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Abstract

Scheduling exams and constructing a timetabling is in general a complex and difficult
task. This decision problem can be approached as an optimization problem and the con-
straints can be categorized into two groups defined as soft and hard constraints. Finding a
non overlapping exams schedule is consider an hard constraint while looking for an evenly
distributed schedule and a short duration of the overall exams period can be regarded
as soft constraints. To handle soft constraints under the hard constraints verification we
adopted a multiobjective optimization approach and used Tabu Search to find a good so-
lution. The tabu Search incorporates a Fuzzy Inference Ruled Based System to chose the
tabu tenure of the elements in the tabu list. In addition, in each iteration the inspection
of solutions in the neighborhood of a certain point is necessary and the election of an
improved solution can be considered a multiple attribute decision problem. In order to
rank the solutions in each neighborhood an aggregation method is proposed based on the
Compromise Ratio (CR) methodology. However, we introduced a modification by consid-
ering weight functions instead of fixed weights which allows for a more flexible modeling of
preferences. The chosen function should guarantee the monotonicity of the operator and
we present a theoretical result regarding sufficient conditions for achieving such property.

1 Introduction

1.1 The examination timetabling problem

Many institutions and services like hospital, transportation enterprizes and educational
establishments have to deal with timetabling problems. Finding a good timetabling is
a crucial task necessary not only for a successful management but also to ensure the
quality of the provided service. These problems have attracted considerable interest by
the research community and many interesting proposals have been presented, to solve
timetabling problems in sports [35],[63], transportations (bus,railways,planes) [42], [18],
[43], [52], schools [5], [26], [55], [39], [58] and universities [9], [15], [17], [19], [25], [21], [22],
[27], [30], [33], [36], [31], [32], [43], [45], [50], [51], [53], [59], [61], [62], [64], [67].

Although we will consider, in particular, exams timetabling the ideas presented here can
be extended to many other applications, which includes not only other scheduling prob-
lems but also multicriteria problems in general. The reason to present an application to
exams timetabling is justified by the affiliation of the authors and their awareness of the
increased difficulty that some recent strategies have introduced in this academic task. Just
as an example, we can mention the tendency towards the flexibility of curricula and the
increase of the number of students enrolled in each course. The choice of a multicriteria
model is based on the understating that different agents have different perspectives over
the problem, and a sort of compromise is necessary. While students regard the spreading
of consecutive exams as much as possible, allowing for more time of preparation, as an



important feature, teachers in general tend to favor the shortage of the period for exami-
nations to allow more time for preparing the next semester and do research.

1.2 Contributions of this paper

In this paper we present a modification of a method used in multicriteria problems, known
as Compromise Ratio [44]. Our new proposal is to replace the fixed weights by weighting
functions introduced by Ribeiro and Pereira [2]. The function should be such as to ensure
the monotonicity of the operator. A theoretical result is presented to establish sufficient
conditions that can be used to characterize such functions. This method was used inside
an automatic Tabu Search [49] and this combination of methods is also innovative and can
be applied to solve different multiobjective problems. The same applies to the modified
Compromise Ratio that by itself can be used as a tool in any multiattribute problem.

1.3 Structure of the paper

The rest of the paper is structured in the following way. In Section 2 we give a literature
review focusing on examination timetabling, present the mathematical formulation of the
problem and a brief introduction of Tabu Search. In Section 3 we present the Compromise
Ratio and the main results regarding the application of weighting functions. In Section 4
we report the computational experience. Some conclusions are given in Section 5.

2 Preliminaries

2.1 Literature Review

We can find in the literature a great number of excellent contributions to exams timetabling
problems (Werra 1985 [29]; Carter 1986 [23]; Carter and Laporte 1996 [24]; Burke, Jack-
son et al. 1997 [14]; Schaerf 1999 [58]; Petrovic and Burke 2004[58]), and very interesting
surveys on the more recent approaches to this problem (Qu, Burke et al. 2006 [53]).
Different methods have been suggested over the years. Regarding Clustering Methods
we must mentioned the work by Desroches et al (1978 [30]) and Arani and Lotfi (1989
[7]). The examination timetabling problem can be modeled as a node coloring problem
in a graph. For this reason most of the heuristics for nodes coloring can be applied to
this problem. Some of the best known methods in this category depend mainly on an
ordering strategy, the most common are Saturation degree (Brelaz 1979 [11] ), Largest
Degree (Broder 1964 [12]), Largest Weighted Degree (Carter, Laporte et al. 1996 [20]),
Largest Enrolment (Wood 1968 [65]) and Color Degree (Carter, Laporte et al. 1996 [24]).
Asmuni et. al. (2004 [8]) used a Fuzzy Inference System to order the exams. In the
category of the Metaheuristics it is worth mention the Tabu Search approaches of Di
Gaspero and Schaerf (2001 [32]), Di Gaspero (2002 [31]) and White and Xie (2001 [64]),
and applications using Simulated Annealing, such as in Thompson and Dowsland (1998
[62],1996 [61] ). Still in the group of the Metaheuristics we have the Great Deluge method
proposed by Dueck (1993 [34]), Burke and Newall (2003 [17]) and Burke et al (2004 [13])
and the Variable Neighbourhood Search proposed by Mladenovi and Hansen (1997 [47],
2001 [40]). In [15] Burke et al (2006) applied the VNS not as a local search but as an
hyper-heuristic. Erben (2001 [36] ) developed a Grouping Genetic Algorithm for the node
coloring problem and consequently with applications to the exams timetabling problem.
Costa e Hertz (1998 [28]) developed a method based on Ant Colony, the ANTCOL, for
the node coloring problem and it was suggested the application to the timetabling prob-
lem. Dowsland e Thompson (2005 [33]) followed this suggestion applying ANTCOL to



