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On an isotropic differential inclusion
Ana Cristina Barroso, Gisella Croce and Ana Margarida Ribeiro

Abstract—Differential inclusions arise in successful models
proposed to describe the microstructures of elastic crystals. In
this paper we are interested in the existence of Lipschitz maps
u : Ω→ R2 satisfying the inclusion{

Du ∈ E, a.e. in Ω

u = ϕ, on ∂Ω

where Ω is an open bounded subset of R2 and E is a compact
subset of R2×2, which is isotropic, that is to say, invariant
under rotations. We will show an existence result under suitable
hypotheses on the boundary datum ϕ.

Index Terms—Differential inclusion, isotropic set, singular
values, rank one convexity.

I. INTRODUCTION

In the last twenty years successful models for studying
the behaviour of crystal lattices undergoing solid-solid phase
transitions have been studied. In such models it is assumed that
the elements of crystal lattices have certain preferable affine
deformations; this is true for example for martensite or for
quartz crystals (see [1], [11]). This physical problem motivates
the mathematical question of the existence of solutions to
Dirichlet problems related to differential inclusions such as
Du ∈ E a.e. in Ω, where Ω is a domain of Rn and E ⊂ Rn×n

is a compact set.
Two abstract theories to establish the existence of solu-

tions of general differential inclusion problems are due to
Dacorogna and Marcellini (see [5], [7]), whose result is based
on Baire’s category theorem, and Müller and Šverák [12], [13],
who use ideas of convex integration by Gromov. In these two
theories special notions of convexity are used. More precisely,
the rank one convex hull of the set E, plays an important role.
We say that a set E ⊆ Rn×n is rank one convex if

A,B ∈ E, rk(A−B) = 1 ⇒ tA+(1− t)B ∈ E,∀t ∈ [0, 1].

Given a set E ⊆ Rn×n its rank one convex hull, denoted
by RcoE, is the smallest rank one convex set that contains
E. We point out that we are following the notation used by
Dacorogna and Marcellini in [7]; the rank one convex hull is
denoted by lc(E) by Müller and Šverák in [12]. The following
characterization of RcoE holds

RcoE =
∞⋃

i=0

RicoE ,
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where R0coE = E and

Ri+1coE =

{tA+ (1− t)B, t ∈ [0, 1], A,B ∈ RicoE, rk(A−B) = 1}.

Provided certain approximation properties hold, if the gradient
of the boundary datum ϕ belongs to the interior of RcoE, then
there exists a solution u ∈ ϕ+W 1,∞

0 (Ω,Rn) to Du ∈ E a.e.
in Ω. However, the approximation properties are different in
each of the two theories.

Using these abstract theorems various interesting problems
related to the existence of microstructures have been solved,
such as the two well problem, where E = SO(2)A∪SO(2)B,
where A and B are two fixed R2×2 matrices (see [6], [7], [9],
[11], [12]).

In this article we study the case where the set E is an
arbitrary R2×2 isotropic set, that is, invariant under rotations.
More precisely, we assume that E is a compact subset of R2×2

such that AEB ⊆ E for every A,B in the orthogonal group
O(2). Let Ω be an open bounded subset of R2. We investigate
the existence of weakly differentiable maps u : Ω → R2 that
satisfy {

Du ∈ E, a.e. in Ω
u = ϕ, on ∂Ω.

(1)

Since E is isotropic it can be written as

E = {ξ ∈ R2×2 : (λ1(ξ), λ2(ξ)) ∈ K} , (2)

for some compact set K ⊂ {(x, y) ∈ R2 : 0 ≤ x ≤ y}, where
we have denoted by 0 ≤ λ1(ξ) ≤ λ2(ξ) the singular values
of the matrix ξ, that is, the eigenvalues of the matrix

√
ξξt,

which are

λ1(ξ) =
1
2

[√
‖ξ‖2 + 2|det(ξ)| −

√
‖ξ‖2 − 2|det(ξ)|

]
λ2(ξ) =

1
2

[√
‖ξ‖2 + 2|det(ξ)|+

√
‖ξ‖2 − 2|det(ξ)|

]
.

Thanks to the properties of the singular values (see [10]),
problem (1) can be rewritten in the following equivalent way:

‖Du(x)‖2 = a2 + b2 a.e. in Ω, (a, b) ∈ K,

|detDu(x)| = ab a.e. in Ω, (a, b) ∈ K,
u(x) = ϕ(x) x ∈ ∂Ω .

