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Summary . The multi-sample block-matrix sphericity test and its particular cases have wide
applications in testing the error strucutre in several multivariate linear models. However, the
practical implementation of this test has been hindered by difficulties in handling the exact dis-
tribution of the associated statistic and the non-availability in the literature of well-fit asymptotic
distributions. We use a decomposition of the null hypothesis into conditionally independent
hypotheses in order to induce a factorization of the likelihood ratio test (l.r.t.) statistic. We then
use the induced factorization of the characteristic function of the logarithm of the l.r.t. statistic
to obtain very well-fit but highly manageable near-exact distributions for the l.r.t. statistic of this
test and its particular cases. These near-exact distributions will allow for the easy computa-
tion of well-fit near-exact quantiles and p-values, enabling this way a more frequent practical
use of these tests. A measure of proximity between distributions, based on the corresponding
characteristic functions, is used to assess the performance of the near-exact distributions.

Keywords: multi-sample block-matrix sphericity test, near-exact distributions, mixtures, asymp-
totic distributions

1. Introduction

The multi-sample block-matrix (MS-BM) sphericity test plays a key role in tests of homo-
cedasticity in multivariate analysis and repeated measures designs, where the validity of
several other tests rest on the assumption of sphericity. His role is the equivalent to the one
that the multi-sample (MS) sphericity test has in univariate analysis. The MS sphericity
test should be routinely used in checking for homocedasticity in MANOVA and Multivariate
Discriminant Analysis models, as well as in Multivariate Regression or Canonical Analysis
models which include indicator variables for the levels of one or more categorical variables,
what turn out to be models of Multivariate Analysis of Covariance.

However, both the MS sphericity and the MS-BM sphericity tests are seldom carried
out because of the difficulties found in handling and computing the exact distribution and
quantiles of the associated test statistics. The development of good and easily computable
approximations to the exact distribution of these statistics is thus a much desirable objective
and therefore the development of near-exact distributions is a very desirable goal, more-
over since there are no asymptotic distributions available in the literature for the MS-BM
sphericity test statistic.

If the fact that the test statistics addressed in this paper are usually used under the
assumption of multivariate normality may be seen as a somehow severe limitation, we
should be aware of the results presented in Anderson et all. (1986), Anderson and Fang
(1990) and Anderson (2003), which combined with the decomposition of the overall null
hypothesis presented in the next Section and the concomitant factorization of the overall
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test statistic, show that the distributions studied and developed in this paper still remain
valid under the null hypothesis when we assume any elliptically contoured distribution for
the underlying populations.

The exact distribution of the MS-BM sphericity test statistic is almost intractable in
practical terms and asymptotic approximations are not known for the distribution of this
statistic what justifies the need for very accurate approximations. Thus, our purpose is
to develop near-exact approximations, (Coelho, 2004; Coelho and Marques, 2008; Marques
and Coelho, 2008b), that may render possible to use this test and its particular cases in a
practical way.

In a simple way we may say that near-exact distributions are asymptotic distributions
built using an whole different concept. These near-exact distributions are built in such a
way that the major part of the exact c.f. (characteristic function) of the statistic is left
unchanged and the remaining part is replaced by an asymptotic function, so that:

i) if we denote by Φ∗(t) the part of the exact c.f. of the statistic that is replaced by
Φ∗∗(γ; t), where, for simplicity of notation, γ denotes any and every parameter in the
distribution of that statistic, we have

lim
γ→∞

∫ +∞

−∞

∣∣∣∣
Φ∗∗(γ; t)− Φ∗(t)

t

∣∣∣∣ dt = 0 ,

or equivalently,
lim

γ→∞
Φ∗∗(γ; t) = Φ∗(t) ,

with this replacement yielding what we will call the near-exact c.f., in such a way
that,

ii) the near-exact distribution, obtained by inversion of the near-exact c.f., corresponds
to a known and manageable distribution, from which the computation of p-values and
quantiles is rendered easy.

The aim of this paper is thus to illustrate the development of near-exact distributions in a
rather complex situation, where the development of accurate enough traditional asymptotic
distributions is very hard, if at all possible, therefore rendering the development of near-
exact distributions almost required in order to enable the practical application of the test.

From the decomposition of the null hypothesis into three hypotheses we derive ex-
pressions for the likelihood ratio test (l.r.t.) statistic and for its h-moment. Well-fitting
near-exact distributions based on this decomposition are developed for the modified l.r.t.
statistic. Asymptotic approximations are known for some particular cases of this test (see
Moschopoulos (1988), Chao and Gupta (1991)), however we will show that these are not
precise enough even when large samples are considered, mainly if compared with the near-
exact approximations developed in this paper.

To assess the quality of the approximations we will use a measure of proximity between
the exact distribution and the approximating distributions, based on the proximity of the
corresponding caracteristic functions.

2. The test statistic and its moments

Let us consider q independent samples taken from the p-variate normal populations
Np(µj

, Σj), j = 1, . . . , q. Let the j-th sample have dimension Nj (j = 1, . . . , q). We



Near-exact distributions for the multi-sample block-matrix sphericity test statistic 3

are interested in testing the null hypothesis

H0 : Σ1 = Σ2 = . . . = Σq =




∆ 0 . . . 0
0 ∆ . . . 0
...

...
. . .

...
0 0 . . . ∆




(
= Ik ⊗∆

)
, (∆ unspecified) (1)

where the k matrices ∆ are p∗ × p∗, with p = kp∗. The null hypothesis in (1) may be
decomposed into a sequence of three null hypotheses, more precisely,

H0 = H0c|(0b|0a) ◦H0b|0a ◦H0a (2)

where
H0a : Σ1 = Σ2 = . . . = Σq(= Σ) , ( Σ unspecified) (3)

is the null hypothesis for testing the equality of q covariance matrices of dimension p × p,
with

Σ =




Σ11 Σ12 . . . Σ1k

Σ21 Σ22 . . . Σ2k

...
...

. . .
...

Σk1 Σk2 . . . Σkk


 , (4)

then
H0b|0a : Σij = 0 for i 6= j , (i, j = 1, . . . , k)

assuming that Σ1 = Σ2 = . . . = Σq(= Σ)
(5)

is the null hypothesis for testing the independence of k groups of variables and

H0c|(0b|0a) : Σ11 = Σ22 = . . . = Σkk(= ∆) , (∆ unspecified)
assuming H0a and H0b|0a

(6)

is the null hypothesis for testing the equality of k covariance matrices with dimension p∗×p∗.
Using this decomposition we have that the modified l.r.t. statistic to test (1) is the product
of the l.r.t. statistics used to test (3), (5) and (6) (see Lemma 10.3.1 of Anderson (2003)).
Thus, the modified l.r.t. statistic to test H0 in (1) is

λ∗ = λ∗c|(b|a)λ
∗
b|aλ∗a (7)

=
(kn∗)kn∗p∗/2

k∏
j=1

(n∗)p∗n∗/2

k∏
j=1

|Ajj |n
∗/2

|A∗|kn∗/2

︸ ︷︷ ︸
λ∗

c|(b|a)

|A|n∗/2

k∏
j=1

|Ajj |n∗/2

︸ ︷︷ ︸
λ∗

b|a

(n∗)n∗p/2

q∏
j=1

(nj)pnj/2

q∏
j=1

|Aj |nj/2

|A|n∗/2

︸ ︷︷ ︸
λ∗a

(8)