timetabling problems. Memetic Search (MS) combines evolutionary algorithms with lo-
cal search (Burke and Newall 1999 [16]). There are some methodologies that cannot be
correctly described as a Metaheuristic such as the work of Caramia, Dell’Olmo e Italiano
(2001 [19]). These authors used a greedy method to assign the exams to the smallest pos-
sible number of periods using a technique named Penalty Trader. Abdullah et al (2007
[4]) developed an algorithm based on the Ahuja e Orlin neighborhood (2001 [6]). Even
if computational heavy this method presents some of the best results for a collection of
instances frequently used by many researchers in timetabling problems.

2.2 Mathemathical formulation of this problem

In general we can say that an exam timetabling problem consists of finding a feasible
schedule for each student, in the sense that no two exams overlap, and such that other re-
quirements such as rooms and invigilators are fulfill. The minimization of the examination
period may be a goal, but in many institutions is necessary to strictly respect a certain
period and so the shortage of the exams period is not an issue. In general the requirements
regarding exams timetabling can be classified as hard or soft constraints, where the first
corresponds to conditions that must absolutely be verified (like those stated above) while
the second represent desirable properties, considered as goals. The purpose is in general
the production of a “good” calendar. Most likely, the quality of a examination calendar,
from the individual point of view of each students, depends mainly on the spreading of
exams, allowing for more time between consecutive exams. The criteria that allows to
characterize the concept of a well distributed calendar may be difficult to model in just
one objective. In fact different aspects should be consider, such as the avoidance of:

• exams in consecutive periods in the same day;

• more than one exam in the same day;

• an exam in the last period of one day and another in the first period of the next
day;

• exams in consecutive days;

The degree of severity of these situations is different, but altogether they reflect what
are the good properties of a timetabling. It is clear that in most situations it is not
possible to verify, for all students, these four conditions as hard constraints at the risk of
invalidating the construction of any calendar. So they should be set as soft constraints
and addressed as objectives.
Although specifications of the problems can differ, essentially we have the following input
data.

N = number of exams. (1)
cij = number of students enroled in course i and j for i, j = 1, . . . , N (2)
K = number of courses (3)
P = number of slots (4)
M = number of exams inscriptions (5)

We encoded the solution using a vector of variables T = (ti), i = 1, . . . , N , such that
ti represents the timeslot assign to exam i, and a set of variables dti , i = 1, . . . , N which
represents the day corresponding to slot ti in which exam i takes place. This last group
of variables is not necessary in practice, specially if the number of slots per day is fixed,
but it permits a more elegant and clear formulation.
As in [66] we have consider the following four objectives:



- The number of conflicts where students have exams in adjacent periods of the same
day

N−1∑

i=1

N∑

j=i+1

cij .adjs(ti, tj) where adjs(ti, tj) =
{

1 if (|ti − tj | = 1) ∧ (dti = dtj )
0 otherwise (6)

- The number of conflicts where students have two or more exams in the same day.

N−1∑

i=1

N∑

j=i+1

cij .sday(ti, tj) where sday(ti, tj) =
{

1 if dti
= dtj

0 otherwise (7)

- The number of conflicts where students have exams in adjacent days.

N−1∑

i=1

N∑

j=i+1

cij .adjd(ti, tj) where adjd(ti, tj) =
{

1 if |dti − dtj | = 1
0 otherwise (8)

- The number of conflicts where students have exams in overnight adjacent periods

N−1∑

i=1

N∑

j=i+1

cij .ovnt(ti, tj) where ovnt(ti, tj) =
{

1 if (|ti − tj | = 1) ∧ (|dti − dtj | = 1)
0 otherwise

(9)

We consider a single set of hard constaints, to guarantee that no student has more than
one exam in the same slot:

N−1∑

i=1

N∑

j=i+1

cij .clash(ti, tj) = 0 where clash(ti, tj) =
{

1 if ti = tj
0 otherwise (10)

This problem is known to be NP-hard and we have implemented a Tabu Search (TS)
to obtain good feasible solutions.

2.3 Tabu search

Tabu search [37], [38] is a metaheuristic that has successfully been applied to find good
feasible solutions for hard optimization problems. In general it can be described as a
neighborhood search method incorporating techniques for escaping local optima and avoid
cycling. A fist level Tabu Search (TS) comprises the following concepts in each iteration.

• Current starting solution - Start search point.

• Search Neighborhood - Points that will be inspected from the current solution.

• Move - A basic operation in the definition of the neighborhood.

