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ABSTRACT. We characterize the endomorphisms of the semigroup of all order-
preserving mappings on a finite chain. We show that there are three types of en-
domorphism: automorphisms, constants, and a certain type of endomorphism
with two idempotents in the image.

1. INTRODUCTION & THE MAIN THEOREM

A mapping f : {1, 2, . . . , n} −→ {1, 2, . . . , n} is called order-preserving if (i)f 6
(j)f whenever i 6 j. We write functions to the right of their argument and com-
pose them from left to right. The semigroup of all order-preserving mappings from
{1, 2, . . . , n} to itself under composition of functions is denotedOn. The semigroup
On has been extensively studied by many authors since the 1960s. The identity of
On is denoted by 1n. An endomorphism φ of a semigroup S is a mapping φ : S −→ S
such that (x)φ(y)φ = (xy)φ for all x, y ∈ S. We will denote the semigroup of endo-
morphisms of S by End(S). A bijective endomorphism is called an automorphism.
In this note we completely describe the endomorphisms of On for all n ∈ N and
specify the number of these endomorphisms.

In 1962, Aı̆zenštat [1] gave a presentation for On from which it can be deduced
that the only non-trivial automorphism of On where n > 1 is that given by conju-
gation by the permutation σ = (1n)(2n− 1) · · · (bn/2c dn/2e+ 1). In other words,
if φ is a non-identity automorphism of On and n > 1, then (s)φ = σ−1sσ for all
s ∈ On. We will write fσ to denote σ−1fσ.

The endomorphisms of On are described in the following theorem.

Theorem 1.1. Let φ : On → On be any mapping. Then φ is an endomorphism of On if
and only if one of the following holds:

(a) φ is an automorphism;
(b) there exist idempotents e, f ∈ On with e 6= f and ef = fe = f such that

1nφ = e and (On \ {1n})φ = f ;
(c) φ is a constant mapping with idempotent value.

Corollary 1.2. If n > 1, then |End(On)| = 2 +
∑n−1
i=0

(
n+i
2i+1

)
F2i+2.

The remainder of the note is dedicated to proving Theorem 1.1 and its corollary.
To do so we require the following notions. The image of an element f ∈ On is de-
noted by im(f) and the kernel of f is the equivalence relation {(x, y) ∈ {1, . . . , n}×
{1, . . . , n} : xf = yf } denoted by ker(f). The rank of an element f ∈ On is |im(f)|
and denoted rank(f). Some of the important properties ofOn that we require later
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are: it is regular, its Green’s relations are described by

fLg if and only if im(f) = im(g)
fRg if and only if ker(f) = ker(g)
fDg if and only if rank(f) = rank(g)
fHg if and only if f = g,

and the number of idempotent elements is the 2n th Fibonacci number F2n. Fur-
ther information regarding On can be found in [3] and [4] and regarding semi-
groups, in general, can be found in [5]. We denote the D-class of those elements in
On with rank k by Dk.

It is well-known that I is an ideal ofOn if and only if I = {f ∈ On : rank(f) 6 k}
for some 1 6 k 6 n; for a proof see [6]. In 1962, Aı̆zenštat [2] showed that the non-
trivial congruences of On are exactly those where the only non-singleton class is
Ik for some 1 6 k 6 n. Another proof of this can be found in [8].

2. PROOF OF THEOREM 1.1

It is straightforward to verify that the mappings described in Theorem 1.1 are
endomorphisms of On. So, it remains to prove that there are no further endomor-
phisms. Throughout the remainder of the note we will assume that n > 1.

Let φ be an endomorphism of On. If φ is an automorphism of On or a constant
mapping, then φ satisfies (a) or (c) in Theorem 1.1. So, we may assume that φ is
not an automorphism and not constant. From the comments in the introduction,
there exists 1 6 k 6 n − 1 such that the unique non-singleton kernel class of φ is
Ik. If k = n−1, then φ is of type (b) from Theorem 1.1. Hence we may assume that
1 6 k 6 n− 2. In the following lemmas we will prove that this is not possible and
so conclude the proof.

Note that φ has only singleton kernel classes onOn\Ik and so φmust be injective
onOn\Ik. The unique element of Ikφ is an idempotent. Throughout the remainder
of the note we will denote this idempotent by f .