=
(kn∗)n∗p/2

q∏
j=1

(nj)pnj/2

q∏
j=1

|Aj |nj/2

|A∗|kn∗/2
, (9)
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where λ∗a, λ∗b|a and λ∗c|(b|a) are the modified l.r.t. statistics to test respectively the null
hypotheses in (3), (5) and (6) (see Secs. 10.2 and 9.2 of Anderson (2003) and Secs. 8.2
and 11.2 of Muirhead (1982)), and where Aj is the matrix of corrected sums of squares and
products formed from the j-th sample, A = A1 + . . . + Aq, nj = Nj − 1 is the number of
degrees of freedom of the Wishart distribution of Aj and n∗ = n1 + . . . + nj is the number
of degrees of freedom of the Wishart distribution of A and Ajj is the j-th diagonal block
of order p∗ of A (j = 1, . . . , k); and also the number of degrees of freedom of the Wishart
distribution of each Ajj and where kn∗ is the number of degrees of freedom of the Wishart
distribution of A∗ = A11 + A22 + . . . + Akk.

From the expressions for the h-th moment of each of the statistics λ∗a, λ∗c|(b|a), λ∗b|a and
given the independence of these three statistics under H0 in (2) (see Appendix A for further
details), the h-th null moment of λ∗ is

E
[
(λ∗)h

]
= E

[(
λ∗c|(b|a)

)h
]
× E

[(
λ∗b|a

)h
]
× E

[
(λ∗a)h

]

=
(kn∗)kn∗p∗h/2

k∏
j=1

(n∗)p∗n∗h/2

Γp∗
(

kn∗
2

)

Γp∗
(

kn∗
2 (1 + h)

)
k∏

j=1

Γp∗
(

n∗
2 (1 + h)

)

Γp∗
(

n∗
2

)

︸ ︷︷ ︸
E

[(
λ∗

c|(b|a)

)h
]

× Γp( 1
2n∗ + 1

2hn∗)
Γp( 1

2n∗)

k∏

i=1

Γp∗
(

n∗
2

)

Γp∗
(

n∗
2 (1 + h)

)
︸ ︷︷ ︸

E

[(
λ∗

b|a
)h

]

× (n∗)n∗ph/2

q∏
j=1

n
pnjh/2
j

Γp

(
n∗
2

)

Γp

(
n∗
2 (1 + h)

)
q∏

j=1

Γp

(nj

2 (1 + h)
)

Γp

(nj

2

)

︸ ︷︷ ︸
E[(λ∗a)h]

(10)

=
(kn∗)n∗ph/2

q∏
j=1

n
pnjh/2
j

Γp∗
(

kn∗
2

)

Γp∗
(

kn∗
2 (1 + h)

)
q∏

j=1

Γp

(nj

2 (1 + h)
)

Γp

(nj

2

) (11)

(
h >

p− 1
min(nj)

− 1
)

,

where Γp(·) represents the p-multivariate Gamma function (see Anderson (2003)).

3. Particular cases

As particular cases of the MS-BM sphericity test we have, for q = 1 the one-sample block-
matrix (OS-BM) sphericity test, for q = 1 and p∗ = 1 the usual (one-sample (OS)) sphericity
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Fig. 1. Particular cases of the multi-sample block-matrix sphericity test
BM: block-matrix; MS: multi-sample; OS: one-sample;

ME: matrix equality; Sph: sphericity

test, for k = 1 the equality of several covariance matrices (multi-sample matrix equality
(MS-ME)) test and for p∗ = 1 the multi-sample (MS) sphericity test, which for q = 1 turns
into the (one-sample) sphericity test. These particular cases of the MS-BM sphericity test
as well as their relations may be better seen in Figure 1.

Chao and Gupta (1991) derived the l.r.t. criterion to test H0a|(0b|0a) ◦H0b|0a, assuming
H0a true. We should stress that they do not test H0a. They rather assume that the
covariance matrices, Σ1, . . . , Σq, are equal and then they use a pooled sample covariance
matrix to perform the other two tests. This test is very similar to the particular case of
the MS-BM test when we consider q = 1. The approximation presented by Chao and
Gupta (1991), obtained using Box (1949) method, may thus be used as an asymptotic
approximation for the modified l.r.t. statistic of the OS-BM sphericity test. In our numerical
studies we will compare their approximation with the near-exact approximations developed
in this paper. This particular case of the MS-BM sphericity test was also studied by Cardeño
and Nagar (2001). In their paper they obtain the exact null distribution of the l.r.t. statistic
for k = 2, using Meijer G-functions, what renders quantile computations too heavy even for
small values of p∗, reinforcing the need for good manageable approximations.

Moschopoulos (1988) develops an asymptotic approximation for the MS sphericity test
statistic by applying Box (1949) method. However, the author says that he was not able to
assess the accuracy of his approximation because exact quantiles for the distribution of the
statistic are not available. Nagar and Sánchez (2004) present exact values for the quantiles
for the MS sphericity test statistic only for the bivariate case, that is for p = 2.

In section 6 we will use a measure of proximity between distributions, based on the dis-
tance between c.f.’s, to assess the performance of the asymptotic distributions of Moschopou-
los (1988), Nagar and Sánchez (2004) and our near-exact distributions. In that section we
will also compute near-exact quantiles for the MS sphericity test in the bivariate case, to
compare these with the exact quantiles of Nagar and Sánchez (2004). Although we do not
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compute any other near-exact quantiles, we should stress that we can also obtain near-exact
quantiles for the MS-BM sphericity test statistic or any of its particular cases, for any value
of p.

Near-exact distributions for the usual (OS) sphericity test statistic are available in Mar-
ques and Coelho (2008a) where the near-exact approximations are compared with Box
(1949) approximation and also with the sadlle-point approximations presented by Butler et
al. (1993). Near-exact distributions are also available for the l.r.t. statistic of the MS-ME
test in Coelho and Marques (2007).

4. Factorizations of the characteristic functions

4.1. The factorization of the caracteristic function of W = − log λ∗

Since in (11) the Gamma functions are defined for any strictly complex h we may write the
c.f. of W = − log λ∗ as

ΦW (t) = E
[
eiWt

]
= E

[
(λ∗)−it

]

=
(kn∗)−n∗pit/2

q∏
j=1

n
−pnj it/2
j

Γp∗
(

kn∗
2

)

Γp∗
(

kn∗
2 (1− it)

)
q∏

j=1

Γp

(nj

2 (1− it)
)

Γp

(nj

2

) . (12)

However, in order to obtain near-exact distributions for W we will use the expression
for the caracteristic function of W induced by the decomposition in (10). Thus, for Nj = N
and nj = n = N − 1 (j = 1, . . . , q) with n∗ = nq, the caracteristic function of W is also
given by

ΦW (t) =
(n∗)−n∗pit/2

q∏
j=1

n−pnit/2

Γp

(
n∗
2

)

Γp

(
n∗
2 (1− it)

)
q∏

j=1

Γp

(
n
2 (1− it)

)

Γp

(
n
2

)

︸ ︷︷ ︸
ΦWa (t)

(13)

× Γp( 1
2n∗ − 1

2 itn∗)
Γp( 1

2n∗)

k∏

i=1

Γp∗
(

n∗
2

)

Γp∗
(

n∗
2 (1− it)

)
︸ ︷︷ ︸

ΦWb|a (t)

(14)

× (kn∗)−kn∗p∗it/2

k∏
j=1

(n∗)−p∗n∗it/2

Γp∗
(

kn∗
2

)

Γp∗
(

kn∗
2 (1− it)

)
k∏

j=1

Γp∗
(

n∗
2 (1− it)

)

Γp∗
(

n∗
2

)

︸ ︷︷ ︸
ΦWc|(b|a) (t)

(15)

where ΦWa(t), ΦWb|a(t) and ΦWc|(b|a)(t) are respectively the caracteristic functions of
Wa = − log λ∗a, Wb|a = − log λ∗b|a and Wc|(b|a) = − log λ∗c|(b|a) in expression (8).