• Evaluation - A procedure to evaluate the points in the neighborhood.

• Tabu list - The tabu moves that are not allowed in the current iteration

• Tabu length - The length of the tabu list.

• Aspiration criteria - Enables to override the tabu.

A general, very basic, iteration of TS will consist in finding a set of points in the neigh-
borhood of the current point. Evaluated these points and chose the one that has the best
evaluation, as long as the move associated to this point is not tabu. If it is tabu we can
apply the aspiration criteria or not. We add the move (or solution) that generated the
best evaluated point to the tabu list. We proceed to the next iteration from this current



point. There are many interesting additional refinements that can greatly increase the
performance of TS.

In a multiobjective problem either we make an ”a priori” aggregation of the objective
functions or else in each iteration we calculate the value of each objective function for
each point in the neighborhood and we are facing a multiattribute problem in order to
elect one of those points to became the new center of the next neighborhood. We made
this last option to avoid preconditionating the problem and to be able, if necessary, to
change the preferences towards the objective functions along the sequence of the iter-
ations. This could act as well as a sort of diversification strategy. The details of the
application of the TS can be found in [49]. We will give here only a general overview on
the main features of the TS.

2.3.1 Solution Encoding

To encode the solution we used a vector structure with a dimension corresponding to the
number of exams. The integer value saved in the i-component of the vector corresponds
to the time slot of exam i. Given an example with 8 exams and 2 slots the next table
represents a solution T0 where, for instance, exams 1,2,3 and 4 are assign to slot 1.

T0

Index of the vector ( Exams ) 1 2 3 4 5 6 7 8
Vector component ( Time slot ) 1 1 1 1 2 2 2 2

2.3.2 Initial Solution

In the application of TS to the exams timetabling problem we used a graph coloring
heuristic, known as ”Saturation Degree” [11] to find a starting solution. This option was
based on a paper of Carter and Laport [24] where several heuristics were compared. This
greedy heuristic mainly consists in ordering exams by the number of slots still available
in increasing order and then assigning each exam to the first available slot. In presence
of a tie the preference is given to the exam with more students.

2.3.3 Neighborhood

Two different neighborhoods were defined. A classical an elementary one corresponding,
for a given timetable T0, to all timetabling Ti differing from T0 in the assignment of one
exam alone. For this neighborhood a move consists in a period change for a given exam.
For example, considering again the set of 8 exams and 2 slots, a possible neighbor of T0

is timetable Ti where exam 3 change from slot (period) 1 to 2.

T0

Exams 1 2 3 4 5 6 7 8
Time slot 1 1 1 1 2 2 2 2

Ti

Exams 1 2 3 4 5 6 7 8
Time slot 1 1 2 1 2 2 2 2

The second neighborhood used is based on Kemp chains introduced by Morgenstern [48].
We define a neighborhood of timetable T0, as the set of all timetables differing from T0

only in the assignment of two groups of exams in two time slots. A move corresponds to
a feasible interchanging of two sets of exams between two periods. For instance, given
the example above of timetabeling T0 we have a neighbor solution Ti where exams 1 and
2 in period 1 and exams 5,6 and 7 in period 2 interchanged periods. In order to preserve



feasibility of the solution it may happen, in the limit, that a neighborhood solution consists
solely in the interchange of periods between to groups of exams.

T0

Exams 1 2 3 4 5 6 7 8
Timeslot 1 1 1 1 2 2 2 2

Ti

Exams 1 2 3 4 5 6 7 8
Timeslot 2 2 1 1 1 1 1 2

For both neighborhoods the all search space was inspected in each iteration.

2.3.4 Memory

The memory management depends on the neighborhood that is considered. For the simple
neighborhood it was recorder the index of the exam that was moved. As a consequence in
a number of iterations equal to the tabu tenure we could not change the time slot of this
exam. For the kemp chains neighborhood it would be to time and memory consuming to
record the all chain of moves. Recording only all the exams that changed period would
create an over restricting tabu list. In a few iterations it could happen that all the possible
movements were tabu. So it was record a pair consisting in both the exam and the time
slot of each exam that was involved in the chain of movements. In each iteration the tabu
tenure of each element in the tabu list is decreased by one unit. The duration of the tabu
status for each move is determined individually using a FRBS as it is next explained.

