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_____________________________________________________________________________ 
 
Abstract 
 
In this study we develop two near-exact distributions for the generalized Wilks Lambda statistic, used to 
test the independence of several sets of variables, with multivariate normal distribution, for the case 
where two or more sets have an odd number of variables. Using the concept of near-exact distributions 
and based on a factorization of the exact characteristic function we obtain two approximations, which are 
very close to the exact distribution but far more manageable. These near-exact distributions equate, by 
construction, some of the first exact moments and they correspond to cumulative distribution functions 
which are practical to use, allowing for an easy computation of near-exact quantiles. We also develop 
three asymptotic distributions which also equate some of the first exact moments. We assess the 
proximity of the asymptotic and near-exact distributions obtained to the exact distribution using two 
measures based on the Berry-Esseen bounds. In this comparative numerical study we consider different 
numbers of sets of variables, different numbers of variables per set and different sample sizes. 
 
 
Key Words: Independent Beta random variables, characteristic function, sum of Gamma random 
variables, likelihood ratio test statistic, proximity measures. 
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1 Introduction 
 
The generalized Wilks Lambda statistic (Wilks, 1932, 1935) is used in multivariate analysis to test the 
independence among m sets (m ≥ 2) of random variables (r.v.’s), under the normality assumption. For the 
case when there is at most one set with an odd number of variables among the m sets, we have the exact 
distribution in the form of a Generalized Integer Gamma (GIG) distribution obtained by Coelho (1998), 
but for the case where at least two sets, among the m sets, have an odd number of variables, we haven’t 
yet an exact distribution in a manageable form, adequate for further manipulation. Although we have, for 
this general case, some asymptotic distributions (see for example Box (1949) and Anderson (2003)) and 
some near-exact distributions (Coelho, 2003, 2004), in this paper we develop three asymptotic 
distributions and two new near-exact distributions, these later ones obtained in a concise and manageable 
form but nonetheless extremely close to the exact distribution in terms of characteristic function (c.f.), 
probability density function (p.d.f.), cumulative distribution function (c.d.f.), moments and quantiles. 
 
In order to develop the near-exact distributions we first factorize the exact c.f. and then we replace a 
suitably chosen part of the exact c.f., which corresponds to the c.f. of a log Beta distribution, by an 
adequate asymptotic result. Depending on the asymptotic result used, one may obtain different near-exact 
approximations. In one case we replace the c.f. of a log Beta r.v. by the c.f. of the sum of two Gamma 
r.v.’s and, in the other case, by the c.f. of a mixture of two Gamma r.v.’s. These distributions match the 
first three and first four exact moments, respectively. By joining this small part with the remaining 
unchanged part of the original c.f., we get what we call a near-exact c.f.. In the first case this c.f. 
corresponds to a particular Generalized Near-Integer Gamma (GNIG) distribution, while in the second 
case it corresponds to a mixture of two GNIG distributions. The corresponding near-exact c.d.f.’s are 
obtained in a concise and manageable form, perfectly handled by a number of available software’s, 
allowing for the computation of near-exact quantiles. 
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We have already introduced and explained the concept of a near-exact distribution in a number of papers 
(Coelho, 2003, 2004; Grilo and Coelho, 2007; Grilo and Coelho, 2009) and we have also applied a 
similar procedure of derivation to obtain near-exact distributions for the product of an odd number of 
particular independent Beta r.v.’s (Grilo and Coelho, 2007), and now based on a factorization of the exact 
c.f. of the logarithm of the generalized Wilks Λ statistic, we develop near-exact distributions for this 
well-known statistic.  
 
Our paper is organized as follows: in Section 2 we present some useful distributions for our work; in 
Section 3 we develop two near-exact distributions, based on factorizations of the exact c.f., and also three 
asymptotic distributions for the generalized Wilks Λ statistic; in Section 4, we use two measures based on 
the Berry-Esseen bounds to assess the behavior of the near-exact and asymptotic distributions proposed 
and also to compare them with a rather well-known asymptotic distribution (Box, 1949; Anderson, 2003) 
and with another near-exact distribution (Coelho, 2004); in Section 5, we provide some conclusions and 
final remarks. 
 
 
2 Some distributions used in the paper 
 
Since some of our near-exact and asymptotic distributions are GNIG distributions or finite mixtures of 
GNIG distributions we now introduce this distribution along with the useful log Beta distribution. 
 
Let Z be a r.v. with a GIG (Generalized Integer Gamma) distribution of depth g (Coelho, 1998), with 
shape parameters 1,..., gr r ∈`  (where `  is the set of positive integers) and all different rate parameters 

1,..., gλ λ +∈\ (being +\  the set of positive reals). We will denote this fact by 

1 1( ,... ; ,..., )g gZ GIG r r λ λ∼ . 
The p.d.f. of Z is given by 
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The c.d.f. of Z is given by 
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with ,   ( 1,..., ; 1,..., )i k ic i g k r= =  given by (4) through (6). 
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Now, let us consider 1 1( ,... ; ,..., )g gZ GIG r r λ λ∼  and ( , )X G r λ∼  two independent r.v.’s with  \r +∈\ `  
and ,  { 1,..., }j j j gλ λ≠ ∀ ∈ = . Then the r.v. W Z X= +  has a GNIG (Generalized Near-Integer Gamma) 
distribution with depth g + 1 (Coelho, 2004). Symbolically, 
 1 1( ,... , ; ,..., , )g gW GNIG r r r λ λ λ∼ . (9) 
The p.d.f. of W is given by 
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with cj,k given by (4) through (6). In the above expressions 
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is the Kummer confluent hypergeometric function (Abramowitz and Stegun, 1974) which has good 
convergence properties and nowadays it can be found in a number of software packages, such as  
Mathematica. 

 
The c.f. of W in (9) is given by 
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where \r +∈\ ` , λ +∈\ , jr ∈`  and ,  {1,..., }j j gλ λ≠ ∀ ∈ . If r∈`  then the GNIG distribution of 
depth 1g +  reduces to a GIG distribution of depth 1g + . That is, the GIG distribution is a particular case 
of the GNIG distribution. 

 

If the r.v. W has a distribution that is a mixture, with k components, of GNIG distributions, the j-th 
component with weight jπ  and depth gj , we will denote this fact by 

1 11 11 1 11 1 1 1( ; ,..., ; ,..., | ... | ; ,..., ; ,..., )
k kg g k k g k k g kW MkGNIG r r r rπ λ λ π λ λ∼ . 