4.1.1. The characteristic functions of Wa = − log λ∗a and Wc|(b|a) = − log λ∗c|(b|a)

Coelho and Marques (2007) have shown that ΦWa(t) in (13) can be factorized in the following
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way
ΦWa

(t) = ΦWa,1(t)× ΦWa,2(t)

where

ΦWa,1(t) =
p−1∏

j=1

(
n− j

n

)r1,j
(

n− j

n
− it

)−r1,j

(16)

is the c.f. of the sum of p − 1 independent Gamma r.v.’s, that is a Generalized Integer
Gamma (GIG) distribution of depth p− 1 (see Coelho (1998) and Appendix B for further
details on the GIG distribution) with integer shape parameters r1,j given by (51) through
(53) in Appendix C, and

ΦWa,2(t) =
bp/2c∏

j=1

q∏

i=1

Γ(a1;j + b1;ij)
Γ(a1;j + b∗1;ij)

Γ(a1;j + b∗1;ij − nit)
Γ(a1;j + b1;ij − nit)

(17)

×
(

q∏

i=1

Γ(a1;p + b1;ip)
Γ(a1;p + b∗1;ip)

Γ
(
a1;p + b∗1;ip − n

2 it
)

Γ
(
a1;p + b1;ip − n

2 it
)
)p⊥⊥2

with
a1;j = n + 1− 2j , b1;ij = 2j − 1 +

i− 2j

q
, b∗1;ij = bb1;ijc (18)

and
a1;p =

n + 1− p

2
, b1;ip =

pq − q − p + 2i− 1
2q

, b∗1;ip = bb1;ipc , (19)

is the c.f. of the sum of bp/2c × q independent Logbeta r.v.’s multiplied by n and other
q× (p ⊥⊥ 2) independent Logbeta r.v.’s multiplied by n/2, where p ⊥⊥ 2 is the remainder of
the integer division of p by 2.

We may also obtain a factorization for the c.f. of − log λ∗c|(b|a) using the results in Coelho
and Marques (2007). The c.f. ΦWc|(b|a)(t) in (15) may be written as

ΦWc|(b|a)(t) = ΦWc|(b|a),1(t)× ΦWc|(b|a),2(t)

where

ΦWc|(b|a),1(t) =
p∗−1∏

j=1

(
nq − j

nq

)r2,j
(

nq − j

nq
− it

)−r2,j

=
p∗−1∏

j=1

(
n− j

q

n

)r2,j
(

n− j
q

n
− it

)−r2,j

(20)

is the c.f. of the sum of p∗−1 independent Gamma r.v.’s, that is a GIG distribution of depth
p∗−1 with integers shape parameters r2,j obtained from the r1,j defined in expressions (51)
through (53) in Appendix C, replacing q by k, p by p∗ and n by nq, and yet

ΦWc|(b|a),2(t) =
bp∗/2c∏

j=1

k∏

i=1

Γ(a2;j + b2;ij)
Γ(a2;j + b∗2;ij)

Γ(a2;j + b∗2;ij − nqit)
Γ(a2;j + b2;ij − nqit)

(21)

×
(

k∏

i=1

Γ(a2;p + b2;ip)
Γ(a2;p + b∗2;ip)

Γ
(
a2;p + b∗2;ip − nq

2 it
)

Γ
(
a2;p + b2;ip − nq

2 it
)
)p∗⊥⊥2
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with
a2;j = nq + 1− 2j , b2;ij = 2j − 1 +

i− 2j

k
, b∗2;ij = bb2;ijc , (22)

and

a2;p =
nq + 1− p∗

2
, b2;ip =

p∗k − k − p∗ + 2i− 1
2k

, b∗2;ip = bb2;ipc , (23)

is the c.f. of the sum of bp∗/2c × k independent Logbeta r.v.’s multiplied by nq and other
k × (p∗ ⊥⊥ 2) independent Logbeta r.v.’s multiplied by nq/2.

4.1.2. The characteristic function of Wb|a = − log λ∗b|a
Coelho (2004) has shown that ΦWb|a(t) in (14) may be given by

ΦWb|a(t) =
p−2∏

j=1

(
nq − p + j

2

)zj

×
(

nq − p + j

2
− it

nq

2

)−zj

×
{

Γ
(

nq
2

)
Γ

(
nq
2 − 1

2 − nq
2 it

)

Γ
(

nq
2 − nq

2 it
)
Γ

(
nq
2 − 1

2

)
}bm∗/2c

=
p−1∏

j=2

(
n− j

q

n

)zp−j

×
(

n− j
q

n
− it

)−zp−j

︸ ︷︷ ︸
ΦWb|a,1 (t)

(24)

×
{

Γ
(

nq
2

)
Γ

(
nq
2 − 1

2 − nq
2 it

)

Γ
(

nq
2 − nq

2 it
)
Γ

(
nq
2 − 1

2

)
}bm∗/2c

︸ ︷︷ ︸
ΦWb|a,2 (t)

(25)

with

m∗ =
{

0 p∗ even
k p∗ odd ,

(26)

and integer shape parameters zj equal to the shape parameters r∗j given in expression (33)
of Coelho (2004). The c.f. ΦWb|a,1(t) in (24) corresponds to the sum of p − 2 independent
r.v.’s with Gamma distribution, that is a GIG distribution of depth p−2 and integers shape
parameters zj , and ΦWb|a,2(t) in (25) corresponds to the sum of bm∗/2c independent r.v.’s
with LogBeta distribution multiplied by nq/2.

