ENDOMORPHISMS OF THE SEMIGROUP OF ORDER-PRESERVING MAPPINGS

V. H. FERNANDES, M. M. JESUS, V. MALTCEV, & J. D. MITCHELL

ABSTRACT. We characterize the endomorphisms of the semigroup of all orderpreserving mappings on a finite chain. We show that there are three types of endomorphism: automorphisms, constants, and a certain type of endomorphism with two idempotents in the image.

1. INTRODUCTION & THE MAIN THEOREM

A mapping $f : \{1, 2, ..., n\} \longrightarrow \{1, 2, ..., n\}$ is called *order-preserving* if $(i)f \leq (j)f$ whenever $i \leq j$. We write functions to the right of their argument and compose them from left to right. The semigroup of all order-preserving mappings from $\{1, 2, ..., n\}$ to itself under composition of functions is denoted O_n . The semigroup O_n has been extensively studied by many authors since the 1960s. The identity of O_n is denoted by 1_n . An *endomorphism* ϕ of a semigroup S is a mapping $\phi : S \longrightarrow S$ such that $(x)\phi(y)\phi = (xy)\phi$ for all $x, y \in S$. We will denote the semigroup of endomorphisms of S by End(S). A bijective endomorphism is called an *automorphism*. In this note we completely describe the endomorphisms of O_n for all $n \in \mathbb{N}$ and specify the number of these endomorphisms.

In 1962, Aĭzenštat [1] gave a presentation for O_n from which it can be deduced that the only non-trivial automorphism of O_n where n > 1 is that given by conjugation by the permutation $\sigma = (1 n)(2 n - 1) \cdots (\lfloor n/2 \rfloor \lceil n/2 \rceil + 1)$. In other words, if ϕ is a non-identity automorphism of O_n and n > 1, then $(s)\phi = \sigma^{-1}s\sigma$ for all $s \in O_n$. We will write f^{σ} to denote $\sigma^{-1}f\sigma$.

The endomorphisms of O_n are described in the following theorem.

Theorem 1.1. Let $\phi : O_n \to O_n$ be any mapping. Then ϕ is an endomorphism of O_n if and only if one of the following holds:

- (a) ϕ is an automorphism;
- (b) there exist idempotents $e, f \in O_n$ with $e \neq f$ and ef = fe = f such that $1_n \phi = e$ and $(O_n \setminus \{1_n\})\phi = f$;
- (c) ϕ is a constant mapping with idempotent value.

Corollary 1.2. If n > 1, then $|\operatorname{End}(O_n)| = 2 + \sum_{i=0}^{n-1} {n+i \choose 2i+1} F_{2i+2}$.

The remainder of the note is dedicated to proving Theorem 1.1 and its corollary. To do so we require the following notions. The *image* of an element $f \in O_n$ is denoted by im(f) and the *kernel* of f is the equivalence relation $\{(x, y) \in \{1, ..., n\} \times \{1, ..., n\} : xf = yf\}$ denoted by ker(f). The *rank* of an element $f \in O_n$ is |im(f)| and denoted rank(f). Some of the important properties of O_n that we require later

are: it is regular, its Green's relations are described by

 $\begin{aligned} f\mathcal{L}g & \text{if and only if} \quad \operatorname{im}(f) = \operatorname{im}(g) \\ f\mathcal{R}g & \text{if and only if} \quad \operatorname{ker}(f) = \operatorname{ker}(g) \\ f\mathcal{D}g & \text{if and only if} \quad \operatorname{rank}(f) = \operatorname{rank}(g) \\ f\mathcal{H}g & \text{if and only if} \quad f = g, \end{aligned}$

and the number of idempotent elements is the 2n th Fibonacci number F_{2n} . Further information regarding O_n can be found in [3] and [4] and regarding semigroups, in general, can be found in [5]. We denote the \mathcal{D} -class of those elements in O_n with rank k by D_k .