2.3.5 Fuzzy Rule Based System to manage the length of a tabu move

The number of iterations during which a tabu remains in the tabu list (tabu tenure) has
a great impact in the performance of the TS. If the tabu tenure is low it can happen that
in few iterations a local optima is revisited and so the algorithm enters in a loop, but on
the other hand it favors an intensification of the search in a region. On the contrary, if
the tabu tenure is high then the search space is diversified but a refined local search is not
possible and good solutions can escape. This is why it is necessary, in general, to run the
method repeatedly for the same instance, varying the value of the tabu tenure. This task
is cumbersome if conducted manually. The importance of an automatic implementation
of the TS, can be comprehended if we consider that most of the staff responsible for the
elaboration of the timetabling possesses little, or most likely, no technical skills to conduct
the parametrization of the TS. Ideally the algorithm should be able to automatically chose
between low and high values for the tabu tenure in order to combine intensification with
diversification. Since this problem can be considered a decision problem to accomplish
the task of deciding for each tabu its tabu tenure we implemented a Fuzzy Rule Based
System. The details of this implementation can be found in [49]. In a brief description we
can add that the idea behind the FRBS is to emulate a behavior that will penalize moves,
and will consequently set a high value for the tabu tenure, that in the past iterations have
been often and recently been present in the tabu list. In opposition, moves rarely and not
recently present in the tabu list should have lower values for the tabu tenure. The notion
of the frequency in the tabu list and the last iteration where it was present in the same
tabu list where recorded as Frequency and Inactivity respectively. In Figure 1 we have an
illustration on how the tabu tenure should be chosen according to the values of Frequency
and Inactivity. Darker colors indicate higher values for the duration of a element in the
tabu list. A 0-order Sugeno system [60] with 9 rules was implemented using as inputs
linguistic variables based on Frequency and Inactivity .
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Figure 1: Tabu Tenure depending on Frequency and Inactivity

3 Using weight aggregation for evaluation and selec-
tion

Once a set of points where generated, as a neighborhood of a current solution, it was nec-
essary to evaluate the candidates in order to find an eligible solution. In a problem with
only one objective, the value of the objective function is often used to rank the solutions.
In this case we had a multiobjective problem and we have chosen to maintain the problem
as such, instead of transforming it in a single objective problem using functions aggrega-
tion. The reason to do so was based on an attempt to do not prematurely condition the
problem, allowing for a broader inspection of solutions in a sort of diversification strategy.
So for a given set of points, T1, T2, . . . , Tr we have the set of their corresponding val-
ues for the above mentioned objectives functions f1, f2, f3, f4. Identifying the points as
alternatives and the value of the objective functions as attributes that characterize the
alternatives, we are facing a multiattribute decision making (MADM) problem.

3.1 Data Normalization

In multiattribute problems, in order to compare the attributes, is necessary to perform a
normalization. Since the attributes may refer to different unities of measurement, to have
something comparable we need to obtain values that are free of a particular scale. One
common technique is the division by the maximum, but in some cases it can happen that
the value of reference is not the maximum but a smaller value. It is the case when one
attribute is the price but the user has a threshold that is lower than the most expensive
item. In this case the utility of an item which price is above the threshold should be
zero. Our approach was to make a mapping of the values on the interval [0, 1] in a sort

Figure 2: Gaussian mapping function



fuzzyfication approach. We used the positive tale of a gaussian function with zero mean,
because of its smoothness and shape that allows a good representation of the utility of
the values. In fact the 0 is transformed into the highest value of 1. It corresponds to
the ideal situation of complete fulfilment of the objective function. For values near the
ideal the penalization should not be to severe, but there should be a deep accentuation
of this severity for values higher than an average value. We used for the four objectives
fi(x), i = 1, . . . , 4 the same expression

f̃i(x) = exp
(−x2

d

)
where d =

−m2
i

log(10−2)
(11)

only differing in the value of the constant mi for i = 1, . . . , 4.

m1 = 0.15M (12)
m2 = 0.25M (13)
m3 = 0.10M (14)
m4 = M (15)

where M is the total number of inscriptions in exams. These mi values are related to a
threshold that corresponds to the highest reasonable value, above which it is considered
an unwilling situation. The value of 10−2 in (11) was set to be the minimum of f̃i(x) for
x = m.

3.2 Compromise Ratio

Now in each iteration of the TS, when inspecting a set of V points Ti in the neighborhood
of a certain point, we evaluate these points using the four objective functions and after
normalization we obtain a matrix with V objects and 4 attributes.

ATTRIBUTES︷ ︸︸ ︷
f̃1 f̃2 f̃3 f̃4

ALTERNATIVES





T1

T2

...
TV




x11 x12 x13 x14

x21 x22 x23 x24

. . . . . . . . . . . .
xV 1 xV 2 xV 3 xV 4




To proceed for the next iteration it is necessary to chose one timetabling solution from
{T1, T2, . . . , TV } to become the next solution from which, in the next iteration, other
neighborhood solutions will be searched. Most likely none of these solutions dominate
the others, so it is necessary to make a choice based on the 4 criteria already mentioned.
Different multiatribute methods like AHP [57], ELECTRE [56], PROMETHEE [10] could
be used to produce an elected solution. Although very interesting for many applications,
in this case they must be considered computationally heavy, since they have to be called as
a subroutine in each iteration of the TS. Other simplest methods like MaxiMin, MiniMax
and Conjuntive&Disjunctive could be implemented but they lack some sophistication that
is necessary in order to produce a good strategy of choice, which is a vital step in the
success of the Tabu Search. A good balance between computational simplicity and a
satisfactory criteria to rank the solutions, lead to the choice of Compromise Ratio [44].
This method can be view as an extension of TOPSIS [41].

