane elements β ∈ A also vanishes. These are the discrete momentum
conservation laws in our formalism.

We don’t want to finish without mentioning energy conservation properties, besides the above mentioned
momentum conservation. However, for reasons of brevity, all these ideas are left for the reader for completion:
Imagine we want to incorporate time and kinetic energy in the previous example. If time is introduced as
independent variable (therefore discrete) then the discrete formalism doesn’t allow to consider infinitesimal
time translations as infinitesimal symmetries, and no discrete energy conservation would be obtained using
our discrete Noether theorem. For a discrete energy conservation to appear in this context, time must be a
continuous dependent variable.

In the continuous case if we consider the 2-dimensional membrane M(α,β) (2-dimensional manifold with
local coordinates α, β), including the kinetic part in the Lagrangian and including the time as depen-
dent variable in our formalism leads to a variational problem where configurations are mappings M(α,β) ×
Rs → R

3
(x,y,z) × Rt that can be represented by equations (x(α, β, s), y(α, β, s), z(α, β, s), t(α, β, s)). The

continuous Lagrangian is the sum of Kinetic and internal energy, which can be expressed in terms of
(x, y, z, t, xα, yα, zα, tα, xβ , yβ, zβ, tβ , xs, ys, zs, ts), and if D = ∂/∂t is an infinitesimal symmetry, for a given
configuration with ts = ∂t/∂s 6= 0 the corresponding conservation law for the domain Ct0,t1 = {(α, β, s) ∈
A × R : t0 ≤ t(α, β, s) ≤ t1} (where A ⊂ M is a compact domain with boundary ∂A) and for its bound-
ary ∂Ct0,t1 = [A× (t = t0)]∪ [A× (t = t1)]∪ [∂A× (t0 < t < t1)] gives a work-energy equilibrium property:
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that the difference of the kinetic energy of the domain A between instants t0, t1 equals the work exerted by
external forces at the boundary ∂A in the time interval [t0, t1].

In the discrete formulation, mimicking this situation, we may introduce in our example another discrete
variable and a time variable as dependent variable, considering configurations of X0 = (2Z)3 into R

4
(x,y,z,t).

In this case, when we give a configuration, each membrane vertex (2i, 2j) has its own associated sequence
(parametrized by 2k ∈ 2Z) of times and positions for these times, which slightly differs from the approach
adopted in [23], where each finite element (representing a membrane surface element, not a vertex) has its
own sequence of times, and from these times one derives for each membrane vertex its own sequence of
times (“sequence of nodal times”) and positions for those times. In our formalism all dependent variables
(no matter if they represent a time or a position) deserve the same treatment and (spatial or temporal)
configurations are always determined by the vertices, differing from the mentioned approach where temporal
configurations are associated to surface elements rather than vertices. Being the continuous Lagrangian
invariant by time translation, the discrete Lagrangian derived in Lemma 3.5 from the continuous one would
admit time translation as symmetry (because (x, y, z, t) 7→ (x, y, z, t + cte) is an affine transformation on
each separate variable in R

4) and lead to an exact discrete conservation law which should be interpreted in
this formalism as the analogous discrete work-energy equilibrium property.
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