Lemma 2.1. Let g, h ∈ Di where k + 1 6 i 6 n − 1. Then gRh if and only if gφRhφ.
Likewise, gLh if and only if gφLhφ.

Proof. We prove the theorem only for Green’s R-relation, the proof for Green’s
L-relation is analogous.

(⇒) Since φ is a homomorphism, this implication is immediate.
(⇐) Let gφRhφ. As Ii is a regular subsemigroup of On, it follows that Iiφ is a

regular subsemigroup of On. Thus, from [5, Proposition 2.4.2], RIiφ = R ∩ (Iiφ×
Iiφ). Thus gφRIiφhφ and so there exist a, b ∈ Ii with hφ = gφ ·aφ and gφ = hφ · bφ.

If rank(ga) 6 k, then (ga)φ = f and so hφ = f , a contradiction. Hence
rank(ga) > k and likewise rank(hb) > k. It follows, since φ is injective on On \ Ik,
that h = ga and g = hb. In other words, gRh. �

Lemma 2.2. Dk+1φ ⊆ Dl where rank(f) < l < k + 1.

Proof. Since φ is injective on Dk+1∪Dk+2∪· · ·∪Dn and φ preserves6D, it follows
that l 6 k + 1. As a consequence, rank(f) 6 k and fφ = f .

Assume that l = k + 1. Then Dk+1φ = Dk+1, since φ|Dk+1 is injective. Let
d ∈ Dk+1 with fd 6= f . Note that dφ−1 is a set containing a single element and it is
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contained in Dk+1. Hence

f 6= f · d = fφ · d = (f · dφ−1)φ = f,

a contradiction. Therefore l < k + 1, as required.
Assume that rank(f) = l and let g ∈ Dk+1. Then gφDf . Since gφ ·f = f ·gφ = f ,

it follows that im(f) = im(gφ) and ker(f) = ker(gφ). Thus fHgφ and so fφ = f =
gφ, contradicting the assumption that f and g are in different kernel classes of
φ. �

Lemma 2.3. k > bn/2c.

Proof. By Lemma 2.1, the number of L-classes in Dk+1φ is
(
n
k+1

)
. But, by Lemma

2.2, Dk+1φ ⊆ Dl where l < k + 1 and the number of L-classes in Dl is
(
n
l

)
. Hence(

n
k+1

)
6
(
n
l

)
and so k > bn/2c. �

The following lemma is straightforward but we include a proof for the sake of
completeness.

Lemma 2.4. There exist idempotents e1, . . . , en−1 ∈ Dk+1 such that either eiej ∈ Ik or
ejei ∈ Ik for all 1 6 i < j 6 n− 1.

Proof. Let gi, hi ∈ On be defined by

(j)gi =

{
i j ∈ {i, i+ 1, . . . , i+ n− k − 1}
j j < i or j > i+ n− k − 1

for all 1 6 i 6 k + 1 and

(j)hi =


i j ∈ {i, i+ 1}
i+ 2 j ∈ {i+ 2, i+ 3, . . . , i+ n− k}
j j < i or j > i+ n− k

for all 1 6 i 6 k. Then E = {g1, . . . , gk+1, h1, . . . , hk} are all idempotents in Dk+1

satisfying conditions (i) and (ii). If k = n− 2, then gi = hi for all 1 6 i 6 k, and so
E contains n − 1 elements. If k < n − 2, then |E| = 2k + 1. From Lemma 2.3, we
have that |E| > n− 1, as required. �

Proof of Theorem 1.1. Let g ∈ On be arbitrary. Then im(f) ⊆ im(gφ) as f ·gφ = f . Let
e1, . . . , en−1 be the idempotents from Lemma 2.4. If i 6= j, then eiej ∈ Ik or ejei ∈
Ik. Hence eiφ · ejφ = f or ejφ · eiφ = f . Thus every element in im(eiφ) ∩ im(ejφ)
is fixed by f (as eiφ and ejφ are idempotents). It follows that

im(eiφ) ∩ im(ejφ) = im(f),

for all i 6= j.
Let Ei = im(eiφ)\ im(f) for all i. Then E1, . . . , En−1 are pairwise disjoint. Since

e1φ, . . . , en−1φ ∈ Dk+1φ it follows from Lemma 2.2 that |E1| = · · · = |En−1| > 1. It
follows that |E1 ∪ · · · ∪ En−1| > n− 1. Therefore |Ei| = 1 for all i and |im(f)| = 1.
In other words, Dk+1φ ⊆ D2 and, again, im(f) ⊆ im(gφ) for all g ∈ Dk+1. Hence
Dk+1φ contains at most n− 1 different L-classes, and so, by Lemma 2.1, Dk+1 has
at most n − 1 different L-classes. Thus k + 1 = n, a contradiction, and so every
endomorphism of On is of type (a), (b), or (c). �
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Proof of Corollary 1.2. We must prove that

|End(On)| = 2 +
n−1∑
i=0

(
n+ i

2i+ 1

)
F2i+2.

If X is a subset of On, then denote by E(X) the set of all idempotents in X . It was
shown in [7, Corollary 4.4] and [4, Theorem 2.3] that

|E(Di+1)| =
(
n+ i

2i+ 1

)
and

|E(On)| = F2n

where F2n is the 2n th Fibonacci number.
Let e ∈ E(On) be arbitrary and let S(e) = { f ∈ E(On) : ef = fe = f }.

Then the numbers of endomorphisms of On of types (b) and (c) where 1nφ = e are
|S(e)| − 1 and 1, respectively.

Let e ∈ Di+1 where 0 6 i 6 n− 1. Then we will prove that |S(e)| = F2i+2.
Let Oim(e) be the semigroup of order-preserving mappings on im(e) and let Ψ :

S(e) −→ Oim(e) be defined so that (f)Ψ is the restriction f |im(e) of f to im(e). If
f ∈ S(e), then fe = f and so im(f) ⊆ im(e). Hence Ψ is well-defined. Moreover
f |im(e) fixes im(f) pointwise, and so f |im(e) ∈ E(Oim(e)).

We will prove that Ψ is a bijection from S(e) to E(Oim(e)). If f ∈ E(Oim(e)),
then e · ef = ef and ef · e = ef as im(f) ⊆ im(e). It follows that ef ∈ S(e) and
(ef)Ψ = (ef)|im(e) = f |im(e) = f . That is, im(Ψ) = E(Oim(e)).

If f, g ∈ S(e) such that f |im(e) = g|im(e), then f = ef = e · f |im(e) = e · g|im(e) =
eg = g, and so Ψ is injective. So, |S(e)| = |E(Oim(e))| and from above |E(Oim(e))| =
F2|im(e)| = F2i+2.

Therefore there are

(1) |E(Di+1)|(|S(e)| − 1) =
(
n+ i

2i+ 1

)
(F2i+2 − 1)

endomorphisms of type (b) where 1nφ ∈ Di+1.
There are two automorphisms and F2n constant endomorphisms. Summing

these two values and (1) over all i we obtain the required value. �
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[2] A. Ya. Aı̆zenštat, Homomorphisms of semigroups of endomorphisms of ordered sets, Uch. Zap.
Leningr. Gos. Pedagog. Inst. 238 (1962) 38–48 (Russian).

[3] V. H. Fernandes, The monoid of all injective order preserving partial transformations on a finite
chain, Semigroup Forum 62 (2001) 178–204.

[4] G. M. S. Gomes and J. M. Howie, On the ranks of certain semigroups of order-preserving transfor-
mations, Semigroup Forum 45 (1992) 272–282.

[5] J. M. Howie, Product of idempotents in certain semigroups of transformations, Proc. Edinburgh
Math. Soc. 17 (1971) 223–236.

[6] J. M. Howie, Fundamentals of semigroup theory, London Math. Soc. Monographs, New Series, 12,
Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995.

[7] A. Laradji and A. Umar, Combinatorial results for semigroups of order-preserving full transforma-
tions, Semigroup Forum 72 (2006) 51–62.

[8] T. Lavers and A. Solomon, The endomorphisms of a finite chain form a Rees congruence semigroup,
Semigroup Forum 59 (1999) 167–170.