 
If X is a r.v. with Beta distribution, with parameters 0 and 0α β> > , Symbolically 

( , )X Beta α β∼ , 
then the h-th moment of X is given by 

 ( , ) ( ) ( )( ) ,          ( )
( , ) ( ) ( )

h B h hE X h
B h
α β α β α α
α β α α β
+ Γ + Γ +

= = > −
Γ Γ + +

. (13) 

If lnY X= −  then Y is a r.v. with log Beta distribution with parameters and α β  (Johnson et al., 1995), 
denoted by 
 log ( , )Y Beta α β∼ . (14) 
The p.d.f. of Y is 
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Since the Gamma functions in (13) are still defined for h complex (in strict sense), the c.f. of Y is given by 
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where 1/ 2i ( 1)= −  and t∈\  (being \  the set of real). Through (16) we know that, if (| |)hE Y < ∞  then 
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thus we can get some of the first moments, hµ′ , for the r.v. Y. For example, the expressions of the first 
four moments are given by 
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where 

( ) ln ( )d
dxx xψ = Γ  is the digamma function; 2

2 ln ( ) ( )( ) d d
dxdx

x xxψ ψ′ = Γ =  is the trigamma function; 

( ) ( )d
dxx xψ ψ′′ ′=  is the quadrigamma function, and so on. 

 
 
3 Near-exact and asymptotic distributions for the generalized Wilks Λ statistic 
 
Let X  be a random vector with dimension p, where the r.v.’s have a joint p-multivariate Normal 
distribution ( , )pN µ Σ . Let us consider X  split into m subvectores, where the k-th subvector has kp  

variables, being 
1
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have a kp - multivariate Normal distribution ( , )
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For a sample of size n + 1, the ( )2
1 thn+  power of likelihood ratio test statistic, used to test the null 

hypothesis of independence of the m subvectores kX , 

 0 11: ( ,..., ,..., )kk mmH diagΣ = Σ Σ Σ , (18) 

is the generalized Wilks Λ statistic 
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where  .  stands for the determinant and V is either the Maximum Likelihood Estimator (MLE) of ∑ or 
the sample variance-covariance matrix of X , and Vkk is either the MLE of Σkk or the sample 
variance-covariance matrix of kX . 

The generalized Wilks Λ statistic may be written as (Anderson, 2003, Theorem 9.3.2) 
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where ( 1,..., )k k m+Λ  denotes the  Wilks Λ statistic used to test the independence between the k-th subvector 
and the vector formed by joining subvectores 1k +  through m. In other words, for 1,..., 1k m= − , 

( 1,..., )k k m+Λ  is the  Wilks Λ statistic used to test the null hypothesis, 
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Using the result in Theorem 9.3.2 in Anderson (2003) and considering that the k-th subvector has pk 
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as the distribution of 
1

kp
jj

X
=∏ , where,  for a sample size n + 1  (with 1 ... mn p p≥ + + ), Xj are kp  
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Given the independence of the 1m −  statistics ( 1,..., )k k m+Λ  in (20), under the null hypothesis of 

independence of the m sets of variables in (18), we obtain the h-th moment of the generalized Wilks Λ 

statistic in (19), for a sample size n + 1 , as  
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Since the Gamma functions in (23) are still valid for any strictly complex h, for a sample of size 1n + , the 
c.f. of the r.v. lnW = − Λ  is given by  
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where 1/ 2i ( 1)= −  and t∈\ . Taking this c.f. as a basis, we will develop in the next subsections two 

near-exact and three asymptotic distributions for W. 
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3.1 Two near-exact distributions for the generalized Wilks Λ statistic 
 
In Theorem 1 we present two near-exact distributions for the generalized Wilks Λ statistic, in the case 
where at least two sets have an odd number of variables. One of these distributions is a GNIG distribution 
that matches the first three exact moments and the other is a M2GNIG distribution which matches the first 
four exact moments. These distributions emerge as the direct application of the procedure used to obtain 
two near-exact distributions for the product of particular independent r.v.’s Beta (Grilo, 2005; Grilo and 
Coelho, 2007). 
 

Theorem 1 When, among the m sets of variables there are l sets with an even number of variables, i.e.,  
there are m l−  sets that have an odd number of variables, then let *2m l k− =  if m l−  is even or 

*2 1m l k− = +  if m l−  is odd (where *
2

m lk − =    is the integer part of 2
m l− ). Then, under (18) and for a 

sample size 1n + , we may obtain two different near-exact distributions for the r.v. lnW = − Λ . A first 
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and, yet with *
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pr , 1pλ −  and pλ  obtained by numeric solution of the system of equations 
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where, on the first member of (33), 1 2 3,   andµ µ µ′ ′ ′  are the first three moments of a log Beta r.v. with 

parameters 3
2 2
nα = −  and 3

2β = , obtained from (17) by replacing α and β by the appropriate values, and 
on the second member we have the expressions of the first three moments of the sum of two independent 
Gamma r.v.’s, the first one with shape parameter *

1 1pr − =  and rate parameter 1pλ −  and the second one 

with shape parameter *
pr  and rate parameter pλ . 

 
The second near-exact distribution for the r.v. lnW = − Λ  is a M2GNIG distribution, where both 
components have depth 1p − , 
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where, on the first member of (34), 1 2 3 4, ,   andµ µ µ µ′ ′ ′ ′  represent the first four moments of the sum of 
*k independent and identically distributed (i.i.d.) log Beta r.v.’s  with parameters 3

2 2
nα = −  and 3

2β = , 
and in the second member we have the first four moments of a mixture of two Gamma distributions 
(M2G) with weights π and 1 π− , the first one with shape parameter 1pr −  and rate parameter 1pλ −  and 
the second one with shape parameter 1pr −  and rate parameter 1pλ −′ . 
 