The Compromise Ratio is developed based on the concept that the best alternative
should be as close s possible to the ideal solution a+ and as far as possible to the negative-
ideal solution a−, which in this case are consider to be a four dimension vector of ones
and zeros respectively. Since the attributes may have different degrees of importance for



Figure 3: Distance to ideal and negative-ideal point.

the decision maker a component wise weighting of matrix X = (xij) is performed,

vij = xij × wij . (16)

For each point Ti we need to compute the distances to the ideal and negative-ideal point,
respectively

D+
p (Ti) = p

√√√√
m∑

j=1

(a+
j − vij)p , ∀i = 1, ..., n (17)

D−
p (Ti) = p

√√√√
m∑

j=1

(vij − a−j )p ,∀i = 1, ..., n. (18)

Given these distances we can use the following parameterized ratio

ξp(Ti) = θ × Dp−(T+)−D+
p (Ti)

Dp−(T+)−Dp+(T+)
+ (1− θ)× D−

p (Ti)−Dp−(T−)
Dp+(T−)−Dp−(T−)

(19)

where 



Dp−(T+) = max
i∈{1,...,n}

{D+
p (Ti)}

Dp+(T+) = min
i∈{1,...,n}

{D+
p (Ti)}




Dp+(T−) = max
i∈{1,...,n}

{D−
p (Ti)}

Dp−(T−) = min
i∈{1,...,n}

{D−
p (Ti)}

in order to rank the alternatives.

3.3 Weighting functions

The weights in (16) are user defined and have an highly influential effect in the final ranking
of the alternatives. Its choice must be careful and since the goal was to developed an as
much as possible automatic algorithm the definition of the weights by the user seemed
a drawback in this method. In addition to assume that we can capture the preferences



by a simple linear model seemed to reductive. Sometimes the decision maker does not
react linearly and independently in regard to the attributes. For instance, consider the
classical situation of buying a car. For that purpose, we are evaluating the car regarding
its price and comfort. If the car is expensive it is expected also to be very comfortable.
However, if the car is not expensive there is no such expectation. In this situation the
weight of each criteria is related with the criteria satisfaction. There is, the value of one
attribute influences the weight given to another attribute. The same happens for the
attributes regarding the exams timetabling problem. For instance, if a calendar is such
that many students have more than one exam in the same day, then it is necessary to
reinforce the weight that penalizes the existence of exams in consecutive periods. To model
situations like these Ribeiro and Pereira [2] proposed the use of weighting functions instead
of fixed weights. The gain is that we can model preferences, as well as the behavior of the
decision maker, better than if we simply use constant weights.The weights are defined by
the following expression.

Wij(xi) =
gj(xij)

m∑
t=1

gt(xit)

.

where the gj are the weight generating functions.
Mixture operators, in the context of aggregation operators where introduced in [54]

and [1]. In [2], [3] we can find some interesting applications. In this work we have used
weighting function in the context of the Compromise Ratio. By replacing in (16) the
weights by weighting functions we developed a new procedure for ranking the alternatives
that presents an higher and more realistic way of modeling preferences.

3.4 Modified Compromise Ratio

If we use weighting functions then the ideal point becomes

(g1(1), . . . , gm(1)) (20)

and the negative-ideal is chosen as the vector

(0, . . . , 0) . (21)

The equations analogue to (17) and (18) are

D+
p (Ti) = p

√√√√
m∑

j=1

(
gj(1)− xijgj(xij)∑m

k=1 gk(xij)

)p

, ∀i = 1, ..., n (22)

D−
p (Ti) = p

√√√√
m∑

j=1

(
xijgj(xij)∑m
k=1 gk(xij)

)p

, ∀i = 1, ..., n. (23)

Now the issue is to chose the functional expression of the weighting functions. We know
that the operator ξp is not monotonic for all weighting functions. In order to guarantee
the monotonicity of ξp we obtained a condition similar to those presented in [54],[1] and
[46].

Theorem 1. The inequalities

0 ≤ gk ≤ 1, ∀k ∈ {1, . . . , m} (24)
∂gk

∂xik
≥ 0, ∀k ∈ {1, . . . , m} (25)

xp−1
ik gp

k −
∂gk

∂xik
≥ 0, ∀k ∈ {1, . . . , m} (26)



are sufficient conditions for the monotonicity of ξp as defined in (19).

Proof To guarantee the monotonicity of ξp it is suffices to ensure that ∂ξp

∂xik
≥ 0. Since

ξp(Ti) = θ × Dp−(T+)−D+
p (Ti)

Dp−(T+)−Dp+(T+)
+ (1− θ)× D−

p (Ti)−Dp−(T−)
Dp+(T−)−Dp−(T−)

then if ∂D+
p

∂xik
≤ 0 and ∂D−

p

∂xik
≥ 0 we have ∂ξp

∂xik
≥ 0. Let us first prove that

∂D+
p

∂xik
≤ 0.