4.2. A convenient factorization of the c.f. of W = − log λ∗

Towards the use of the procedure outlined in Coelho and Marques (2008) and using the
previous factorizations of the c.f.’s in subsections 4.1.1 and 4.1.2, we may rewrite the c.f. of
W = − log λ∗ as expressed in Theorem 2, where we show that the distribution of W may
be seen as the sum of a r.v. with a Generalize Integer Gamma (GIG) distribution of depth
2p−

⌊
p−1

q

⌋
− 2 with a number of independent r.v.’s with Logbeta distributions multiplied

by different parameters.
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Theorem 2. The c.f. of W = − log λ∗ may be written as

ΦW (t) =
p−1∏

j=1

(
n− j

n

)r++
j

(
n− j

n
− it

)−r++
j

︸ ︷︷ ︸
Φ1(t)

×
p−1∏

j=1

j 6=q,...,αq

(
n− j

q

n

)r+
j

(
n− j

q

n
− it

)−r+
j

︸ ︷︷ ︸
Φ2(t)

(27)

× ΦWa,2(t) × ΦWb|a,2(t) × ΦWc|(b|a),2(t)︸ ︷︷ ︸
Φ3(t)

where α =
⌊

p−1
q

⌋
,

r+
j =





r2,j j = 1
r2,j + zp−j j = 2, . . . , p∗ − 1
zp−j j = p∗, . . . , p− 1

(28)

and

r++
j =

{
r1,j + r+

q×j j = 1, . . . , α

r1,j j = α + 1, . . . , p− 1 ,
(29)

with r1,j given by expressions (51) through (53) in Appendix C, r2,j also given by the same
expressions by replacing q by k, p by p∗ and n by nq and zj given by expression (33) in
Coelho (2004), and where ΦWa,2(t), ΦWb|a,2(t) and ΦWc|(b|a),2(t) are given respectively by
(17), (25) and (21) above.

Proof. We only have to group together in Φ1(t) all the Gamma r.v.’s in ΦWa,1(t) in
(16) and all the Gamma r.v.’s in ΦWb|a,1(t) and ΦWc|(b|a),1(t) in (24) and (20) whose rate
parameters have integer values for j/q and then group together in Φ2(t) all the remaining
Gamma r.v.’s in ΦWb|a,1(t) and ΦWc|(b|a),1(t) whose rate parameters have non-integer values
of j/q. 2

The c.f. given by the product Φ1(t)× Φ2(t) in (27) corresponds to the sum of

(p− 1) + (p− 1− α) = 2p− α− 2

independent r.v.’s with Gamma distribution, that is, the c.f. of a GIG distribution with
depth 2p− α− 2 and the c.f. Φ3(t) in (27) corresponds to the sum of

bp/2c × q + q × (p ⊥⊥ 2) + bm∗/2c+ bp∗/2c × k + k × (p∗ ⊥⊥ 2)

independent Logbeta distributions multiplied by different parameters.
We may stress that although the above result works in all cases, when p∗ is even we have

m∗ = 0 and then we have the exact distribution for the Wilks Lambda statistic λ∗b|a, whose
logarithm has a GIG distribution of depth p− 2, this result may be simplified as shown in
the next Corollary.
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Corollary 2.1 When p∗ is even the c.f. ΦW (t) is given by

ΦW (t) =
p−1∏

j=1

(
n− j

n

)r++
j

(
n− j

n
− it

)−r++
j

︸ ︷︷ ︸
Φ1(t)

×
p−1∏

j=1

j 6=q,...,αq

(
n− j

q

n

)r+
j

(
n− j

q

n
− it

)−r+
j

︸ ︷︷ ︸
Φ2(t)

(30)

× ΦWa,2(t) × ΦWc|(b|a),2(t)︸ ︷︷ ︸
Φ3(t)

with r++
j given in (29), r+

j in (28) and with ΦWa,2(t) and ΦWc|(b|a),2(t) given in (17) and
(21) respectively.

Proof. We just have to note that when p∗ is even m∗ = 0 and ΦWb|a,2(t) in (25)
vanishes.2

5. Near-exact distributions for W and λ∗

The near-exact distributions we will be dealing with in this paper will have c.f.’s of the form

Φ1(t) Φ2(t)︸ ︷︷ ︸
GIG distribution

Φ∗3(t) , (31)

where Φ1(t) and Φ2(t) are the same as in (27) or (30) above, while Φ∗3(t) may be either the
c.f. of a single Gamma distribution or of a mixture of two or three Gamma distributions,
depending on the number of exact moments we want to match. The c.f. Φ∗3(t) will indeed
have, accordingly, the same 2, 4 or 6 first derivatives (with respect to t at t = 0) as the part
of the exact c.f. of W that will be replaced, that is, Φ3(t) in (27) or (30). In other words,
we will have

dj

dtj
Φ∗3(t)

∣∣∣∣
t=0

=
dj

dtj
Φ3(t)

∣∣∣∣
t=0

, j = 1, . . . , h (32)

for h = 2, 4 or 6, according to the case of Φ∗3(t) being the c.f. of a single Gamma distribution,
or the c.f. of a mixture of 2 or 3 Gamma distributions with the same rate parameter, that
is,

Φ∗3(t) =
h/2∑

k=1

pk λsk (λ− it)−sk , (33)

with weights pk > 0 (k = 1, . . . , h/2) and
∑h/2

k=1 pk = 1.
While if Φ∗3(t) is the c.f. of a single Gamma distribution, equating the two first derivatives

of Φ3(t) at t = 0, there is a simple analytical solution for the problem of equating moments,
with the rate and shape parameters of Φ∗3(t) being given by

λ =
m1

m2 −m2
1

and s1 =
m1

m2 −m2
1

,
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where

m1 =
1
i

d

dt
Φ3(t)

∣∣∣∣
t=0

and m2 = − d2

dt2
Φ3(t)

∣∣∣∣
t=0

,

if Φ∗3(t) is the c.f. of a mixture of two Gamma distributions it is possible to prove (through
quite long and tedious calculations) that there is always one unique analytic real solution,
or rather, a pair of conjugate real solutions, with the values for the two shape parameters
and corresponding weights interchanged. If Φ∗3(t) is the c.f. of a mixture of three Gamma
distributions, it is believed that there is also always one only real solution with all positive
parameters, or rather, a six-tuple of conjugate solutions, although this is not easy to prove
analytically. Anyway, for the cases where Φ∗3(t) is the c.f. of a mixture of 2 or 3 Gamma dis-
tributions we advocate the numerical solution of the system of equations (32) (respectively
for h = 4 and h = 6).

As already remarked in Marques and Coelho (2008a) and Coelho and Marques (2007),
the replacement of Φ3(t) by Φ∗3(t), that is, the replacement of a sum of independent Logbeta
random variables (multiplied by a constant) by a single Gamma distribution or a mixture
of two or three Gamma distributions, matching the first 2, 4 or 6 exact moments is a much
adequate decision, since, as it is shown in Coelho et all. (2006), a single Logbeta distribution
may be represented under the form of an infinite mixture of GIG distributions, and, as such,
a sum of independent Logbeta random variables may thus be represented under the form of
an infinite mixture of sums of GIG distributions, which are themselves GIG distributions,
while, on the other hand, the GIG distribution may itself be seen as a mixture of Gamma
distributions Coelho (2007).

This amounts to be able to write the near-exact c.f. of the logarithm of the l.r.t.
statistic for the MS-BM sphericity test in the form in (31) where Φ∗3(t) is either the c.f. of a
Gamma distribution or the c.f. of a mixture of 2 or 3 Gamma distributions, being thus the
near-exact distributions obtained in this way, correspondingly a Generalized Near-Integer
Gamma (GNIG) distribution (see Coelho (2004) and Appendix B) of depth 2(p−1)−α+1
with α =

⌊
p−1

q

⌋
, or a mixture of two or three GNIG distributions of the same depth,

which have very manageable expressions, allowing this way for an easy computation of very
accurate near-exact quantiles.