It is well-known that *I* is an ideal of O_n if and only if $I = \{f \in O_n : \operatorname{rank}(f) \leq k\}$ for some $1 \leq k \leq n$; for a proof see [6]. In 1962, Aĭzenštat [2] showed that the non-trivial congruences of O_n are exactly those where the only non-singleton class is I_k for some $1 \leq k \leq n$. Another proof of this can be found in [8].

2. PROOF OF THEOREM 1.1

It is straightforward to verify that the mappings described in Theorem 1.1 are endomorphisms of O_n . So, it remains to prove that there are no further endomorphisms. Throughout the remainder of the note we will assume that n > 1.

Let ϕ be an endomorphism of O_n . If ϕ is an automorphism of O_n or a constant mapping, then ϕ satisfies (a) or (c) in Theorem 1.1. So, we may assume that ϕ is not an automorphism and not constant. From the comments in the introduction, there exists $1 \leq k \leq n-1$ such that the unique non-singleton kernel class of ϕ is I_k . If k = n-1, then ϕ is of type (b) from Theorem 1.1. Hence we may assume that $1 \leq k \leq n-2$. In the following lemmas we will prove that this is not possible and so conclude the proof.

Note that ϕ has only singleton kernel classes on $O_n \setminus I_k$ and so ϕ must be injective on $O_n \setminus I_k$. The unique element of $I_k \phi$ is an idempotent. Throughout the remainder of the note we will denote this idempotent by f.

Lemma 2.1. Let $g, h \in D_i$ where $k + 1 \leq i \leq n - 1$. Then $g\mathcal{R}h$ if and only if $g\phi\mathcal{R}h\phi$. Likewise, $g\mathcal{L}h$ if and only if $g\phi\mathcal{L}h\phi$.

Proof. We prove the theorem only for Green's \mathcal{R} -relation, the proof for Green's \mathcal{L} -relation is analogous.

 (\Rightarrow) Since ϕ is a homomorphism, this implication is immediate.

(\Leftarrow) Let $g\phi \mathcal{R}h\phi$. As I_i is a regular subsemigroup of O_n , it follows that $I_i\phi$ is a regular subsemigroup of O_n . Thus, from [5, Proposition 2.4.2], $\mathcal{R}^{I_i\phi} = \mathcal{R} \cap (I_i\phi \times I_i\phi)$. Thus $g\phi \mathcal{R}^{I_i\phi}h\phi$ and so there exist $a, b \in I_i$ with $h\phi = g\phi \cdot a\phi$ and $g\phi = h\phi \cdot b\phi$.

If rank(ga) $\leq k$, then $(ga)\phi = f$ and so $h\phi = f$, a contradiction. Hence rank(ga) > k and likewise rank(hb) > k. It follows, since ϕ is injective on $O_n \setminus I_k$, that h = ga and g = hb. In other words, $g\mathcal{R}h$.

Lemma 2.2. $D_{k+1}\phi \subseteq D_l$ where rank(f) < l < k+1.

Proof. Since ϕ is injective on $D_{k+1} \cup D_{k+2} \cup \cdots \cup D_n$ and ϕ preserves $\leq_{\mathcal{D}}$, it follows that $l \leq k + 1$. As a consequence, rank $(f) \leq k$ and $f\phi = f$.

Assume that l = k + 1. Then $D_{k+1}\phi = D_{k+1}$, since $\phi|_{D_{k+1}}$ is injective. Let $d \in D_{k+1}$ with $fd \neq f$. Note that $d\phi^{-1}$ is a set containing a single element and it is

contained in D_{k+1} . Hence

$$f \neq f \cdot d = f\phi \cdot d = (f \cdot d\phi^{-1})\phi = f,$$

a contradiction. Therefore l < k + 1, as required.

Assume that $\operatorname{rank}(f) = l$ and let $g \in D_{k+1}$. Then $g\phi\mathcal{D}f$. Since $g\phi \cdot f = f \cdot g\phi = f$, it follows that $\operatorname{im}(f) = \operatorname{im}(g\phi)$ and $\operatorname{ker}(f) = \operatorname{ker}(g\phi)$. Thus $f\mathcal{H}g\phi$ and so $f\phi = f = g\phi$, contradicting the assumption that f and g are in different kernel classes of ϕ .