Proof. We will consider that, without any loss of generality, the sets of variables with an odd number of 
variables, among the m sets, are the last m l−  sets of variables, that is, the sets 1,..., l  have an even 

number of variables and the remaining 1,...,l m+  have an odd number of variables. Take *
2

m lk − =    

with *
0k ∈` . Then, we may write 
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∏ ∏

���������	��������


2

2 * 1
(step 2)

   even

(2 1

  and    odd

2

11 i
22                           

1 1i
2 2

k

k

k

k k

pm

k m k j

q

k
p

k m j k

p q

j

n q jn j t

n j n q jt

−

= − =

= − =

 
 
 

+ − −+ −    Γ −Γ   
   ×
+ − + − −   Γ − Γ      

∏ ∏

∏

���������	��������


���������	��������


1

* 1)
(step 2)

,
m

k

−

−
∏

 

where for the first two factors (with kp  or kq  even), we use the identity  

2

1 1

12 2 2
2 2

2 2

jrp p b

j j

p j bc
jc

p jc

+ −

= =

 Γ + − +     = + −    Γ + − 
 

∏ ∏  

with c +∈\  and 2 2 or pb ∈ ∈` `  (Coelho, 1998), to rewrite the c.f. of W in the form  
22 * 1

1 1

  even

2

1

   even

( ) i
2 2

                         i
2 2

k j k jk k

k

k j k jk k

k

r rp qm k
k k k k

W
k j

p

r rp q
k k k k

j

q

n p q j n p q j
t t

n p q j n p q j
t

ϕ
−+ −− −

= =

−+ −

=

− − + − − +   = −   
   

− − + − − +   × −   
   

∏ ∏

∏

����������	���������


����������	� 


2

2 *
(step 2)

1

2 * 1 1
(step 2)

  and     odd

11 i
22                         

1 1i
2 2

k

k k

m

k m k

k
pm

k m k j k

p q

n q jn j t

n j n q jt

−

= −

−

= − + =

+ − −+ −    Γ −Γ   
   ×
+ − + − −   Γ − Γ      

∏

∏ ∏

��������

���������	��������


 

with kjr  given by  (28) and (29). For the last factor, where kp  and kq  are both odd, we may write 

1

11 i
22

1 1i
2 2

k

k
p

j k

n q jn j t

n j n q jt=

+ − −+ −    Γ −Γ   
   
+ − + − −   Γ − Γ      

∏  

2

11i i
2 22 2

1 1i i
2 22 2

k

k k
p

jk k

n q n q jn n jt t

n n q n j n q jt t=

− + − −+ −      Γ − Γ −Γ Γ       
       =

− + − + − −       Γ − Γ −Γ Γ            

∏  
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33 ii
2 2 22 2 2

3 3i i
2 2 2 2 2 2

1 ( 11 ( 1)
2                                               

1 ( 1) i
2

k

k

k

n qnn n tt

n n n q nt t

n q jn j

n j t

−      Γ − Γ −Γ Γ − −             =
−       Γ − Γ − Γ Γ − −            

+ − − ++ − +  ΓΓ 
 ×
+ − + Γ − 

 

1

1

) i
2

1 ( 1)
2

kp

j k

t

n q j

−

=

 − 
 

+ − − + Γ 
 

∏

 

33 ii
2 2 22 2 2

3 3i i
2 2 2 2 2 2

2                                                                    

2

k k k

k k k

n q q n qn n tt

n n n q n q qt t

n j

n j

− − −       Γ + Γ −Γ Γ − −       
       =

− − −       Γ − Γ − Γ Γ + −              
− Γ 

 ×
−

Γ

1

1

i
2 .

i
2

k

k
p

j k

n q j t

n q jt

−

=

− − Γ − 
 

− −   − Γ      

∏

 

Since kq  is a positive odd integer and thus 3
2

kq −  is a positive integer, we can use the identity,  
1

0

( ) ( )
( ) j

j
βα β α

α

−

=

Γ +
= +

Γ ∏ , 

valid for β ∈`  and α  real or complex, with 2
kn qα −=  and 3

2
kqβ −= , and write 

3
1 12

1 0

11 3i i
22 2 2 2 i

1 1 3 2 2i i
2 2 2 22

                                       

k
k

qk
p

k k

j jk

n q jn j n nt t
n q n q

j j t
n j n q j n nt t

−
− −

= =

+ − −+ −       Γ −Γ Γ Γ − −        − −         = + + −  + − + − −          Γ − Γ − Γ −Γ            

∏ ∏

1

1

i
22                                                          

i
2 2

k

k
p

j k

n q jn j t

n j n q jt

−

=

− −−    Γ −Γ   
   ×
− − −   Γ − Γ      

∏

 

where, given that kp  is odd, we have 1kp −  even, so that we may write 

3
1 12

1 0

11 3i i
22 2 2 2 i

1 1 3 2 2i i
2 2 2 22

                                       

k

k

qk
p

k k

j jk

n q jn j n nt t
n q n q

j j t
n j n q j n nt t

−
− −

= =

+ − −+ −       Γ −Γ Γ Γ − −        − −         = + + −  + − + − −          Γ − Γ − Γ −Γ            

∏ ∏

*

3

1

                               i
2 2 2 2

3 i
2 2 2                                         

3 2 2i
2 2 2

k j k jk k

k j

r rp q
k k k k

j

r
k k

n q p n q pj j t

n n t
n q p nj

n n t

−+ −

=

− − − −   × + + −   
   

   Γ Γ − −    − − −    = +      Γ − Γ −   
   

∏

*
3

1

i
2 2

k jk k
rp q

k k

j

q p j t
−+ −

=

− + − 
 

∏

 

with * *  ( 2 1, 2 3,..., 1; 1,..., 3)k j k kr k m k m k m j p q= − + − + − = + −  and *
k jr  given by (28) through (32). 
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We may thus rewrite the c.f. of W, as 
22 * 1

1 1

22

2 * 1
(step 2)

( ) i
2 2

                      i
2 2

2 2                      

k j k jk k

k j k jk k

r rp qm k
k k k k

W
k j

r rp qm
k k k k

k m k j

n p q j n p q j
t t

n p q j n p q j
t

n n

ϕ
−+ −− −

= =

−+ −−

= − =

− − + − − +   = −   
   

− − + − − +   × −   
   

 Γ Γ 
 ×

∏ ∏

∏ ∏

* *
31

2 * 1 1
(step 2)

3 i
2 i

3 2 2i
2 2 2

k j k jk k
r rp qm

k k k k

k m k j

t
n p q j n p q j

t
n n t

−+ −−

= − + =

  − −  − − + − − +     −          Γ − Γ −        

∏ ∏

 

 