Theorem 3. If we replace Φ3(t) in (27) or (30) by Φ∗3(t) in (33) we obtain as near-exact
distributions for W a GNIG distribution or a mixture of two or three GNIG distributions
of depth 2(p− 1)−α + 1 with α =

⌊
p−1

q

⌋
and for h = 2, 4, 6 with p.d.f. (using the notation

in Appendix B)

h/2∑
ν=1

pν f GNIG

(
w|r++

1 , . . . , r++
p−1, r+

1 , . . . , r+
p−1︸ ︷︷ ︸

except r+
j

for j=q,...,αq

, sν ;

n− 1
n

, . . . ,
n− p + 1

n
,
n− 1/q

n
, . . . ,

n− (p− 1)/q

n︸ ︷︷ ︸
except

n−j/q
n for j=q,...,αq

, λ
)

(34)
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and c.d.f.

h/2∑
ν=1

pν F GNIG

(
w|r++

1 , . . . , r++
p−1, r+

1 , . . . , r+
p−1︸ ︷︷ ︸

except r+
j

for j=q,...,αq

, sν ;

n− 1
n

, . . . ,
n− p + 1

n
,
n− 1/q

n
, . . . ,

n− (p− 1)/q

n︸ ︷︷ ︸
except

n−j/q
n for j=q,...,αq

, λ
)

(35)

where r+
j and r++

j (j = 1, . . . , p− 1) are given respectively by (28) and (29), and where for
h = 2

λ =
m1

m2 −m2
1

and s1 =
m2

1

m2 −m2
1

(36)

with

mj = i−j ∂j

∂tj
Φ3(t)

∣∣∣∣
t=0

, j = 1, 2 ,

and for h = 4 or h = 6 (according to the case of Φ∗3(t) being the c.f. of a single Gamma
distribution, or the c.f. of a mixture of 2 or 3 Gamma distributions with the same rate
parameter) the values of pν , sν and λ are obtained from the numerical solution of the
system of equations in (32), that is

dj

dtj
Φ∗3(t)

∣∣∣∣
t=0

=
dj

dtj
Φ3(t)

∣∣∣∣
t=0

, j = 1, . . . , h

with

ph/2 = 1−
h/2−1∑

k=1

pk .

Proof. In this proof we will consider only the case of h = 6, since the cases h = 2 and
h = 4 are derived in a similar way.

If in the c.f. of W in (27) we replace Φ3(t) by

Φ∗3(t) =
3∑

k=1

pk λsk (λ− it)−sk ,

we obtain

ΦW (t) ≈ Φ1(t)× Φ2(t)×
3∑

k=1

pk λsk (λ− it)−sk

︸ ︷︷ ︸
Φ∗3(t)

≈
3∑

k=1

pk Φ1(t)× Φ2(t)︸ ︷︷ ︸
GIG distribution

× λsk (λ− it)−sk

︸ ︷︷ ︸
Gamma distribution︸ ︷︷ ︸

GNIG distribution
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that is the c.f. of the mixture of three GNIG distributions of depth 2(p − 1) − α + 1 with
α =

⌊
p−1

q

⌋
with c.d.f. given by (35). The parameters pν , sν and λ are defined in such a

way that
dj

dtj
Φ∗3(t)

∣∣∣∣
t=0

=
dj

dtj
Φ3(t)

∣∣∣∣
t=0

, j = 1, . . . , 6 ,

what gives rise to a near-exact distribution that matches the first six exact moments of
W . 2

Cororally 3.1 Near-exact p.d.f.’s and c.d.f.’s for the l.r.t. statistic λ∗ in (9) may be
obtained (using the notation in Appendix B) in the form

fλ∗(`) ≈
h/2∑
ν=1

pν f GNIG

(
− log `|r++

1 , . . . , r++
p−1, r+

1 , . . . , r+
p−1︸ ︷︷ ︸

except r+
j

, j=q,...,αq

, sν ;

n− 1
n

, . . . ,
n− p + 1

n
,
n− 1/q

n
, . . . ,

n− (p− 1)/q

n︸ ︷︷ ︸
except

n−j/q
n , j=q,...,αq

, λ
)1

`
(37)

and

Fλ∗(`) ≈ 1−
h/2∑
ν=1

pν F GNIG

(
− log `|r++

1 , . . . , r++
p−1, r+

1 , . . . , r+
p−1︸ ︷︷ ︸

except r+
j

, j=q,...,αq

, sν ;

n− 1
n

, . . . ,
n− p + 1

n
,
n− 1/q

n
, . . . ,

n− (p− 1)/q

n︸ ︷︷ ︸
except

n−j/q
n , j=q,...,αq

, λ
)

(38)

for h = 2, h = 4 and h = 6, where the parameters are the same as in Theorem 3, and
0 < ` < 1 represents the running value of the statistic λ∗ = e−W .

Proof. Since the near-exact distributions in Theorem 3 were developed for the random
variable W = − log λ∗, in order to obtain the corresponding near-exact distributions for
λ∗, we only need to bear in mind the relation

Fλ∗(`) = 1− FW (− log `)

where Fλ∗(·) is the c.d.f. of λ∗ and FW (·) the c.d.f. of W . 2

Some authors use different versions of this statistic. For example, instead of the modified
l.r.t. statistic use could have used (λ∗)N/n. However, we may note that we can easily obtain
both the distribution and quantiles of different powers of λ∗ from the ones for λ∗.

6. Numerical studies

In order to evaluate the quality of the near-exact approximations developed in this work we
will use a measure of proximity between c.f.’s which is also a measure of proximity between
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c.d.f.’s. This measure is,

∆ =
1
2π

∫ ∞

−∞

∣∣∣∣
ΦW (t)− Φ(γ; t)

t

∣∣∣∣ dt , (39)

where ΦW (t) represents the exact c.f. of the negative logarithm of the modified l.r.t. statis-
tic and Φ(γ; t) represents an approximate c.f. for the same statistic, where γ intends to
represent any and every parameter in the distribution corresponding to Φ(γ; t). Taking S
for the support of W , we have,

max
w∈S

|FW (w)− F ∗(w)| ≤ ∆ , (40)

where FW (·) represents the exact c.d.f. of W and F ∗(·) represents the c.d.f. corresponding
to Φ(γ; t). We should note that

lim
γ→∞

∆ = 0 ⇐⇒ Wγ
d−→ W , (41)

where γ may represent either the sample size, the number of variables or matrices and blocks
involved in the MS-MB sphericity test and where Wγ represents the r.v. with distribution
with c.f. Φ(γ; t).

Indeed the relation in (40) may be derived directly from inversion formulas and ∆ may
be seen as based on the Berry-Esseen upper bound on |FY (y)−F ∗(y)| (Berry, 1941; Esseen,
1945; Loève, 1977, Chap. VI, Sec. 21; Hwang, 1998) which may, for any b > 1/(2π) and
any T > 0, be written as

max
w∈S

|FW (w)− F ∗(w)| ≤ b

∫ T

−T

∣∣∣∣
ΦW (t)− Φ(γ; t)

t

∣∣∣∣ dt + C(b)
M

T
(42)

where M = maxw∈Sf∗(w) and C(b) is a positive constant that only depends of b. If in
(42) above we take T → ∞ then we will have ∆, since then we may take b = 1/(2π). The
measure ∆ was already used by Grilo and Coelho (2007), Marques and Coelho (2008a),
Coelho and Marques (2007) to study the accuracy of near-exact approximations.