By definition

D+
p (Ti) = p

√√√√
m∑

j=1

(
gj(1)− xijgj(xij)∑m

t=1 gt(xit)

)p

, for p ≥ 1 (27)

To simplify the writing let us consider the expressions

γq(xi) =
(

gq(1)− xiqgq(xiq)
ε(xi)

)p

for q = 1, . . . ,m (28)

where xi = (xi1, . . . , xim) , ε(xi) =
∑m

t=1 gt(xit) and

σ(xi) =
m∑

q=1

γq(xi). (29)

Now

D+
p (Ti) = p

√
σ(xi) = p

√√√√
m∑

q=1

γq(xi) = p

√√√√
m∑

j=1

(
gj(1)− xijgj(xij)

ε(xi)

)p

, for p ≥ 1 (30)

we have

∂D+
p

∂xik
=

1
p

∂σ
∂xik

(D+
p (Ti))p−1

(31)

Once ∂ε
∂xik

= ∂gk

∂xik
and ∂σ

∂xik
=

∑m
q=1

∂γq(xi)
∂xik

then when q = k we have

∂γq

∂xik
= p

(
gk(1)− xikgk(xik)

ε(xi)

)p−1

(
−xik

∂gk

∂xik
− gk(xik)

)
ε(xi)− ∂gk

∂xik
(gk(1)− xikgk(xik))

ε(xi)2

(32)

Using the left inequality of hypothesis (24) we may conclude that

ε(xi) ≥ 0. (33)

Since xij ≤ 1 and using condition (25) we know that

gk(1)− xikgk(xik) ≥ 0. (34)

From (33) and (34) and taking in consideration that p ≥ 1 is guaranteed that

p

(
gk(1)− xikgk(xiq)

ε(xi)

)p−1

≥ 0 (35)



Since xij ≥ 0 and using condition (33), hypotheses (25) and the left side of condition (24)
we have

(
−xik

∂gk

∂xik
− gk(xik)

)
ε(xi) ≤ 0. (36)

From (34) and (25) we have

− ∂gk

∂xik
(gk(1)− xikgk(xik)) ≤ 0. (37)

So from (35), (36) and (37) we have

∂γq

∂xik
≤ 0 (38)

Now when q 6= k we have

∂γq

∂xik
= p

(
gq(1)− xiqgq(xiq)

ε(xi)

)p−1 −∂gk

∂xik
(gq(1)− xiqgq(xiq))

ε(xi)2

Now by (35) and (37) we have

∂γq

∂xik
≤ 0. (39)

From (38) and (39) we have

∂σ

∂xik
≤ 0 (40)

Since D+
p ≥ 0 and p ≥ 1 then

1
p(D+

p (Ti))p−1
≥ 0 (41)

Through (31), (40) and (41) we may conclude that

∂D+
p

∂xik
≤ 0 (42)

Now we will proof that
∂D−

p

∂xik
≥ 0.

We have

D−
p (Ti) = p

√√√√
m∑

j=1

(
xijgj(xij)∑m

t=1 gt(xit)

)p

, for p ≥ 1 (43)

Again to simplify the writing let us consider the expressions

γq(xi) =
(

xiqgq(xiq)
ε(xi)

)p

for q = 1, . . . , m (44)

where xi = (xi1, . . . , xim) , ε(xi) =
∑m

t=1 gt(xit) and

σ(xi) =
m∑

q=1

γq(xi). (45)



Now we have

∂D−
p

∂xik
=

1
p

∂σ
∂xik

(D−
p (Ti))p−1

(46)

Once ∂ε
∂xik

= ∂gk

∂xik
and ∂σ

∂xik
=

∑m
q=1

∂γq(xi)

∂xik
then when q = k we have

∂γq

∂xik
= p

(
xikgk(xik)

ε(xi)

)p−1

(
xik

∂gk

∂xik
+ gk(xik)

)
ε(xi)− ∂gk

∂xik
(xikgk(xik))

ε(xi)2
(47)

= p

(
xikgk(xik)

ε(xi)

)p−1

(
xik

∂gk

∂xik
+ gk(xik)

)
ε(xi)

ε(xi)2
(48)

−p

(
xikgk(xik)

ε(xi)

)p−1 − ∂gk

∂xik
(xikgk(xik))

ε(xi)2
(49)

Using the right inequality of hypothesis (24) and the fact that xik ≤ 1 we may conclude
that

∂γq

∂xik
≥ p

(
xikgk(xik)

ε(xi)

)p−1

(
xik

∂gk

∂xik
+ gk(xik)

)
ε(xi)

ε(xi)2
(50)

−p

(
1

ε(xi)

)p−1 − ∂gk

∂xik
(xikgk(xik))

ε(xi)2
(51)

When q 6= k we have

∂γq

∂xik
= p

(
xiqgq(xiq)

ε(xi)

)p−1 −∂gk

∂xik
(xiqgq(xiq))

ε(xi)2

Now since gk(xik) ≤ 1 and xik ≤ 1 we have

∂γq

∂xik
≥ −p

(
1

ε(xi)

)p−1 − ∂gk

∂xik
(xikgk(xik))

ε(xi)2
(52)

From (51) and (52) we obtain

∂σ

∂xik
≥ p

(
xikgk(xik)

ε(xi)

)p−1

(
xik

∂gk

∂xik
+ gk(xik)

)
ε(xi)

ε(xi)2
(53)

−p

(
1

ε(xi)

)p−1 − ∂gk

∂xik

ε(xi)2

m∑
s=1

(xisgs(xis)) (54)

Since xis ≤ 1 we have ε(xi) ≥
∑m

s=1 (xisgs(xis)) and we conclude that

∂σ

∂xik
≥ p

(
xikgk(xik)

