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The exact distribution of the Lr.t. (likelihood ratio test) statis-
tic to test the equality of several variance-covariance matrices, as it
also happens with several other l.r.t. statistics used in Multivariate
Statistics, has a non-manageable form. This renders the computa-
tion of exact p-values and quantiles almost impossible, even for small
numbers of variables. On the other hand, the existing asymptotic ap-
proximations do not exhibit the necessary precision for small sample
sizes and their precision for larger samples is believed to be possible
to be improved by using a different approach. For these reasons, the
development of near-exact approximations to the distribution of this
statistic, arising from an whole different method of approximating
distributions, emerges as a desirable goal. From a factorization of the
exact c.f. of the statistic where we adequately replace some of the fac-
tors, we obtain a near-exact c.f. which determines the near-exact dis-
tribution. This distribution, while being manageable lies much closer
to the exact distribution than the available asymptotic distributions
and opposite to these, is also asymptotic for increasing number of
variables and matrices involved in the test. The evaluation of the
performance of the distributions developed is done through the use
of two measures based on the c.f.’s. Modules programmed in Math-
ematica are provided to compute p-values as well as the p.d.f., c.d.f.
and c.f. of the near-exact distributions proposed.

1. Introduction. The test of equality of variance-covariance matrices
among several populations is of interest in a large number of procedures
used in multivariate analysis which have an underlying assumption of equal
covariance matrices (see for example , ; , ). In-
deed, for example, methods to test the equality of mean vectors and dis-
criminant methods, as Fisher linear discriminant function and the methods
introduced by ( ) and ( ), assume equal variance-
covariance matrices for the populations . Examples of application may be
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large variety of fields such as genetic, psychometric, anthropometric, edu-
cational and biometrical studies (see for example Jamshidiana and Schott,
2007; Zhang and Boos, 1992). Furthermore, the test of equality of covariance
matrices is also part of the test of equality of several multivariate Normal
distributions.

While we strongly believe that it is not possible to improve significantly
upon the existing results by using the available techniques to develop asymp-
totic distributions, we believe it is possible to do so by using a different ap-
proach. Furthermore, we also believe that it is possible to develop a method
which, opposite to the usual asymptotic methods, besides yielding distri-
butions that are asymptotic only in terms of sample size, may produce ap-
proximating distributions which, being manageable and much closer to the
exact distribution than the usual asymptotic distributions, also display an
asymptotic behavior for increasing values of other parameters (in the distri-
bution being approximated), as the number of variables and the number of
matrices involved.

It is in this context that the near-exact distributions arise, through the
use of a different concept in approximating distributions.

In this paper we propose the development of near-exact distributions
for the Lr.t. (likelihood ratio test) statistic to test the equality of several
variance-covariance matrices and show how we may overcome the difficulties
that arise in adequately factorizing the exact c.f. (characteristic function) of
the logarithm of the l.r.t. statistic in this case.

The approach followed is based on factorizing adequately the exact c.f.
of the logarithm of the L.r.t. statistic in a first step and then, while leaving
unchanged the larger number of those factors, replace the remaining by an
asymptotic function. More precisely, let us assume that the exact c.f. of
W = —log A, where A is the statistic of interest, may be factorized as

Py (t) = ®1(t) Pa(t),

where both ®4(t) and ®4(t) are recognized as c.f.’s. Let us build ®;(¢) in
such a way that it collects the larger number of factors in @y (t), while
at the same time corresponds to a known manageable distribution and let
®4(t) correspond to a non-manageable distribution. We will replace ®4(t)
by ®5(t) in such a way that ®5(¢) and ®2(¢) are in the same Pearson family
of distributions and also in such a way that if we take

Oy (n,p git) = @1 (1) P3(1)

where @y, (n, p, ¢; t) represents the so-called near-exact c.f. of W, while func-
tion of the sample size n, the number of variables p and the number of ma-
trices involved ¢, this c.f. corresponds to a near-exact distribution which is
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known and manageable in such a way that the computation of near-exact
p-values and quantiles is rendered easy.
We should note that we also want to define ®3(¢) in such a way that

By (t) — B :
Dy (t) — DF ot
(1.2) pliﬁrglo w(?) ZV(”,;D, 4:1) dt =0 and
1.3 lim |2V = Pwlmp.ait)) )
q—00 t

If we take @}, (n,p,q;t) as the c.f. of the r.v. W*, (1.1), (1.2) and (1.3)
above are indeed equivalent to have, respectively,

d d d
wr — W, W — W and W' — W.
n—00 p—00 q—00

The reason why we usually factorize the c.f. of the negative logarithm of
the Lr.t. statistic and not the c.f. of the Lr.t. statistic is related with the fact
that usually the c.f. of W = —log A is much easier to obtain and to handle
than the c.f. of A itself, upon which the factorizations we intend to carry out
are not even possible to perform.

Anyway, once obtained a near-exact distribution for W, it will be very
simple to obtain the corresponding near-exact distribution for A = e™" by
simple transformation.

The results in this paper, together with the results in Coelho (2004),
Alberto and Coelho (2007) and Grilo and Coelho (2007) may be used to
develop very accurate near-exact distributions for the Lr.t. statistic to test
the equality of several multivariate Normal distributions, while on the other
hand, also together with the results in Marques and Coelho (2008) may be
used to establish an integrated approach, in terms of near-exact distribu-
tions, for the family of Lr.t. statistics most commonly used in multivariate
statistics.