In a first stage we intend to assess the performance of the near-exact approximations
developed in this paper by computing the values of the measure ∆ between the exact
distribution of W = − log λ∗ and the three proposed near-exact approximations. In the
calculations we use the exact c.f. in (12) and the near-exact c.f.’s corresponding to the
near-exact distributions in Theorem 3 and given by (31) and (33) for h = 2, 4 and 6. We
will denote respectively by GNIG, M2GNIG and M3GNIG the near-exact distributions
corresponding to h = 2, 4 and 6 in (33) and Theorem 3.

In Tables 1 through 4 we compute values of ∆ for increasing values of p∗, q, n and k,
respectively. We may observe that the values of ∆ decrease in all cases, that is, all three
near-exact distributions show a marked asymptotic behavior not only for increasing sample
sizes but also for increasing values of the number of variables, number of blocks and number
of samples involved.

Together with these good asymptotic properties near-exact distributions also present
very accurate results for small sample sizes.



Near-exact distributions for the multi-sample block-matrix sphericity test statistic 15

Table 1. Values of ∆ for the near-exact distributions for W = − log λ∗

p∗ k q n GNIG M2GNIG M3GNIG

3 3 3 11 1.8× 10−5 5.1× 10−8 2.4× 10−10

6 3 3 20 1.4× 10−6 6.3× 10−10 4.1× 10−13

9 3 3 29 6.8× 10−7 1.9× 10−10 7.7× 10−14

15 3 3 47 1.8× 10−7 2.0× 10−11 3.1× 10−15

Table 2. Values of ∆ for the near-exact distributions for W = − log λ∗

p∗ k q n GNIG M2GNIG M3GNIG

3 3 6 11 2.0× 10−6 9.3× 10−10 5.0× 10−13

3 3 9 11 1.2× 10−6 4.2× 10−10 1.8× 10−13

3 3 12 11 9.3× 10−7 2.7× 10−10 1.1× 10−13

3 3 15 11 7.5× 10−7 1.9× 10−10 6.5× 10−14

Table 3. Values of ∆ for the near-exact distributions for W = − log λ∗

p∗ k q n GNIG M2GNIG M3GNIG

5 3 3 17 3.6× 10−6 3.3× 10−9 4.6× 10−12

5 3 3 30 2.2× 10−6 1.2× 10−9 8.8× 10−13

5 3 3 50 8.7× 10−7 2.1× 10−10 7.9× 10−14

5 3 3 100 2.2× 10−7 1.7× 10−11 4.1× 10−15

5 3 3 200 5.7× 10−8 1.5× 10−12 3.0× 10−16

Table 4. Values of ∆ for the near-exact distributions for W = − log λ∗

p∗ k q n GNIG M2GNIG M3GNIG

5 3 3 17 3.6× 10−6 3.3× 10−9 4.6× 10−12

5 4 3 22 1.3× 10−6 5.6× 10−10 3.5× 10−13

5 5 3 27 8.3× 10−7 2.6× 10−10 1.1× 10−13

5 6 3 32 5.0× 10−7 1.1× 10−10 3.5× 10−14

5 7 3 37 3.9× 10−7 7.4× 10−11 2.0× 10−14

5 8 3 42 2.5× 10−7 3.5× 10−11 7.1× 10−15
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Table 5. Exact and near-exact α-quantiles of (λ∗)1/n for α = 0.01

q n exact GNIG M2GNIG M3GNIG

2 3 0.0276701 0.0276014 0.0276708 0.0276702
4 0.088825 0.088761 0.088826 0.088825
5 0.160494 0.160447 0.160494 0.160494

15 0.586606 0.586603 0.586606 0.586606
30 0.771972 0.771972 0.771972 0.771972

6 3 0.000455436 0.000457393 0.000455414 0.000455436
4 0.00531188 0.00531981 0.00531183 0.00531188
5 0.0187298 0.0187424 0.0187298 0.0187298

15 0.309048 0.309042 0.309042 0.309048
30 0.564702 0.564704 0.564702 0.564702

Nagar and Sánchez (2004) present Tables for the quantiles of (λ∗)1/n the statistic used
for the MS sphericity test, a particular case of the MS-MB sphericity test for p∗ = 1. The
quantiles presented are obtained only for the bivariate case (p = 2) and for q = 2, . . . , 6. In
Tables 5 and 6 we compute the near-exact quantiles, for the cases q = 2 and q = 6, using
the near-exact distributions developed in this paper. We have only considered the cases
q = 2 and q = 6 since we think these to be sufficient to show the good precision of the new
near-exact approximations, however we must remark that we can easily obtain near-exact
quantiles for larger values of p and q.

We can observe from Tables 5 through 7 that the near-exact quantiles are very close to
the exact quantiles; the number of decimal places equal to the exact ones being at leats four,
for the GNIG distribution and increasing for larger values of n. The quantiles provided by
the M3GNIG distribution are, except in three cases, equal to the exact ones, but even in
these cases they match the first 6 decimal places for the two first cases and the first 8 for
the third case.

Moschopoulos (1988) presents, for the case p∗ = 1, that is, for the MS sphericity test
statistic, an asymptotic approximation for the distribution of −m log(λ∗)2/n∗ , following
the method of Box (1949), in the form of a mixture of χ2 distributions. We may easily
derive from this asymptotic approximation an asymptotic approximation for the c.f. of
W = − log λ∗, for the MS shpericity test statistic, under the form of a mixture of two
Gamma distributions that we will denote by Box1 and that we will use to compare with
the near-exact approximations proposed. From Table 8 we may observe that near-exact
distributions continue to present an excellent behavior for all values of p, q and n, always
presenting smaller values of ∆ than the asymptotic distribution of Moschopoulos (1988).
The near-exact distributions also show an excellent behavior for small sample sizes. The
approximation given by Moschopoulos only shows a slight improvement for increasing values
of n.