22 * 1

1 1

22

2 * 1
(step 2)

i
2 2

                      i
2 2

                      
2

k j k jk k

k j k jk k

r rp qm k
k k k k

k j

r rp qm
k k k k

k m k j

r
k k

n p q j n p q j
t

n p q j n p q j
t

n p q j

−+ −− −

= =

−+ −−

= − =

− − + − − +   = −   
   

− − + − − +   × −   
   

− − + ×  
 

∏ ∏

∏ ∏
* *

*

31

2 * 1 1
(step 2)

i
2

3 i
2 2 2                                 

3 i
2 2 2

3 i
2 2 2=  

3 i
2 2 2

k j k jk k
rp qm

k k

k m k j

k

n p q j
t

n n t

n n t

n n t

n n t

−+ −−

= − + =

− − + − 
 

    Γ Γ − −        ×
    Γ − Γ −        

   Γ Γ − −   
   
  Γ − Γ − 
 

∏ ∏

*

* *
2

1

  i
2 2

j j

k

r rp

j

n p j n p j t
−−

=

 
  − + − +     −        

    

∏
 (35) 

where *
jr  are given by (26). In (35), we will replace the c.f. of a log Beta r.v. with parameters 3

2 2
n −  and 

3
2 , by the c.f. of the sum of two Gamma r.v.’s,  

* *1
1 1( i ) ( i )p pr r

p p p pt tλ λ λ λ −−
− − − − , 

where the parameters *
pr , 1pλ −  and pλ  are obtained in such a way that the first three derivatives of both 

c.f.’s with respect to t, at 0t = , are equal. This means that the distributions to which they correspond will 
have the same first three moments. This leads us to obtain such parameters as the solutions of the system 
of equations (33).  
 
The expression of the near-exact c.f. of W obtained in this way is of the type in (12), more precisely, it is 
given by 

 

* *
*

* *

* *

* * * ** *

2
1

1 1
1

2

1 1
1

( i ) ( i ) i
2 2

        ( i ) ( i ) i ,
2 2

j j

p p

j j

p p

r rpk
r r

p p p p
j

r rp
k r k rk k

p p p p
j

n p j n p jt t t

n p j n p jt t t

λ λ λ λ

λ λ λ λ

−−
−−

− −
=

−−
−−

− −
=

− + − +    − − −         

− + − +   = − − −   
   

∏

∏
 (36) 

that is the c.f. of a r.v. with a GNIG distribution of depth p, which, by construction, equals the first three 
moments of the exact distribution. More precisely, (36) is the product of the c.f. of the sum of 2p −  
independent r.v.’s with Gamma distribution, which corresponds to a GIG distribution of depth 2p − , 
with shape parameters *

jr  given by (26) and rate parameters jλ  given by (25), by the c.f. of sum of two 

independent r.v.’s with Gamma distribution, with shape parameters *k ∈`  and * *
pk r  and rate parameters 
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1pλ −  and pλ . Thus, the c.f. in (36) is the c.f. of the sum of a r.v. with a GIG distribution of depth 2p −  
with a r.v. with GNIG distribution of depth 2, yielding a GNIG distribution of depth p. 
 
We may obtain another near-exact c.f. if, in (35), we replace the part that corresponds to the sum of *k  
i.i.d. r.v.’s with a log Beta distribution with parameters 3

2 2
n −  and 3

2  by the c.f. of a M2G distribution 

with equal shape parameters, 1pr − , and rate parameters 1pλ −  and 1pλ −′ , i.e., 
1 1

1 1

1 1

1 1

(1 )
( i ) ( i )

p p

p p

r r
p p

r r
p pt t

λ λ
π π

λ λ

− −

− −

− −

− −

′
+ −

′− −
 

where the parameters π, 1pr − , 1pλ −  and 1pλ −′  are obtained in such a way that the first four derivatives of 
both functions with respect to t, at 0t = , are equal. That is, the first four moments of the exact and 
near-exact distributions of W will be the same. Such parameters are obtained as the solution of the 
equations system in (34). 
 
The expression of the near-exact c.f. of W is then given by 

 
* *

1 1

1 1

2
1 1

11 1

(1 ) i
2 2( i ) ( i )

p p j j

p p

r r r rp
p p

r r
jp p

n p j n p j t
t t

λ λ
π π

λ λ

− −

− −

−−
− −

=− −

 ′ − + − +   + − −     ′− −      
∏  (37) 

that is the product of the c.f. of the sum of 2p −  independents r.v.’s with Gamma distributions, which 
corresponds to a GIG distribution of depth 2p −  (with shape parameters *

jr  given by (26) and rate 
parameters jλ  given by (25)), by the c.f. of a M2G distribution, one of them with parameters 1pr −  and 

1pλ − , and the other with parameters 1pr −  and 1pλ −′ , and the weights are π and 1 π− . In other words, (37) 
is thus the c.f. of the sum of a r.v. with GIG distribution of depth 2p −  with a r.v. with M2G distribution, 
or yet, the c.f. of a r.v. with a M2GNIG distribution of depth 1p − , which, by construction, matches the 
first four moments of the exact distribution. � 
 
The expressions for the near-exact density and cumulative distribution functions of lnW = − Λ  may be 
obtained from (10) and (11), respectively, by making the appropriate replacement of parameters. From 
these we may easily derive, by simple transformation, the corresponding near-exact density and 
cumulative distribution functions for the generalized Wilks Λ statistic. This way we obtain, for the first 
near-exact distribution in Theorem 1  

*
* *1

1 * *
, 1 1*

1 1

( )( ) ( ln ) ( , , ( ) ln ),   0
( )

j
p j p

rp
r k r
p j k p p p j

j k p

kf u K u c u F r k r u u
k r

λλ λ λ
−

+ −
Λ

= =

Γ
≈ − + − >

Γ +∑ ∑ , 

as near-exact p.d.f. for Λ , and  
*

*

**
*

* *
1 1*

1 1
* * *

, 1 1*
1 1 0

( ln )( ) 1 ( , 1, ln )
( 1)

( ln )
                                    ( , 1 , ( ) ln ),   0 ,

( 1 )

p
p

pj
p j

r
r
p p p p

p

r i irp k
r j
p j k p p p j

j k i p

uF u F r r u
r

u
K u c F r r i u u

r i
λ

λ λ

λ
λ λ λ

Λ

+− −

= = =

−
≈ − +

Γ +

−
+ + + − >

Γ + +∑ ∑ ∑
 

as near-exact c.d.f., with 
*

1
,*

,
1

  and   ( )j
p

r j k
j j k k

j j

c
K c kλ

λ

−

=

= = Γ∏ . 