In the case where K consists of a unique point these two
equations are the vectorial eikonal equation and the equation
of prescribed absolute value of the Jacobian determinant.

The main result of our article is the following
Theorem 1.1: Let E := {ξ ∈ R2×2 : (λ1(ξ), λ2(ξ)) ∈ K}

where K ⊂ {(x, y) ∈ R2 : 0 < x ≤ y} is a compact set.
Let Ω ⊂ R2 be a bounded open set and let ϕ ∈ C1

piec(Ω,R2)



be such that Dϕ ∈ int RcoE in Ω. Then there exists a map
u ∈ ϕ+W 1,∞

0 (Ω,R2) such that Du ∈ E a.e. in Ω.
This result was first obtained by Croce in [4] using the theory
developed by Dacorogna and Marcellini and a refinement due
to Dacorogna and Pisante [8]. In this article we treat the same
problem using the theory by Müller and Šverák which leads
to different technical difficulties. We point out that in the case
where K consists of a unique point and K ⊂ Rn, n ≥ 2
the same existence result was obtained by Dacorogna and
Marcellini in [7].

We will use the following characterisation of the rank one
convex hull of E due to Croce [3], [4]. Letting

fθ(x, y) := xy + θ(y − x), x > 0, y > 0, θ ≥ 0 (3)

the following result holds.
Theorem 1.2: Let K be a compact set satisfying

K ⊂
{
(x, y) ∈ R2 : 0 < x ≤ y

}
(4)

and let

E =
{
ξ ∈ R2×2 : (λ1(ξ), λ2(ξ)) ∈ K

}
. (5)

Then RcoE is the set of R2×2 matrices ξ such that

fθ(λ1(ξ), λ2(ξ)) ≤ max
(a,b)∈K

fθ(a, b), ∀ θ ∈ [0, max
(a,b)∈K

b] .

Moreover, int RcoE is the set of R2×2 matrices ξ such that

fθ(λ1(ξ), λ2(ξ)) < max
(a,b)∈K

fθ(a, b), ∀ θ ∈ [0, max
(a,b)∈K

b] .

II. IN-APPROXIMATION

To show theorem 1.1 we will use an existence result due
to Müller and Šverák [12] which requires the following in-
approximation property.

Definition 2.1: (In-approximation) Let E be a compact
subset of Rm×n. We say that a sequence of sets {Ui} is an
in-approximation of E if

1) the sets Ui are open and contained in a fixed ball;
2) Ui ⊆ RcoUi+1;
3) if ξn ∈ Un and ξn → ξ, as n→∞, then ξ ∈ E.
In this section we will show that the set E, defined by (5)

and (4), admits an in-approximation. Since a characterization
of the rank one convex hull of an open isotropic set is not
available, we will construct closed sets Vn from which we
will obtain the open sets Un of the in-approximation.

Definition 2.2: Let εn = 1
n and let rn be a decreasing

sequence such that 0 ≤ rn < εn. For (a, b) ∈ K we define
the sets,

Rn
(a,b) = {(x, y) ∈ R2 : a+ εn − rn ≤ x ≤ a+ εn,

ab− εn

a+ εn
− rn ≤ y ≤ ab− εn

a+ εn
}

and Vn :=
{
ξ ∈ R2×2 : (λ1(ξ), λ2(ξ)) ∈ Kn

}
, where Kn =⋃

(a,b)∈K

Rn
(a,b).

Proposition 2.3: The function fθ(x, y) defined in (3) satis-
fies the following properties:

i) fθ is strictly increasing in y, for every x > 0 and θ ≥ 0;

ii) fθ is strictly increasing in x, for every y > θ and is
strictly decreasing in x, for every y < θ;

iii) fθ(·, θ) is constant, for every θ ≥ 0;
iv) setting

α
(a,b)
n (θ) = fθ

(
a+ εn − rn,

ab−εn

a+εn

)
β

(a,b)
n (θ) = fθ

(
a+ εn,

ab−εn

a+εn

)
one has

max
(x,y)∈Rn

(a,b)

fθ(x, y) = max
{
α(a,b)

n (θ), β(a,b)
n (θ)

}

=


β

(a,b)
n (θ), θ ∈ [0, max

(x,y)∈Rn
(a,b)

y]