ε(xi)

)p−1

(
xik

∂gk

∂xik
+ gk(xik)

)
ε(xi)

ε(xi)2
(55)

−p

(
1

ε(xi)

)p−1 − ∂gk

∂xik

ε(xi)2
ε(xi) (56)

∂σ

∂xik
≥ p

1
ε(xi)p

gk(xik)p−1xp
ik

∂gk

∂xik
+ p

1
ε(xi)p

(
xp−1

ik gk(xik)p − ∂gk

∂xik

)
(57)

Given conditions (24), (25), ε(xi) ≥ 0 and p ≥ 1 we obtain

p
1

ε(xi)p
gk(xik)p−1xp

ik

∂gk

∂xik
≥ 0. (58)



The hypotheses (26), ε(xi) ≥ 0 and p ≥ 1 ensure that

p
1

ε(xi)p

(
xp−1

ik gk(xik)p − ∂gk

∂xik

)
≥ 0. (59)

With (59) we can finally prove that ∂D−
p

∂xik
≥ 0 and conclude the proof.¥

Next it was necessary to find weighting functions verifying the conditions of Theorem
1. It was easy to verify that linear functions couldn’t do and so other functions were
investigated.

Theorem 2. The following functions verify the hypotheses (24) to (26) of Theorem 1.

g(x) = (a− d)xp + d (60)

g(x) = d
(a

d

)xp

(61)

g(x) = log
(
1 + ea−d − 1)xp

)
+ d (62)

Where a represents the importance (weight) of the attribute when its satisfaction
is maximum and it value belongs to the unit interval, and d represent the importance
(weight) of the attribute when its satisfaction is minimum. However d belongs to the in-
terval [lower bound, a]. The lower bound value is derived from the same condition referred
above. In the computational experience we used for all attributes the function (60).

4 Computational experience

The algorithm for this multiple objective approach for timetabling problems was tested
using the Toronto’s benchmark data set [24]. The main characteristics are displayed in
Table 1. The last column D.C.M. stands for Density of the Conflict Matrix. This matrix

Data set Institution No of Periods No of exams No of students D.C.M.

car-f-92 Carleton Uni., Ottawa 32 543 18419 0,14
car-s-91 Carleton Uni., Ottawa 35 682 16925 0,13
ear-f-83 Earl Haig Collegiate Inst., Toronto 24 190 1125 0,29
hec-s-92 Ecole des Hautes Et. Com., Montreal 18 81 2823 0,42
kfu-s-93 King Fahd Uni., Dharan 20 461 5349 0,06
rye-s-93 Ryeson Uni., Toronto 23 486 11483 0,07
sta-f-83 St. Andrew’s Junior H.S., Toronto 13 139 611 0,14
tre-s-92 Trent Uni., Peterborough, Ontario 23 261 4360 0,18
uta-s-92 Faculty of Arts and Sciences, Uni. of Toronto 35 622 21267 0,13
ute-s-92 Faculty of Engineering, Uni. of Toronto 10 184 2750 0,08
yor-f-83 York Mills Collegiate Ins., Toronto 21 181 941 0,27

Table 1: Data set

have a number of columns and rows equal to the number of exams, and each entry (i, j)
represents the number of students enrolled in both courses indexed by i and j. The per-
centage of nonzero elements represents its density. The higher is the value of the density
the most difficult is the problem.
The experiments were performed on a Pentium Intel Core2 Duo T9400 with 2.53GHz and
3 Gb of memory. The stopping conditions used in Tabu Search were 1 hour or 25000
iterations. In all experiments the algorithm stopped after 1 hour, never reaching 25000
iterations.
The main goal was to minimize all the objectives and we also wanted to assess how the
algorithm performs when using different weighting factors - a (see Equation (60)). Fur-
ther, we fixed the d weighting factor in the same equation equal to the lower bound. The
computational results are depicted in the following tables. The a-weights for the different
objectives are depicted on the first column of each Table. For instance, in Table 2 for



data reffering to car-f92, the weight regarding first, second, third and fourth objective is
1, 1, 1, 1, respectively. We can observe that in most cases, higher values for a in one
of the objectives induces a lower values for the objective value at the expenses of all the
other objectives. All other objectives have worse values in favor of the objective with the
highest weight.

The preliminary results obtained for the kfu-s-93, rye-s-93 and uta-s-92 data sets pre-
sented a very poor discrimination of the objectives values for the different weights. We
decided to increase the stopping time from 1 hour to 2 for the previously mentioned data
sets. With this change we observed an improvement on the quality of the results, as it
can be seen in Tables 2 and 3, for data corresponding to kfu-s-93, rye-s-93 and uta-s-92.
The same problem can be observed on car-f-92, car-s-91. The solutions seem to be very
close to each other for different weight values. The algorithm seems to get trapped in a
local optima regarding the data sta-f-83 because it presents the exactly same results for
different weight values.