For the second near-exact distribution in Theorem 1, the one based on a two-component mixture, we have 
*

1 1

*

1 1

2
1

1 , 1 1 1 1 1
1 1 1

2
1

1 ,
1 1 1

( )( ) ( ln ) ( , , ( ) ln )
( )

( )              (1 ) ( ln )
( )

                             

j
p j p

j
p j p

rp
r k r
p j k p p p j

j k p

rp
r k r

p j k
j k p

kf u K u c u F r k r u
k r

kK u c u
k r

λ

λ

π λ λ λ

π λ

− −

− −

−
+ −

Λ − − − −
= = −

−
+ −

−
= = −

Γ
≈ − + −

Γ +

Γ′+ − −
Γ +

∑ ∑

∑ ∑

1 1 1 1 1                                      ( , , ( ) ln ),    0p p p jF r k r u uλ λ− − −′× + − >

 

as the near-exact p.d.f. for Λ , and 
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1
1

* 1

1

1 1 1 1 1 1
1

2 1
*

1 ,
1 1 0 1

( ln )( ) 1  ( , 1, ln )
( 1)

( ln )
                                                                      

( 1 )

    

p
p

pj
p j

r
r
p p p p

p

r i irp k
r j
p j k

j k i p

uF u F r r u
r

u
K u c

r i
λ

π λ λ

λ
λ

−
−

−

−

Λ − − − −
−

+− −

−
= = = −

−
≈ − +

Γ +

−
+

Γ + +∑ ∑ ∑

1
1

1 1 1 1 1

1 1 1 1 1
1

                                                                                                    ( , 1 ,( )ln )

( ln )               (1 ) ( , 1,
( 1)

p
p

p p p j

r
r

p p p
p

F r r i u

u F r r
r

λ λ

π λ λ
−

−

− − −

− − −
−

× + + −

−′ ′− − +
Γ +

* 1

1

1

2 1
*

1 ,
1 1 0 1

ln )

( ln )
                                                                       (1 )

( 1 )

                                                   

pj
p j

p

r i irp k
r j

p j k
j k i p

u

u
K u c

r i
λ λ

π λ
−

−

−

+− −

−
= = = −

−
′+ −

Γ + +∑ ∑ ∑

1 1 1 1 1                                         ( , 1 ,( )ln ),    0p p p jF r r i u uλ λ− − −′× + + − >

 

as the near-exact c.d.f. of Λ , with 
*

2
,*

,
1

  and   ( )j

p
r j k
j j k k

j j

c
K c kλ

λ

−

=

= = Γ∏ . 

Based on the c.d.f.’s presented it is quite easy to compute near-exact quantiles. 
 
 
3.2 Asymptotic distributions for the generalized Wilks Λ statistic 
 
As approximations for the generalized Wilks Λ statistic we also consider the asymptotic distribution 
proposed by Box (1949) and Anderson (2003) and three asymptotic distributions developed by us, which 
equate some of the first exact moments.   
 
3.2.1 Box-Anderson asymptotic distribution for the statistic lnW = − Λ  
 
Box (1949) and Anderson (2003, Section 9.4 of Chapter 9) developed two well-known asymptotic 
distributions for linear transformations of the logarithm of the Wilks Λ statistic, under the null hypotheses 
of independence of m sets of variables. These are based on series expansions which use Chi-square 
distributions. As we can see in Appendix A, the two asymptotic distributions proposed by the two authors 
agree to terms of order 2η− , with η  given by (39).  
 

Based on the results obtained by those two authors we will use, as asymptotic approximation for the 
distribution of the r.v. 2 ,V Wη=  a mixture of two Chi-square distributions, i.e., we will use (see 
Appendix A) 

 2 22 4

2 2
2 2( ) 1 ( ) ( )

f f
V t t t

χ χ

γ γ
ϕ ϕ ϕ

η η +

 
≅ − + 
 

 (38) 

where 
2

2 2 3 34 4
2

1 13 14
2 2

2 22

1

5
( )5

48 96 72 48 96 72

m mm

k kk
k kk

m

k
k

p p p pp p
SS

S
S p p

γ = ==

=

   
− −−    

   = − − = − −
 

− 
 

∑ ∑∑

∑
, 

 2 3

2

9 2
1

6
S S

n
S

η
+

= + −  (39) 

and 

2 2

2

1 1( ) i
2 2

f f

f
t t

χ
ϕ

−
   = −      

 

is the c.f. of a r.v. with a Chi-square distribution with f degrees of freedom. Since we have 
i i( / )( ) (e ) (e )tW t V

W t E E ηϕ = = , 
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the use of (38), is equivalent to the use, for the c.f. of the r.v. lnW = − Λ , of the approximation 

 ( ) ( )2 2
4

2 2
2 2( ) 1

f f

t t
W t η ηχ χ

γ γ
ϕ ϕ ϕ

η η +

 
≅ − + 
 

. (40) 

We will call Box-Anderson to the asymptotic distribution derived from (40). 
 

3.2.2 Asymptotic distributions for the statistic lnW = − Λ  which equate moments   
 
We will also approximate the whole c.f., ( )W tϕ  in (24), by the c.f. of a Gamma r.v., a GNIG r.v. with 
depth 2 with c.f. 

* *1
1 1( i ) ( i )p pr r

p p p pt tλ λ λ λ −−
− − − −  

or the c.f. of a M2G distribution (with both components with the same shape parameters). The 
approximation is done in such a way that if these approximating c.f.’s have d parameters, their first will 
match the same first d derivatives with respect to t, at 0t = , of ( )W tϕ . The asymptotic distributions 
obtained in this way are: a Gamma, a GNIG and a M2G distributions, that match the first two, three and 
four exact moments, respectively.  
 
 
4 Comparative numerical studies 
 
To assess the performance of the asymptotic and near-exact distributions proposed we use two proximity 
measures, based on the difference between the exact and asymptotic or near-exact c.f.'s. These measures 
were used by Grilo and Coelho (2007) and they are directly derived from the inversion formulas 
respectively for the p.d.f. and the c.d.f.. Their expressions are 

 1
1 ( ) ( )

2 W t t dtϕ ϕ
π

+∞

−∞

∆ = −∫  (41) 

and 

 2
( ) ( )1

2
W t t

dt
t

ϕ ϕ
π

+∞

−∞

−
∆ = ∫  (42) 

where ( )W tϕ represents the exact c.f. of the r.v. W and ( )tϕ  the approximate (asymptotic or near-exact) 
c.f. under study. The measure 2∆  in (42) may be seen as directly derived from the Berry-Esseen bound 
and the use of the measures ∆1 and ∆2 enables us to obtain upper bounds on the absolute value of the 
differences of the density and the cumulative function, respectively. More precisely, 