Chao and Gupta (1991) present an asymptotic approximation for the OS-BM sphericity
test, also based on Box’s (1949) method as a mixture of χ2 distributions. Once again, we
may easily derive from this asymptotic approximation an asymptotic approximation for the
c.f. of W = − log λ∗, for the case q = 1, under the form of a mixture of two Gamma
distributions, which we will denote by Box2 and that we will use to compare with the
near-exact approximations proposed. From Table 9 we may observe that the asymptotic
approximation proposed by Chao and Gupta (1991) shows in every case considered larger
values for ∆ than any of the near-exact approximations proposed in this paper, even when
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Table 6. Exact and near-exact α-quantiles of (λ∗)1/n for α = 0.025

q n exact GNIG M2GNIG M3GNIG

2 3 0.0475534 0.0475265 0.0475540 0.0475535
4 0.127788 0.127767 0.127789 0.127788
5 0.211137 0.211122 0.211137 0.211137

15 0.635280 0.635279 0.635280 0.635280
30 0.802407 0.802407 0.802407 0.802407

6 3 0.000965728 0.000967845 0.000965697 0.000965729
4 0.00883076 0.00883732 0.00883070 0.00883076
5 0.0275224 0.0275316 0.0275224 0.0275224

15 0.346065 0.346068 0.346065 0.346065
30 0.596657 0.596658 0.596657 0.596657

Table 7. Exact and near-exact α-quantiles of (λ∗)1/n for α = 0.025

q n exact GNIG M2GNIG M3GNIG

2 3 0.072533 0.072557 0.072533 0.072533
4 0.169741 0.169756 0.169741 0.169741
5 0.261570 0.261578 0.261570 0.261570

15 0.676126 0.676127 0.676126 0.676126
30 0.827033 0.827033 0.827033 0.827033

6 3 0.00177173 0.00177326 0.00177170 0.00177173
4 0.0133169 0.0133206 0.0133169 0.0133169
5 0.0375702 0.0375748 0.0375701 0.0375702

15 0.379246 0.379248 0.379246 0.379246
30 0.623836 0.623836 0.623836 0.623836

Table 8. Values of ∆ for the near-exact and asymptotic distributions for W = − log λ∗, for p∗ = 1

k(= p) q n GNIG M2GNIG M3GNIG Box1

10 2 12 3.7× 10−5 1.9× 10−7 1.7× 10−9 1.9× 10 0

10 5 12 1.6× 10−6 6.7× 10−10 3.2× 10−13 3.1× 10 0

10 7 12 6.8× 10−7 1.5× 10−10 3.8× 10−14 3.7× 10 0

10 2 50 2.6× 10−6 1.7× 10−9 2.4× 10−12 6.6× 10−2

10 2 100 6.3× 10−7 1.5× 10−10 1.3× 10−13 1.5× 10−2

15 2 17 2.1× 10−5 6.9× 10−8 3.8× 10−10 3.7× 10 0

20 2 22 7.4× 10−6 1.1× 10−8 2.9× 10−11 5.8× 10 0

50 2 52 8.1× 10−7 2.5× 10−10 1.2× 10−13 19.2× 10 0
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Table 9. Values of ∆ for the near-exact and asymptotic distributions for W = − log λ∗, for q = 1

p∗ k n GNIG M2GNIG M3GNIG Box2

5 2 12 8.8× 10−7 2.6× 10−10 8.2× 10−13 6.1× 10−2

2 7 16 1.0× 10−7 1.5× 10−11 4.5× 10−15 1.8× 10−1

2 9 20 2.7× 10−8 1.9× 10−12 2.9× 10−16 3.1× 10−1

4 2 10 3.1× 10−6 2.9× 10−10 9.1× 10−13 3.3× 10−2

4 2 50 2.1× 10−7 6.9× 10−13 1.8× 10−14 3.2× 10−5

4 2 100 5.5× 10−8 4.3× 10−14 3.2× 10−18 3.3× 10−6

large samples are considered.
The asymptotic properties revealed in Tables 6 through 4 by the near-exact aproxi-

mations for the MS-MB sphericity test statistic, can also be observed if we consider its
particular cases. In these cases we get even smaller values for the measure ∆ which reveal
that the approximations are even better.

Numerical studies for the case p∗ = 1 and q = 1, the usual sphericity test, are already
available in Marques and Coelho (2008a) and Coelho and Marques (2008), and for k = 1,
the test of equality of several covariance matrices, studies were also conducted in Coelho
and Marques (2007).

7. Conclusions

In this paper it was shown how, beyond any doubt, the decomposition of the null hypothesis
H0 in (1) into simpler conditionally independent hypotheses is indeed an extremely efficient
tool for the development of near-exact distributions for elaborate test statistics, namely for
the MS-BM sphericity l.r.t. statistic.

The decomposition approach proposed in Coelho and Marques (2008) and used in this
paper indeed ”not only enables us to build very accurate and manageable near-exact ap-
proximations to the exact distribution of the overall test statistics but also concomitantly
enables us to easily overcome the problems of controlling statistical errors, in particular the
error of the first kind, which arise when we have to test sequentially the partial hypothe-
ses”. Also, as the same authors conclude, ”Now we may easily compute near-exact quantiles
which enable us to carry the overall test in just one step, avoiding this way the problems
brought to our attention by Hogg (1961) and avoiding also the need for any corrections of
the first kind error level, like Sidak’s correction (Sidak, 1967, 1968)”.

The near-exact distributions developed are, in every case, more accurate than the asymp-
totic approximations and they present very good asymptotic properties, not only for increas-
ing sample sizes but also, and opposite to the usual asymptotic distributions, for increasing
number of variables, number of ∆ matrices and number of samples involved, showing yet an
excellent behavior for small sample sizes, cases where standard asymptotic approximations
do not perform well.

Given the results in Anderson et all. (1986) and Anderson and Fang (1990) the near-exact
distributions developed in this paper are also applicable in the cases where the underlying
random vectors have an elliptically contoured distribution.

Finally, the manageability, the accuracy, the asymptotic properties and the wide range
of application of near-exact distributions allow for a fresh look over the problem of approx-
imating the distributions of test statistics with exact c.d.f.’s that do not have a closed form
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representation or are almost impossible to handle.
Given the results obtained, the use of the near-exact distribution M3GNIG in place of

the exact distribution may be reliably advised.
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Appendix A

The independence of the statistics λ∗c|(b|a), λ∗b|a and λ∗a under H0

The independence of the three statistics λ∗c|(b|a), λ∗b|a and λ∗a in (7) under H0 in (1) is
easy to establish by using a couple of known results. We may start by noticing that λ∗a is
independent of

A = A1 + . . . + Aq =
q∑

j=1

Aj

(see Lemma 10.4.1 in Anderson (2003, Section 10.4) and the note right after expression
(13) in Section 10.4 of the same reference) and thus λ∗a is independent of both λ∗c|(b|a) and
λ∗b|a since both these statistics are built only from A. The statistic λ∗b|a is independent of
A11, A22, . . . , Akk, being this fact possible to prove through an extended version of Lemma
10.4.1 of Anderson (2003, Section 10.4) or, in more detail, through the fact that we may
write

λ∗b|a =
k−1∏

j=1

λ∗j(b|a) ,

where

λ∗j(b|a) =
|Ãj |n∗/2

|Ãjj |n∗/2|Ãj+1|n∗/2

with

Ãj =




Ajj Aj,j+1 . . . Aj,k

Aj+1,j Aj+1,j+1 . . . Aj+1,k

...
...

...
...