α
(a,b)
n (θ), θ ≥ max

(x,y)∈Rn
(a,b)

y ;

v) for every θ ∈ [ max
(x,y)∈Rn

(a,b)

y, max
(x,y)∈Rn+1

(a,b)

y] the following

inequality holds:

α(a,b)
n (θ) < β

(a,b)
n+1 (θ);

for every θ ≥ 0 the following inequality holds:

β(a,b)
n (θ) < β

(a,b)
n+1 (θ);

vi) assume that max
(x,y)∈Rn+1

(a,b)

y < max
(x,y)∈Rn+1

(a′,b′)

y, then for every

θ ∈ [ max
(x,y)∈Rn+1

(a,b)

y, max
(x,y)∈Rn+1

(a′,b′)

y] we have

α(a,b)
n (θ) < α

(a′,b′)
n+1 (θ);

vii) for every θ ∈ [0, max
(x,y)∈Rn+1

(a,b)

y] the following inequality

holds:

max
(x,y)∈Rn

(a,b)

fθ(x, y) < max
(x,y)∈Rn+1

(a,b)

fθ(x, y).

Proof: The first three properties are clear and the fourth
one follows from i), ii) and iii). The second inequality in v)
follows immediately from the fact that

ab− εn

a+ εn
<
ab− εn+1

a+ εn+1
. (6)

Due to the linearity in θ, it suffices to show the remaining
inequalities in v) and vi) for θ belonging to the boundaries
of the respective intervals. This is achieved using (6), i) and
iii). Finally, vii) is a consequence of iv) and v).

Lemma 2.4: Let bM = max
(a,b)∈K

b and aM = max
(a,bM )∈K

a.

Then
max

(x,y)∈Kn

y =
aMbM − εn

aM + εn
,

for all sufficiently large n.
Proof: If (a, b) ∈ K satisfies a ≤ aM then it is easy to

see that
ab− εn

a+ εn
≤ aMbM − εn

aM + εn
.

It remains to show the above inequality for points (a, b) ∈ K
such that a ≥ aM and b < bM . We argue by contradiction



and assume there exists a sequence (an, bn) ∈ K and εn′ a
subsequence of εn such that

aMbM − εn′

aM + εn′
≤ anbn − εn′

an + εn′
.

Since K is compact and (an, bn) ∈ K, up to a subsequence
(an, bn) → (a, b) ∈ K, so passing to the limit in the above
inequality we obtain b ≥ bM , contradicting b < bM .

We will now prove the following proposition.
Proposition 2.5: The sets Vn introduced in Definition 2.2

satisfy Vn ⊆ int RcoVn+1.
Proof: Due to the compactness of K and to the definition

of the sets Rn
(a,b), standard arguments show that the set Kn is

compact. Therefore, by Theorem 1.2, it suffices to prove that
for every θ ∈ [0, max

(x,y)∈Kn+1
y]

max
(x,y)∈Kn

fθ(x, y) < max
(x,y)∈Kn+1

fθ(x, y).

Let θ ∈ [0, max
(x,y)∈Kn+1

y]. Then there exists (a, b) ∈ K

(depending on θ) such that

max
(x,y)∈Kn

fθ(x, y) = max
(x,y)∈Rn

(a,b)

fθ(x, y).

Recall that, by Lemma 2.4,

max
(x,y)∈Kn+1

y =
aMbM − εn+1

aM + εn+1
≥ ab− εn+1

a+ εn+1
.

If 0 ≤ θ ≤ ab−εn+1
a+εn+1

the result follows by property vii) of
Proposition 2.3.

If θ ∈
[

ab−εn+1
a+εn+1

, aM bM−εn+1
aM+εn+1

]
we have, by iv) and vi) of

Proposition 2.3,

max
(x,y)∈Kn

fθ(x, y) = max
(x,y)∈Rn

(a,b)

fθ(x, y)

= α
(a,b)
n (θ)

< α
(aM ,bM )
n+1 (θ)

≤ max
(x,y)∈Rn+1

(aM ,bM )

fθ(x, y)

≤ max
(x,y)∈Kn+1

fθ(x, y).

Theorem 2.6: Let E be given by (5) and (4). Then E admits
an in-approximation.