 
0

1max ( ) ( )
w

Wf w f w
>

− ≤ ∆    and     
0

2max ( ) ( )
w

WF w F w
>

− ≤ ∆ , 

where ( )Wf w  and ( )WF w  are, respectively, the exact p.d.f. and c.d.f. of W, evaluated at 0w > , and 
( )f w  and ( )F w  are, respectively, the asymptotic or near-exact p.d.f. and c.d.f. of W. The proposed 

measures are an important tool to assess the proximity between asymptotic or near-exact distributions and 
exact distributions, mainly in cases where the expressions for the exact p.d.f. or c.d.f. are not known, or 
being known they are so complicated that are not manageable. This way, smaller values of the measures 
are associated with better closeness of the distributions (in terms of moments, quantiles and c.f., and as 
such also of density and cumulative distribution functions). The measures ∆1 and ∆2 are accurate to 
evaluate the proximity of quantiles, where smaller values of these measures are associated with smaller 
differences among quantiles (see Grilo, 2005 and Grilo and Coelho, 2007, 2009). 
 
In this stage we perform a comparative numerical study among the approximations proposed, where we 
consider the asymptotic distributions: the Box-Anderson which does not equate any moments (Box, 1949;  
Anderson, 2003), a Gamma, a GNIG and a M2G, which equate the first two, three and four exact 
moments, respectively (developed according to Subsection 3.2.2); the near-exact distributions considered 
are: a GNIG which equates two exact moments (Coelho, 2004), a GNIG and a M2GNIG which equate the 
first three and four exact moments, respectively (developed in Subsection 3.1). These approximations and 
the number of exact moments that each one matches are shown in Table 1. 
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Table 1: Asymptotic and near-exact distributions 
and the number of exact moments equated. 

 

Distributions No. of moments 
equated 

Box-Anderson 0 
Gamma 2 
GNIG 3 

Asymptotic 

M2G 4 
  
GNIG 2 
GNIG 3 

Near- 
-exact 

M2GNIG 4 
 

We will use the measures ∆1 and ∆2  to assess the proximity of the different distributions, for variations in 
the number of sets (m), in the number of variables per set (pk) and in the sample size (n). In Table 2 is 
displayed a summary of the cases considered in the comparative study.  
 

Table 2: Number of sets, number of variables per set and sample size. 
 

No. of 
sets 

No. of variables 
per set 

Total no. 
of variables 

Sample 
size 

 

1 2 35, 7, 3p p p= = =  
 

15p =  3m =  
1 2 35, 7, 9p p p= = =  21p =  

 
25n =  

and 
4m =  1 2 3 45, 7, 3, 6p p p p= = = =  21p =  100n =  

 
In Tables 3 through 5 we may see how, opposite to the asymptotic distributions, the near-exact 
distributions show an asymptotic behavior also for an increasing number of variables, both in terms of 
increasing values of pk, when keeping m unchanged, but also for increasing m, keeping 

1 2 ... mp p p p= + + +  unchanged. 
 
As expected, the values of the proximity measures decline with increasing values of the sample size both 
for the asymptotic and near-exact distributions. Also, systematically, distributions that equate a larger 
number of exact moments have lower values of the proximity measures. Both for the asymptotic and 
near-exact distributions we have with lower values of measures the two approximations based on 
mixtures: the M2G in the case of asymptotic distributions and the M2GNIG in the case of near-exact 
distributions. We may note that both distributions match four exact moments, but the near-exact 
distribution has always lower values of the proximity measures. The asymptotic distribution 
Box-Anderson, which does not equate any moment, has almost always the highest values for the 
proximity measures, mainly for smaller sample sizes.  
 
In a more detailed comparative analysis between asymptotic and near-exact distributions, we may see that 
the best asymptotic distribution (the M2G distribution, which equals four exact moments) is always worse 
than the least performant near-exact distribution (the GNIG distribution, which equals two moments). The 
difference is more visible for smaller samples, what therefore enhances the advantage of the near-exact 
distributions over the asymptotic, with regard to smaller samples. For large samples the asymptotic 
distributions have a relative improvement in the quality of approximation which is however not enough to 
overcome the near-exact distributions. In addition, when the difference n − p decreases, the near-exact 
distributions are still much close to the exact distribution, even when the number of sets of variables 
increases (compare the values of proximity measures between distributions in Tables 3 and 5). 
For the same sample size, an increase in the total number of variables leads to an increase in the values of 
the proximity measures for the asymptotic distributions. This instability of asymptotic distributions 
contrasts with the behavior of near-exact distributions, whose values of proximity measures in this case 
even fall (compare, for example, Tables 3 and 4). The near-exact distributions always have a better 
performance than the asymptotic ones. They lay closer to the exact distribution than the asymptotic ones, 
namely for smaller sample sizes. 
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Some quantiles, for the distributions and cases in Tables 3 through 5, are presented in Appendix B, where 
we consider the first fifteen decimal places of quantiles to assess the precision and performance of the 
approximations proposed. Note that smaller values of the proximity measures are generally associated 
with smaller differences between the exact and approximate quantiles (see Grilo (2005) and Grilo and 
Coelho (2007, 2009)). Thus, although we do not have the exact quantiles for the examples presented, we 
can compare the quantiles of different approximations with the quantiles of the near-exact distribution 
M2GNIG (for n = 25 or n = 100), since this approximation has lower values of ∆1 and ∆2. 
 
 

Table 3: Values of measures ∆1 and ∆2 for asymptotic and near-exact distributions. 
Case 1 2 33 with 5, 7, 3; 25 and 100m p p p n n= = = = = = . 

 

Proximity measures 
25n =  100n =  Distributions 

1∆  2∆  1∆  2∆  

Box-Anderson (0 m.) 8.815E-02 1.063E-02 1.104E-03 2.844E-05 
Gamma (2 m.) 1.371E-02 9.355E-04 2.112E-03 2.620E-05 
GNIG (3 m.) 1.914E-03 1.122E-04 5.029E-04 5.225E-06 

Asymptotic 

M2G (4 m.) 3.370E-04 1.896E-05 2.053E-06 1.909E-08 
     
GNIG (2 m.) 8.356E-07 5.566E-08 5.581E-07 6.898E-09 
GNIG (3 m.) 2.244E-08 1.262E-09 3.168E-09 3.320E-11 

Near- 
-exact 

M2GNIG (4 m.) 6.369E-11 3.135E-12 3.163E-12 7.082E-15 
               
 
 

Table 4: Values of measures ∆1 and ∆2 for asymptotic and near-exact distributions. 
Case 1 2 33 with 5, 7, 9;  25 and 100m p p p n n= = = = = = . 