Lemma 2.3. $k \ge \lfloor n/2 \rfloor$.

Proof. By Lemma 2.1, the number of \mathcal{L} -classes in $D_{k+1}\phi$ is $\binom{n}{k+1}$. But, by Lemma 2.2, $D_{k+1}\phi \subseteq D_l$ where l < k+1 and the number of \mathcal{L} -classes in D_l is $\binom{n}{l}$. Hence $\binom{n}{k+1} \leq \binom{n}{l}$ and so $k \geq \lfloor n/2 \rfloor$.

The following lemma is straightforward but we include a proof for the sake of completeness.

Lemma 2.4. There exist idempotents $e_1, \ldots, e_{n-1} \in D_{k+1}$ such that either $e_i e_j \in I_k$ or $e_j e_i \in I_k$ for all $1 \le i < j \le n-1$.

Proof. Let $g_i, h_i \in O_n$ be defined by

$$(j)g_i = \begin{cases} i & j \in \{i, i+1, \dots, i+n-k-1\} \\ j & j < i \text{ or } j > i+n-k-1 \end{cases}$$

for all $1 \leq i \leq k+1$ and

$$(j)h_i = \begin{cases} i & j \in \{i, i+1\}\\ i+2 & j \in \{i+2, i+3, \dots, i+n-k\}\\ j & j < i \text{ or } j > i+n-k \end{cases}$$

for all $1 \le i \le k$. Then $E = \{g_1, \ldots, g_{k+1}, h_1, \ldots, h_k\}$ are all idempotents in D_{k+1} satisfying conditions (i) and (ii). If k = n - 2, then $g_i = h_i$ for all $1 \le i \le k$, and so E contains n - 1 elements. If k < n - 2, then |E| = 2k + 1. From Lemma 2.3, we have that $|E| \ge n - 1$, as required.

Proof of Theorem 1.1. Let $g \in O_n$ be arbitrary. Then $\operatorname{im}(f) \subseteq \operatorname{im}(g\phi)$ as $f \cdot g\phi = f$. Let e_1, \ldots, e_{n-1} be the idempotents from Lemma 2.4. If $i \neq j$, then $e_i e_j \in I_k$ or $e_j e_i \in I_k$. Hence $e_i \phi \cdot e_j \phi = f$ or $e_j \phi \cdot e_i \phi = f$. Thus every element in $\operatorname{im}(e_i \phi) \cap \operatorname{im}(e_j \phi)$ is fixed by f (as $e_i \phi$ and $e_j \phi$ are idempotents). It follows that

$$\operatorname{im}(e_i\phi) \cap \operatorname{im}(e_j\phi) = \operatorname{im}(f),$$

for all $i \neq j$.

Let $E_i = \operatorname{im}(e_i \phi) \setminus \operatorname{im}(f)$ for all *i*. Then E_1, \ldots, E_{n-1} are pairwise disjoint. Since $e_1 \phi, \ldots, e_{n-1} \phi \in D_{k+1} \phi$ it follows from Lemma 2.2 that $|E_1| = \cdots = |E_{n-1}| \ge 1$. It follows that $|E_1 \cup \cdots \cup E_{n-1}| \ge n-1$. Therefore $|E_i| = 1$ for all *i* and $|\operatorname{im}(f)| = 1$. In other words, $D_{k+1} \phi \subseteq D_2$ and, again, $\operatorname{im}(f) \subseteq \operatorname{im}(g\phi)$ for all $g \in D_{k+1}$. Hence $D_{k+1}\phi$ contains at most n-1 different \mathcal{L} -classes, and so, by Lemma 2.1, D_{k+1} has at most n-1 different \mathcal{L} -classes. Thus k+1 = n, a contradiction, and so every endomorphism of O_n is of type (a), (b), or (c).