Proof: Let Vn be the sets considered in the previous
proposition and define the sets Un = intVn.
Step 1) Un are open by definition and it is clear that the
sequence {Un} is uniformly bounded.
Step 2) We will prove the second condition of the definition
of in-approximation. Due to Proposition 2.5, we have Un ⊂
Vn ⊆ int RcoVn+1. We will show that, for every n,

int RcoVn ⊆ RcoUn, (7)

this will imply that Un ⊂ RcoUn+1, as required.
Let ξ ∈ int RcoVn. We will prove that ξ ∈ RcoṼn, where

Ṽn is the set defined by

Ṽn = {ξ ∈ R2×2 : (λ1(ξ), λ2(ξ)) ∈ K̃n},

for a certain compact set K̃n ⊂ intKn. By continuity of the
function ξ → (λ1(ξ), λ2(ξ)) this will entail that Ṽn ⊆ intVn,
therefore

ξ ∈ RcoṼn ⊆ Rco intVn = RcoUn ,

and we will have proved (7). For simplicity of notation we
set (λ1(ξ), λ2(ξ)) = (x, y). Our aim is thus to find a compact
set K̃n ⊂ intKn such that, for every θ ∈ [0, max

(a,b)∈K̃n

b], the

following inequality holds

fθ(x, y) ≤ max
(a,b)∈K̃n

fθ(a, b). (8)

For λ > 0 define K̃λ
n =

⋃
(a,b)∈K

Rn,λ
(a,b) where

Rn,λ
(a,b) ={(x, y) ∈ R2 : a+ εn − rn + λ ≤ x ≤ a+ εn − λ,

ab− εn

a+ εn
− rn + λ ≤ y ≤ ab− εn

a+ εn
− λ}.

It follows that Rn,λ
(a,b) ⊂ intRn

(a,b) ⊂ intKn and so K̃λ
n ⊂

intKn. Since ξ ∈ int RcoVn, we have that fθ(x, y) <
max

(a,b)∈Kn

fθ(a, b), so to show (8) it suffices to prove that, as

λ→ 0+,

max
(a,b)∈K̃λ

n

fθ(a, b) → max
(a,b)∈Kn

fθ(a, b), (9)

uniformly with respect to θ. Notice that, as in the case of Kn,

max
(x,y)∈K̃λ

n

fθ(x, y) = sup
(a,b)∈K

max
{
α

(a,b)
n,λ (θ), β(a,b)

n,λ (θ)
}

where

α
(a,b)
n,λ (θ) = fθ

(
a+ εn − rn + λ,

ab− εn

a+ εn
− λ

)
β

(a,b)
n,λ (θ) = fθ

(
a+ εn − λ,

ab− εn

a+ εn
− λ

)
.

Hence (9) will follow from the fact that, as λ→ 0+,

sup
(a,b)∈K

α
(a,b)
n,λ (θ) → sup

(a,b)∈K

α
(a,b)
n (θ)

sup
(a,b)∈K

β
(a,b)
n,λ (θ) → sup

(a,b)∈K

β
(a,b)
n (θ),

(10)

uniformly in θ. As

|α(a,b)
n,λ (θ)− α(a,b)

n (θ)| ≤ λ

(
max

(a,b)∈K
a+ 1

)
+ λ

ab+ εn

a+ εn

+λ2 + 2λθ

≤ λ

(
max

(a,b)∈K
a+ 1

)
+ λ2 + 2λθ

+λmax{1, max
(a,b)∈K

b}

and this last expression tends to 0, uniformly with respect to θ
and to (a, b), we conclude the first statement of (10). A similar
argument yields the second one.
Step 3) Given (xn, yn) ∈ Kn there exists (an, bn) ∈ K
such that (xn, yn) ∈ Rn

(an,bn). As K is compact, up to a
subsequence, (an, bn) → (a, b) ∈ K, so, by the inequalities
that define Rn

(an,bn), (xn, yn) → (a, b).



Let us now show the third condition of the definition of in-
approximation. Assume that ξn ∈ Un and that ξn → ξ. Since
ξn ∈ Vn, (λ1(ξn), λ2(ξn)) ∈ Kn so, by the above reasoning,
(λ1(ξn), λ2(ξn)) converges to a point (a, b) ∈ K. On the other
hand, by continuity, λi(ξn) → λi(ξ), i = 1, 2, and therefore
(λ1(ξ), λ2(ξ)) = (a, b) ∈ K. Thus ξ ∈ E.