 

Proximity measures 
25n =  100n =  Distributions 

1∆  2∆  1∆  2∆  
Box-Anderson (0 m.) 7.795E-01 1.151E-01 4.538E-03 1.597E-04 
Gamma (2 m.) 2.435E-02 3.214E-03 2.114E-03 3.905E-05 
GNIG (3 m.) 4.797E-03 5.451E-04 1.126E-04 1.772E-06 

Asymptotic 

M2G (4 m.) 1.965E-03 1.944E-04 4.096E-06 5.674E-08 
     
GNIG (2 m.) 6.385E-08 8.140E-09 1.182E-07 2.178E-09 
GNIG (3 m.) 9.273E-10 9.942E-11 4.631E-10 7.235E-12 

Near- 
-exact 

M2GNIG (4 m.) 1.416E-12 1.328E-13 3.200E-13 1.299E-14 
               
 
 

Table 5: Values of measures ∆1 and ∆2 for asymptotic and near-exact distributions. 
Case 1 2 3 44 with 5, 7, 3, 6; 25 and 100m p p p p n n= = = = = = = . 

 
Proximity measures 

25n =  100n =  Distributions 
1∆  2∆  1∆  2∆  

Box-Anderson (0 m.) 8.331E-01 1.673E-01 5.865E-03 2.224E-04 
Gamma (2 m.) 2.352E-02 3.190E-03 1.956E-03 3.819E-05 
GNIG (3 m.) 4.663E-03 5.444E-04 1.044E-04 1.736E-06 

Asymptotic 

M2G (4 m.) 1.907E-03 1.937E-04 3.872E-06 5.669E-08 
     
GNIG (2 m.) 5.712E-08 7.500E-09 9.509E-08 1.852E-09 
GNIG (3 m.) 8.052E-10 8.900E-11 3.532E-10 5.834E-12 

Near- 
-exact 

M2GNIG (4 m.) 1.192E-12 2.077E-14 2.310E-13 9.125E-15 
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5 Conclusions and final remarks  
 
The near-exact distributions developed are very close to the exact distribution and although some of the 
general expressions obtained for the c.d.f.’s, may seem complicated they are, in fact, very manageable 
and easily allow for the calculation of near-exact quantiles and p-values through the use of some  
symbolic software. Note that even when we have the expressions for the exact  p.d.f.’s  and c.d.f.’s 
available from the literature, these are usually only available for specific numbers of variables per set and 
the expressions are highly complex, once they make use of unsolved integrals and/or series, which 
renders the computation of exact quantiles impossible. 
 
The comparative analysis conducted allowed us to confirm and reinforce the importance of near-exact 
distributions over the asymptotic ones. Even when we compare asymptotic and near-exact distributions 
that equate the same number of exact moments we confirm that the near-exact distributions are always 
closer to the exact distribution. The near-exact distributions are still closer to the exact distribution when 
the difference between the sample size and the total number of variables, n − p, is very small, the usual 
situation where asymptotic distributions work less well. The near-exact distributions developed also 
display an asymptotic behavior for increasing number of variables.  
 
Among the near-exact distributions considered for the Wilks Λ statistic, for the general case of several 
sets of variables, we confirmed that the near-exact M2GNIG distribution allows for the computation of 
near-exact quantiles closer to the exact ones. So if we want more accuracy, the near-exact distributions, 
expressed under the form of mixtures, are the best option, because they are closer to the exact 
distribution.  
 
The procedure used in this paper may also be applied to obtain near-exact distributions for other 
likelihood ratio test statistics, used in several multivariate tests, as well as other statistic tests whose exact 
distributions are usually seen as hard to obtain in a manageable form. 
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Appendix A 
Box and Anderson asymptotic distributions for the generalized Wilks Λ statistic 

 

In this appendix we present the asymptotic distributions of Box (1949) and Anderson (2003) for the 
statistic lnW = − Λ  and the fact that these approaches match by terms of certain order. 
 
 
Asymptotic distribution of Box for the statistic lnW = − Λ  
 
Box (1949) obtained an asymptotic distribution for the statistic 1  ( 0)V Wµ µ= > , for the general case of 
m sets of variables, for a sample size of 1n + , based in a series expansion until the terms of order 2µ− . 
After some simple manipulation we get an approximation to the c.d.f. of r.v. V1 under the form of 

 2 22 2
1 42 2( ) 1 ( ) ( )f fP V v P v P v

α α
χ χ

µ µ +

 
≤ ≅ − ≤ + ≤ 

 
 (43) 

where 2
fχ  is a r.v. with Chi-square distribution of f degrees of freedom and where, for 

1 1 1

im m m
i i i

i k k k
k k k

S p p p p
= = =

 
= − = − 
 
∑ ∑ ∑ , 

kp  represent the number of variables in k-th set, with 

 2
1
2

f S=  (44) 

and 
2

2 2 1' '
4
fα α α β β= − +  

where 

 
1 3 2

2 4 3 2

1' (2 3 )
24
1' ( 2 )
48

S S

S S S

α

α

 = +

 = + −


 (45) 

and according to Box (1949),the best choice for β, is 

 3 2

2

2 3
6

S S
S

β
+

=  (46) 

and, then, µ is given by 3 2

2

2 3
6

S S
n n

S
µ β

+
= − = − . 
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Asymptotic distribution of Anderson for the statistic lnW = − Λ  
 
Anderson (2003) obtained an asymptotic distribution for the statistic 2V Wη= , also for the general case 
of m sets of variables, for a sample size 1n + , which gives as c.d.f. of r.v. V2, 

2 2 32 2
2 42 2( ) 1 ( ) ( ) ( )f fP V v P v P v O

γ γ
χ χ η

η η
−

+

 
≤ = − ≤ + ≤ + 

 
, 

where 2
fχ  is a r.v. with Chi-square distribution of f degree of freedom given by (44) and where 

2 3

2

9 2
1

6
S S

n
S

η
+

= + −  

and 
2

2 2 3 34 4
2

1 13 14
2 2

2 22

1

5
( )5

48 96 72 48 96 72

m mm

k kk
k kk

m

k
k

p p p pp p
SS

S
S p p

γ = ==

=

   
− −−    

   = − − = − −
 

− 
 

∑ ∑∑

∑
 

with 

1

m

k
k

p p
=

= ∑ . 