5 Conclusions

In this paper we present a method to solve a multiobjective approach to an exams
timetabling problem. Timetabling problems are important and appear in many differ-
ent contexts. The use of the Tabu Search is well justified due to the complexity of the
problem. In each iteration of this method, in order to evaluate the neighboring solutions
we used a modified version of the multiattribute method Compromise Ratio. We have pro-
posed the replacement of the fixed weights by weighting generating functions. This new
feature is more powerful and realistic in modeling the preferences of the decision maker.
To guarantee the monotonicity of aggregation operator we established some sufficient con-
ditions for the weighting generation function. These condition enable the characterization
of a set of functions. The proposal of this paper can be easily adapted to other problems
and the theoretical results presented for the Modified Compromise Ratio method can
be useful in the context of any multiattribute problem. The computational results were
satisfactory but could not be compared with other approaches in the literature.
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A Appendix - Computational Results

Table 2: Computational results
car-f-92 Objective 1 Objective 2 Objective 3 Objective 4
(1,1,1,1) 7811 5220 6566 233

(1,0.2,0.2,0.2) 7296 4262 5896 373
(0.2,1,0.2,0.2) 8074 4093 5734 330
(0.2,0.2,1,0.2) 6753 4470 6378 339
(0.2,0.2,0.2,1) 8332 4191 5626 253

car-s-91 Objective 1 Objective 2 Objective 3 Objective 4
(1,1,1,1) 11457 4010 5297 286

(1,0.2,0.2,0.2) 9764 3998 5637 343
(0.2,1,0.2,0.2) 10595 3929 5090 327
(0.2,0.2,1,0.2) 10595 3929 5090 327
(0.2,0.2,0.2,1) 11452 4015 5304 286

ear-f-83 Objective 1 Objective 2 Objective 3 Objective 4
(1,1,1,1) 2970 2379 3196 116

(1,0.2,0.2,0.2) 2576 2051 3480 424
(0.2,1,0.2,0.2) 5911 475 1602 542
(0.2,0.2,1,0.2) 5896 650 1292 367
(0.2,0.2,0.2,1) 5799 988 1535 126

hec-s-92 Objective 1 Objective 2 Objective 3 Objective 4
(1,1,1,1) 5103 475 870 170

(1,0.2,0.2,0.2) 2019 1112 3054 173
(0.2,1,0.2,0.2) 5512 250 1427 581
(0.2,0.2,1,0.2) 5385 599 800 421
(0.2,0.2,0.2,1) 5830 915 1507 84

kfu-s-93 Objective 1 Objective 2 Objective 3 Objective 4
(1,1,1,1) 9687 6230 10075 424

(1,0.2,0.2,0.2) 5123 3424 7687 481
(0.2,1,0.2,0.2) 13066 831 1307 1307
(0.2,0.2,1,0.2) 12438 1452 3359 872
(0.2,0.2,0.2,1) 14415 2198 3619 209



Table 3: Computational results
rye-s-93 Objective 1 Objective 2 Objective 3 Objective 4
(1,1,1,1) 5599 10108 15023 221

(1,0.2,0.2,0.2) 8883 9147 14007 783
(0.2,1,0.2,0.2) 22614 1659 6331 2260
(0.2,0.2,1,0.2) 21806 1686 3318 1827
(0.2,0.2,0.2,1) 25546 3936 6527 248

sta-f-83 Objective 1 Objective 2 Objective 3 Objective 4
(1,1,1,1) 8432 3195 4669 1121

(1,0.2,0.2,0.2) 8422 3202 4678 1148
(0.2,1,0.2,0.2) 8422 3202 4678 1148
(0.2,0.2,1,0.2) 8422 3202 4678 1148
(0.2,0.2,0.2,1) 9577 3254 4427 838

tre-s-92 Objective 1 Objective 2 Objective 3 Objective 4
(1,1,1,1) 4762 576 966 203

(1,0.2,0.2,0.2) 3175 978 1893 401
(0.2,1,0.2,0.2) 4920 332 1297 599
(0.2,0.2,1,0.2) 5001 554 899 356
(0.2,0.2,0.2,1) 5637 919 1471 149

uta-s-92 Objective 1 Objective 2 Objective 3 Objective 4
(1,1,1,1) 11310 1861 3188 936

(1,0.2,0.2,0.2) 8694 4962 7505 759
(0.2,1,0.2,0.2) 13767 1619 3712 2167
(0.2,0.2,1,0.2) 12505 1674 2554 1076
(0.2,0.2,0.2,1) 10606 5189 7295 600

ute-s-92 Objective 1 Objective 2 Objective 3 Objective 4
(1,1,1,1) 2384 4885 7249 72

(1,0.2,0.2,0.2) 1747 5145 7431 471
(0.2,1,0.2,0.2) 3278 3794 6628 328
(0.2,0.2,1,0.2) 3278 4126 6624 328
(0.2,0.2,0.2,1) 5427 3982 6021 34

yor-f-83 Objective 1 Objective 2 Objective 3 Objective 4
(1,1,1,1) 4346 627 1279 182

(1,0.2,0.2,0.2) 2660 1141 2076 423
(0.2,1,0.2,0.2) 4406 342 1422 607
(0.2,0.2,1,0.2) 4687 619 1137 346
(0.2,0.2,0.2,1) 4947 934 1416 99