III. EXISTENCE THEOREM

We are going to prove Theorem 1.1. We will assume that
the boundary datum ϕ is C1

piec(Ω,R2), that is to say, ϕ ∈
W 1,∞(Ω,R2), there exist open sets ωi ⊂ Ω such that ϕ ∈
C1(ωi,R2) and Ω \

⋃
i

ωi is a set of Lebesgue measure zero.

We will use the following abstract theorem of Müller and
Šverák [12]) to prove Theorem 1.1.

Theorem 3.1: Let Ω ⊂ Rn be an open, bounded set and let
E be a compact set which admits an in-approximation by the
open sets Ui. Let ϕ : Ω → Rm be a C1 function such that
Dϕ ∈ U1 in Ω. Then there exists u ∈ ϕ+W 1,∞

0 (Ω,Rm) such
that Du ∈ E a.e. in Ω.
We begin by considering the case where ϕ is an affine function
and to this effect we will need the following proposition.

Proposition 3.2: Let E be the set defined by (5) and (4)
and let ξ ∈ int RcoE. Then there exists an in-approximation
sequence Un for E such that ξ ∈ U1.

Proof: Consider the sequence of sets Vn defined in the
previous section. We will show that there exists N = N(ξ) ∈
N such that

ξ ∈ int RcoVN . (11)

For simplicity of notation set (λ1(ξ), λ2(ξ)) = (x, y). We must
show that if

fθ(x, y) < max
(a,b)∈K

fθ(a, b), ∀ θ ∈ [0, max
(a,b)∈K

b]

then there exists N = N(x, y) such that, letting Kn be the
sequence of sets in Definition 2.2,

fθ(x, y) < max
(a,b)∈KN

fθ(a, b), ∀ θ ∈ [0, max
(a,b)∈KN

b]. (12)

Since, by construction of Kn, max
(a,b)∈Kn

b < max
(a,b)∈K

b, it suffices

to prove that

max
(a,b)∈Kn

fθ(a, b) → max
(a,b)∈K

fθ(a, b), n→ +∞, (13)

uniformly with respect to θ ∈ [0, max
(a,b)∈K

b]. By Proposi-

tion 2.3, iv)

max
(a,b)∈Kn

fθ(a, b) = sup
(a,b)∈K

max{α(a,b)
n (θ), β(a,b)

n (θ)}

and

| sup
(a,b)∈K

max{α(a,b)
n (θ), β(a,b)

n (θ)} − max
(a,b)∈K

fθ(a, b)|

≤ sup
(a,b)∈K

|max{α(a,b)
n (θ), β(a,b)

n (θ)} − fθ(a, b)|.

Therefore we must show that, as n→ +∞,

|α(a,b)
n (θ)− fθ(a, b)| → 0 , |β(a,b)

n (θ)− fθ(a, b)| → 0,

uniformly with respect to θ and to (a, b). We start with the
first limit. Letting

mn =
ab− εn

a+ εn
− a− εn + rn, qn = (a+ εn − rn)

ab− εn

a+ εn

we have α(a,b)
n (θ) = mnθ + qn. Notice that qn − ab→ 0 and

mn− b+a→ 0 uniformly with respect to (a, b). This implies
the result. The same reasoning applies to the second limit.

To complete the proof we notice that, letting Un = intVn,
for every fixed N ∈ N, the sequence

RcoUN , UN+1, UN+2, ...

is an in-approximation of E. Indeed the rank one convex hull
of an open set UN is open and rank one convex. Since, by
construction, UN ⊆ RcoUN+1 and RcoUN is the smallest
rank one convex set that contains UN we conclude that
RcoUN ⊆ RcoUN+1. Moreover, if ξ ∈ int RcoE then
ξ ∈ RcoUN , by (11) and inclusion (7).

Theorem 3.3: Let Ω be an open, bounded subset of R2 and
let E be the set defined by (5) and (4). Let ξ ∈ R2×2 be such
that ξ ∈ int RcoE and let ϕ : Ω → R2 satisfy Dϕ = ξ in Ω.
Then there exists u ∈ ϕ+W 1,∞

0 (Ω,R2) such that Du ∈ E.
The proof of Theorem 3.3 follows immediately from the

previous proposition and from Theorem 3.1. To obtain our
existence result in the general case we will once again make
use of Proposition 3.2 together with the following result,
proved by Dacorogna and Marcellini in [7] (Corollary 10.15).

Theorem 3.4: Let Ω be an open subset of Rn and A be an
open subset of Rm×n. Let ϕ ∈ C1(Ω,Rm) ∩W 1,∞(Ω,Rm)
be such that

Dϕ(x) ∈ A, ∀ x ∈ Ω.