 
This distribution agree, until terms of order 2η− , with the distribution in (43). We just have to prove that 

2 2 and η µ γ α= = . 
In fact, 

2 3 3 2

2 2

9 2 2 3
1

6 6
S S S S

n n
S S

η µ
+ +

= + − = − =  

while, the definition of 1 2'  and 'α α  in (45) and given the (46) and the (44), we have 
2

4 3 2 3 2 3 2 3 22
2

2 2

2 2
4 3 2 3 2 3 2

2
2

34
2 2

2

2 2 3 2 3 2 3
48 24 6 8 6

2 4( ) 12 9( )
    

48 288

( )5    .
48 96 72

S S S S S S S S SS
S S

S S S S S S S
S

SS
S

S

α

γ

   + − + + +
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+ − + +

= −

= − − =

 

 
 
 

Appendix B 
Some quantiles of asymptotic and near-exact distributions 

 
In this appendix we have some quantiles of asymptotic and near-exact distributions presented in Table 1, 
and for the cases considered in Table 2.  
 

Table B.1: Some quantiles of asymptotic and near-exact distributions, for 1 2 33 with 5, 7, 3 and 25m p p p n= = = = = . 
 

Quantil Distributions 
0.90 0.95 0.99 

Box-Anderson (0 m.) 5.031785461796158 5.323031958069611 5.898005586512672
Gamma (2 m.) 5.070377562043812 5.370357926673817 5.963786660003066
GNIG (3 m.) 5.070276333237788 5.372126647829524 5.971982498923960

Asymptotic 

M2G (4 m.) 5.070609220349255 5.372523848045243 5.971819900646903
 
GNIG (2 m.) 5.070602168477183 5.372467807060278 5.971703926691035
GNIG (3 m.) 5.070602124092140 5.372467665422931 5.971703537687081

Near- 
-exact 

M2GNIG (4 m.) 5.070602126798732 5.372467667053351 5.971703532349906
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Table B.2: Some quantiles of asymptotic and near-exact distributions, for 1 2 33 with 5, 7, 3 and 100m p p p n= = = = = . 
 

Quantil Distributions 
0.90 0.95 0.99 

Box-Anderson (0 m.) 0.935323168711130 0.989715419238025 1.097231449665216
Gamma (2 m.) 0.935339192611802 0.989726082542498 1.097223554713795
GNIG (3 m.) 0.935342850877693 0.989738547373362 1.097259383804981

Asymptotic 

M2G (4 m.) 0.935340711254230 0.989737150205773 1.097263392208844
  

GNIG (2 m.) 0.935340709285214 0.989737142448385 1.097263384191019
GNIG (3 m.) 0.935340708748366 0.989737139450099 1.097263374024131

Near- 
-exact 

M2GNIG (4 m.) 0.935340708764024 0.989737139462930 1.097263374001226
      

Table B.3: Some quantiles of asymptotic and near-exact distributions, for 1 2 33 with 5, 7, 9 and 25m p p p n= = = = = . 
 

Quantil Distributions 
0.90 0.95 0.99 

Box-Anderson (0 m.) 11.591586686879699 12.032350722190023 12.898414250694641
Gamma (2 m.) 12.345918745169811 12.896339241630456 13.971712356540501
GNIG (3 m.) 12.344912148762195 12.907671590755629 14.027223756619322

Asymptotic 

M2G (4 m.) 12.348171464976944 12.912166618988656 14.027008354299709
 
GNIG (2 m.) 12.348022879983701 12.910964952132374 14.024583596099380
GNIG (3 m.) 12.348022863197591 12.910964910723551 14.024583497919487

Near- 
-exact 

M2GNIG (4 m.) 12.348022863501334 12.910964910801998 14.024583497046136
         

Table B.4: Some quantiles of asymptotic and near-exact distributions, for 1 2 33 with 5, 7, 9 and 100m p p p n= = = = = . 
 

Quantil Distributions 
0.90 0.95 0.99 

Box-Anderson (0 m.) 1.836423568798852 1.912728356791496 2.061422164719888
Gamma (2 m.) 1.836561835231905 1.912879136056215 2.061589621633479
GNIG (3 m.) 1.836566487919830 1.912904876661781 2.061678211637670

Asymptotic 

M2G (4 m.) 1.836567768617353 1.912905919850552 2.061676226936147
  

GNIG (2 m.) 1.836567748918097 1.912905868635871 2.061676170614511
GNIG (3 m.) 1.836567748527033 1.912905867113034 2.061676165947668

Near- 
-exact 

M2GNIG (4 m.) 1.836567748531739 1.912905867116187 2.061676165938647
         

Table B.5: Some quantiles of asymptotic and near-exact distributions, for 1 2 3 44 with 5, 7, 3, 6 and 25m p p p p n= = = = = = . 

Quantil Distributions 
0.90 0.95 0.99 

Box-Anderson (0 m.) 12.460941411465933 12.907514159294704 13.783900618858366
Gamma (2 m.) 13.296058071513843 13.856824747820833 14.950117240148249
GNIG (3 m.) 13.295201884762036 13.868568563988037 15.006772567048699

Asymptotic 

M2G (4 m.) 13.298577869482085 13.873174216085569 15.006387007465356
 
GNIG (2 m.) 13.298396069376416 13.871917301706467 15.003950051538756
GNIG (3 m.) 13.298396053550118 13.871917262268838 15.003949957231221

Near- 
-exact 

M2GNIG (4 m.) 13.298396053835702 13.871917262346372 15.003949956414496
       

Table B.6: Some quantiles of asymptotic and near-exact distributions, for 1 2 3 44 with 5, 7, 3, 6 and 100m p p p p n= = = = = = . 
 

Quantil Distributions 
0.90 0.95 0.99 

Box-Anderson (0 m.) 2.039136431292056 2.119137075841269 2.274715205452883
Gamma (2 m.) 2.039331328087639 2.119352060184476 2.274962859788668
GNIG (3 m.) 2.039336486121450 2.119378976623912 2.275054213119008

Asymptotic 

M2G (4 m.) 2.039337803157476 2.119380026799260 2.275052099885275
  

GNIG (2 m.) 2.039337781112693 2.119379971964562 2.275052042593969
GNIG (3 m.) 2.039337780749925 2.119379970585481 2.275052038400520

Near- 
-exact 

M2GNIG (4 m.) 2.039337780753908 2.119379970588093 2.275052038392689
      