Akj Ak,j+1 . . . Akk




where the k − 1 statistics λ∗j(b|a) are independent under H(0b|0a) (see for example Theorem
9.3.2, Anderson, 1984) and where under the null hypothesis of independence between the
j-th group of variables and the super-group formed by the groups of variables j + 1, . . . , k,
each statistic λ∗j(b|a) is independent of both Ajj and Ãj+1 (see for example Section 8.2 of
Kshirsagar, 1972), since we may write

(λ∗j(b|a))
2/n∗ =

|Ãj |
|Ajj ||Ãj+1|

, j = 1, . . . , k
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where,

|Ãj | = |Ajj ||Ãj+1 . j |
|Ãj+1||Ajj . (j+1,...,k)|

with
Ajj . (j+1,...,k) = Ajj − Ãj,(j+1,...,k) Ã−1

j+1,j+1 Ã(j+1,...,k),j

Ãj+1 . j = Ãj+1 − Ã(j+1,...,k),j Ã−1
j+1,j+1 Ãj,(j+1,...,k)

for
Ãj,(j+1,...,k) =

[
Aj,j+1 | . . . |Ajk

]

and
Ã(j+1,...,k),j = Ã

′
j,(j+1,...,k) (where the prime denotes transpose)

we may write

(λ∗j(b|a))
2/n∗ =

|Ajj . (j+1,...,k)|
|Ajj | , j = 1, . . . , k

where, from the above reference, (λ∗j(b|a))
2/n∗ is independent of Ajj and thus λ∗(b|a) is inde-

pendent of A11, . . . , Akk, since (λ∗k−1(b|a))
2/n∗ , that may be written as

(λ∗k−1(b|a))
2/n∗ =

|Ak−1,k−1 . k|
|Ak−1,k−1| =

|Ãk . k−1|
|Ãk|

=
|Akk −Ak,k−1A

−1
k−1,k−1Ak−1,k|

Akk
,

is independent of both Ak−1,k−1 and Akk.
Then since λ∗c|(b|a) in (7) is built only from the Ajj (j = 1, . . . , k) it is independent of λ∗b|a.

Appendix B

The Gamma, GIG (Generalized Integer Gamma) and GNIG (Genealized
Near-Integer Gamma) distributions

We will use this Appendix to establish some notation concerning distributions used in
the paper, as well as to give the expressions for the p.d.f.’s (probability density functions)
and c.d.f.’s (cumulative distribution functions) of the GIG (Generalized Integer Gamma)
and GNIG (Generalized Near-Integer Gamma) distributions.

We will say that the r.v. X has a Gamma distribution with rate parameter λ > 0 and
shape parameter r > 0, if its p.d.f. may be written as

fX(x) =
λr

Γ(r)
e−λx xr−1 , (x > 0)

and we will denote this fact by
X ∼ Γ(r, λ) .

Let
Xj ∼ Γ(rj , λj) j = 1, . . . , p
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be p independent random variables with Gamma distributions with shape parameters rj ∈
IN and rate parameters λj > 0, with λj 6= λj′ , for all j 6= j′ ∈ {1, . . . , p}. We will say that
then the r.v.

Y =
p∑

j=1

Xj

has a GIG (Generalized Integer Gamma) distribution of depth p, with shape parameters rj

and rate parameters λj , (j = 1, . . . , p), and we will denote this fact by

Y ∼ GIG(rj , λj ; p) .

The p.d.f. and c.d.f. of Y are respectively given by (Coelho, 1998)

fGIG(y|r1, . . . , rp; λ1, . . . , λp) = K

p∑

j=1

Pj(y) e−λj y , (y > 0) (43)

and

F GIG(y|r1, . . . , rj ; λ1, . . . , λp) = 1−K

p∑

j=1

P ∗j (y) e−λj y , (y > 0) (44)

where

K =
p∏

j=1

λ
rj

j , Pj(y) =
rj∑

k=1

cj,k yk−1 (45)

and

P ∗j (y) =
rj∑

k=1

cj,k (k − 1)!
k−1∑

i=0

yi

i!λk−i
j

with

cj,rj =
1

(rj − 1)!

p∏

i=1
i 6=j

(λi − λj)−ri , j = 1, . . . , p , (46)

and

cj,rj−k =
1
k

k∑

i=1

(rj − k + i− 1)!
(rj − k − 1)!

R(i, j, p) cj,rj−(k−i) ,

(k = 1, . . . , rj − 1; j = 1, . . . , p)

(47)

where

R(i, j, p) =
p∑

k=1
k 6=j

rk (λj − λk)−i (i = 1, . . . , rj − 1) . (48)

The GNIG (Generalized Near-Integer Gamma) distribution of depth p+1 (Coelho, 2004)
is the distribution of the r.v.

Z = Y1 + Y2

where Y1 and Y2 are independent, Y1 having a GIG distribution of depth p and Y2 with a
Gamma distribution with a non-integer shape parameter r and a rate parameter λ 6= λj

(j = 1, . . . , p). The p.d.f. of Z is given by
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fGNIG(z|r1, . . . , rp, r; λ1, . . . , λp, λ) =

Kλr

p∑

j=1

e−λjz

rj∑

k=1

{
cj,k

Γ(k)
Γ(k + r)

zk+r−1
1F1(r, k + r,−(λ− λj)z)

}
,

(z > 0)

(49)

and the c.d.f. given by

F GNIG(z|r1, ... , rp, r; λ1, ... , λp, λ) =
λr zr

Γ(r + 1) 1F1(r, r + 1,−λz)

−Kλr

p∑

j=1

e−λjz

rj∑

k=1

c∗j,k

k−1∑

i=0

zr+iλi
j

Γ(r + 1 + i) 1F1(r, r + 1 + i,−(λ− λj)z)

(z > 0)

(50)

where
c∗j,k =

cj,k

λk
j

Γ(k)

with cj,k given by (46) through (48) above. In the above expressions 1F1(a, b; z) is the Kum-
mer confluent hypergeometric function. This function has usually very good convergence
properties and is nowadays easily handled by a number of software packages.

Appendix C

Shape parameters for the c.f. in (16)

The shape parameters r1,j in (16) are given by

r1,j =





r∗j for j = 1, . . . , p− 1,
except for j = p−1−2α1

r∗j +(p⊥⊥2)(α2 − α1)

×
(
q− p−1

2 + q
⌊

p
2q

⌋)
for j = p− 1− 2α1

(51)

where

α =
⌊

p− 1
q

⌋
, α1 =

⌊
q − 1

q

p− 1
2

⌋
, α2 =

⌊
q − 1

q

p + 1
2

⌋
,

and

r∗j =





cj for j = 1, . . . , α + 1

q
(⌊

p
2

⌋− ⌊
j
2

⌋)
for j = α + 2, ... , min(p− 2α1, p− 1)
and j = 2+p−2α1, ... , 2

⌊
p
2

⌋−1, step 2

q
(⌊

p+1
2

⌋− ⌊
j
2

⌋)
for j = 1+p−2α1, ... , p−1, step 2 ,

(52)

with,

cj =
⌊q

2

⌋ (
(j−1)q−2 ((q+1)⊥⊥2)

⌊
j

2

⌋)
+

⌊q

2

⌋⌊
q + j ⊥⊥ 2

2

⌋
for j =1, ... , α
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and

cα+1 = −
(⌊p

2

⌋
− α

⌊q

2

⌋)2

+ q

(⌊p

2

⌋
−

⌊
α + 1

2

⌋)

+(q⊥⊥2)
(

α
⌊p

2

⌋
+

α ⊥⊥ 2
4

− α2

4
− α2

⌊q

2

⌋)
.

(53)

The expressions for these parameters were derived in Coelho and Marques (2007).
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