Then there exists a function v ∈W 1,∞(Ω,Rm) such that v is
piecewise affine in Ω, v = ϕ on ∂Ω and Dv ∈ A a.e. in Ω.

We will now prove Theorem 1.1.
Proof: Assume first that ϕ ∈ C1(Ω̄,R2). We define the

open set A as the set consisting of R2×2 matrices ξ such that

fθ(λ1(ξ), λ2(ξ)) < max
(a,b)∈K

fθ(a, b), θ ∈ [0, max
(a,b)∈K

b].

We apply the previous theorem to ϕ and A, in order to obtain a
map v ∈W 1,∞(Ω,R2) such that v = ϕ on ∂Ω, Dv = ci in Ωi

for some constant ci ∈ A and
⋃
i

Ωi = Ω. Due to Theorem 3.3

we can solve the problem{
Du ∈ E, a.e. in Ωi

u(x) = v(x), x ∈ ∂Ωi

in each set Ωi. Denoting by ui the solution in Ωi, the map
defined by u = ui in Ωi belongs to ϕ + W 1,∞

0 (Ω,R2) and
satisfies Du ∈ E.

Now suppose that ϕ ∈ C1
piec(Ω̄,R2). This means that there

exist open sets ωi ⊂ Ω such that ϕ ∈ C1(ωi,R2) and Ω\
⋃
i

ωi

is a set of Lebesgue measure zero. By the first case, for each
i, there exists wi ∈ ϕ + W 1,∞

0 (ωi,R2) such that Dwi ∈ E
a.e. in ωi. Thus, the function u defined as wi in ωi belongs
to ϕ+W 1,∞

0 (Ω,R2) and satisfies Du ∈ E, a.e. in Ω.



We conclude this article by pointing out that Theorem 1.1
is not far from being optimal in the case where the boundary
datum ϕ is affine. To explain this, we need some further
notions of convexity given in [7].

Definition 3.5: A function f : R2×2 → R ∪ {+∞} is
polyconvex if there exists g : R5 → R ∪ {+∞} convex such
that f(A) = g(A,det(A)).

A measurable function f : R2×2 → R is quasiconvex if

f(A) ≤ 1
|Ω|

∫
Ω

f(A+Dψ) dx

for every bounded domain Ω of R2, for every A ∈ R2×2 and
for every ψ ∈ W 1,∞

0 (Ω,R2) (|Ω| stands for the Lebesgue
measure of Ω).

A function f : R2×2 → R ∪ {+∞} is rank one convex if
f(tA+ (1− t)B) ≤ tf(A) + (1− t)f(B) whenever t ∈ [0, 1]
and rk(A−B) = 1.

It is well known that, for f : R2×2 → R,

f polyconvex ⇒ f quasiconvex ⇒ f rank one convex.

Definition 3.6: A set E ⊆ R2×2 is polyconvex if for all

ti ≥ 0 with
5∑

i=1

ti = 1 and all Ai ∈ E with

5∑
i=1

ti detAi = det

(
5∑

i=1

tiAi

)

then
5∑

i=1

tiAi ∈ E.

The polyconvex hull of a given set E is defined as the
smallest polyconvex set that contains E.

Let E ⊂ R2×2. Let P be the set of polyconvex functions
f : R2×2 → R such that fbE≤ 0. We recall the following
characterization of the closure of the polyconvex hull of E

PcoE = {ξ ∈ R2×2 : f(ξ) ≤ 0, ∀ f ∈ P}.
Now, suppose that u is a solution of{

Du ∈ E, a.e. in Ω
u = uξ0 , on ∂Ω

where uξ0 is an affine function with Duξ0 = ξ0. Then there
exists a map ψ ∈ W 1,∞

0 (Ω,R2) such that u = uξ0 + ψ. Let
f ∈ P . Then f is also quasiconvex and thus

f(ξ0) ≤
1
|Ω|

∫
Ω

f(ξ0 +Dψ) dx =
1
|Ω|

∫
Ω

f(Du) dx ≤ 0

since fbE≤ 0. This implies that ξ0 ∈ PcoE. In the case
where E is an isotropic compact subset of R2×2 is has been
shown in [4] and [2] that RcoE = RcoE = PcoE. Therefore
ξ0 ∈ RcoE.
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