Proof of Corollary 1.2. We must prove that

$$|\operatorname{End}(O_n)| = 2 + \sum_{i=0}^{n-1} {n+i \choose 2i+1} F_{2i+2}.$$

If *X* is a subset of O_n , then denote by E(X) the set of all idempotents in *X*. It was shown in [7, Corollary 4.4] and [4, Theorem 2.3] that

$$|E(D_{i+1})| = \binom{n+i}{2i+1}$$

and

$$|E(O_n)| = F_{2n}$$

where F_{2n} is the 2n th Fibonacci number.

Let $e \in E(O_n)$ be arbitrary and let $S(e) = \{ f \in E(O_n) : ef = fe = f \}$. Then the numbers of endomorphisms of O_n of types (b) and (c) where $1_n \phi = e$ are |S(e)| - 1 and 1, respectively.

Let $e \in D_{i+1}$ where $0 \leq i \leq n-1$. Then we will prove that $|S(e)| = F_{2i+2}$.

Let $O_{im(e)}$ be the semigroup of order-preserving mappings on im(e) and let Ψ : $S(e) \longrightarrow O_{im(e)}$ be defined so that $(f)\Psi$ is the restriction $f|_{im(e)}$ of f to im(e). If $f \in S(e)$, then fe = f and so $im(f) \subseteq im(e)$. Hence Ψ is well-defined. Moreover $f|_{im(e)}$ fixes im(f) pointwise, and so $f|_{im(e)} \in E(O_{im(e)})$.

We will prove that Ψ is a bijection from S(e) to $E(O_{im(e)})$. If $f \in E(O_{im(e)})$, then $e \cdot ef = ef$ and $ef \cdot e = ef$ as $im(f) \subseteq im(e)$. It follows that $ef \in S(e)$ and $(ef)\Psi = (ef)|_{im(e)} = f|_{im(e)} = f$. That is, $im(\Psi) = E(O_{im(e)})$.

If $f, g \in S(e)$ such that $f|_{im(e)} = g|_{im(e)}$, then $f = ef = e \cdot f|_{im(e)} = e \cdot g|_{im(e)} = eg = g$, and so Ψ is injective. So, $|S(e)| = |E(O_{im(e)})|$ and from above $|E(O_{im(e)})| = F_{2|im(e)|} = F_{2i+2}$.

Therefore there are

(1)
$$|E(D_{i+1})|(|S(e)|-1) = \binom{n+i}{2i+1}(F_{2i+2}-1)$$

endomorphisms of type (b) where $1_n \phi \in D_{i+1}$.

There are two automorphisms and F_{2n} constant endomorphisms. Summing these two values and (1) over all *i* we obtain the required value.

References

- A. Ja. Aĭzenštat, The defining relations of the endomorphism semigroup of a finite linearly ordered set, *Sibirsk. Mat. Ž.* 3 (1962) 161–169 (Russian).
- [2] A. Ya. Aĭzenštat, Homomorphisms of semigroups of endomorphisms of ordered sets, Uch. Zap. Leningr. Gos. Pedagog. Inst. 238 (1962) 38–48 (Russian).
- [3] V. H. Fernandes, The monoid of all injective order preserving partial transformations on a finite chain, *Semigroup Forum* 62 (2001) 178–204.
- [4] G. M. S. Gomes and J. M. Howie, On the ranks of certain semigroups of order-preserving transformations, Semigroup Forum 45 (1992) 272–282.
- [5] J. M. Howie, Product of idempotents in certain semigroups of transformations, Proc. Edinburgh Math. Soc. 17 (1971) 223–236.
- [6] J. M. Howie, Fundamentals of semigroup theory, London Math. Soc. Monographs, New Series, 12, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995.
- [7] A. Laradji and A. Umar, Combinatorial results for semigroups of order-preserving full transformations, Semigroup Forum 72 (2006) 51–62.
- [8] T. Lavers and A. Solomon, The endomorphisms of a finite chain form a Rees congruence semigroup, Semigroup Forum 59 (1999) 167–170.