We will consider in this paper the Lr.t. statistic to test the equality of
several variance-covariance matrices, under the underlying assumption of
multivariate normality. We should however note that the null distribution of
the Lr.t. statistic remains the same under the classes of elliptically contoured
and left orthogonal-invariant distributions (Anderson, 2003; Anderson et al.,
1986; Anderson and Fang, 1990; Jensen and Good, 1981; Kariya, 1981). We
will show how we can factorize the c.f. of the logarithm of this statistic
in two factors, one that is the c.f. of a Generalized Integer Gamma (GIG)
distribution (Coelho, 1998) and the other the c.f. of a sum of independent
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r.v.’s (random variables) whose exponentials have Beta distributions. From
this decomposition we will be able to build near-exact distributions for the
logarithm of the l.r.t. statistic as well as for the statistic itself. The closeness
of these approximate distributions to the exact distribution will be assessed
and measured through the use of two measures, presented in Section 5,
derived from inversion formulas, one of them with a link to the Berry-Esseen
bound.

Let us suppose that we have ¢ independent samples from ¢ multivariate
Normal distributions Ny,(¢j,%5) (4 =1,...,q), the j-th sample having size
n + 1, and that we want to test the null hypothesis

(1.4) Hy:%=%=...=%, (=) (X unspecified).

As Bartlett (1937) and Muirhead (1982, sec. 8.2) refer, by using the mod-
ified l.r.t. statistic we obtain an unbiased test. The modified Lr.t. statistic
(where the sample sizes are replaced by the number of degrees of freedom
of the Wishart distributions) may be written as (Anderson, 2003; Bartlett,
1937; Muirhead, 1982)

n/2
gy BT

12[ npn/2

j=1

(15) A= |A|nq/2 )

where A; is the matrix of corrected sums of squares and products formed
from the j-th sample and A = A +--- + A,.
The h-th moment of A* in (1.5) is (Muirhead, 1982)

e (-1
M + Mh)
poo T (Z4+1-4+3h) .
le_Ilkl_Il ( +§_%) (h > ==ty
From (1.6) we may write the c.f. for the r.v. W = —log(\*) as

S () = B [¢W]=E[(\)]

B [()\*)h] _ qnpqh/Z ﬁ
(1.6) = F(

ey (5

(1.7) N o1 T (s — it)
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It will be based on this expression that we will obtain, in Section 3, decom-
positions of the c.f. of W that will be used to build near-exact distributions
for W and A*.

2. Asymptotic distributions. Box (1949) proposes for the statistic
W = —log(\*) an asymptotic distribution based on an expansion of the
form

P(2pW <2) = (1-w)P(x; < 2) + wP(xpea < 2) + O ((na) )

where )
1 q+12p°+3p—1
=-(g—Dplp+1), p=1-
g=5la=Vplp+1), p ng 6+ 1)
and
o= o+ {00 -9 T o 6ta - - o)

and where P(x; < z) stands for the value of the c.d.f. (cumulative distri-
bution function) of a chi-square r.v. with g degrees of freedom evaluated at
z(>0).

However, taking into account that

1 X
XNXEEF(Q —> - _Nl—‘(%ap>a

where we use the notation

X ~T(r, )
to denote the fact that the r.v. X has p.d.f. (probability density function)

fx(z) = I‘>(\7") e A gl (x> 0;r,A>0)

we may write
POVSZ)z(1—@P<F<%p>§z>+wP<F<g+Zp>Sz),

where P (I" (v, p) < z) stands for the value of the c.d.f. of a I'(v, p) distributed
r.v. evaluated at z(> 0).
We may thus write, for the c.f. of W,

(21) D) & Bpp(t) = (1=w)p®2(p—it) 9/ +w p2*9/2(p—it) 2917,
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We should note that actually, in many cases where n is close to p, Box’s
asymptotic distribution does not even correspond to a true distribution (see
Appendix B).

Somehow inspired on this asymptotic approximation due to Box, which
ultimately approximates the exact c.f. of W by the c.f. of a mixture of
Gamma distributions and also on Box’s introduction of his 1949 paper (Box,
1949), where he states that ”Although in many cases the exact distribu-
tions cannot be obtained in a form which is of practical use, it is usually
possible to obtain the moments, and these may be used to obtain approx-
imations. In some cases, for instance, a suitable power of the likelihood
statistic has been found to be distributed approximately in the type I form,
and good approximations have been obtained by equating the moments of
the likelihood statistic to this curve.”, we propose two other mixtures of
Gamma, distributions, all with the same rate parameter, which match the
first four or six exact moments to approximate asymptotically the c.f. of
W = —log(A\¥).

These distributions are: the mixture of two Gamma distributions (M2G),
both with the same rate parameter, with c.f.

2
(2.2) Drrac(t) =D paj Ay (Ap —it) ",
7j=1

where poo = 1 — poy with poj, 705, Ao > 0, and the mixture of three
Gamma distributions (M3G), all with the same rate parameter, with c.f.

3
(2.3) Darac(t) =D paj A5 (Az —it) 73
7j=1

where p33 =1—p31 —pse2, with psj, 735, Ag > 0.
The parameters in (2.2) and (2.3) are respectively obtained by solving the
systems of equations

0"® k(1) =i"2k: T(reg+h) \n_ 9w (t)

Pk - )
h J . k h
ot ING) ot o

(2.4)
t=0 j=1

for h =1,...,2k, with k = 2 for the parameters in (2.2) and k£ = 3 for the
parameters in (2.3).

Actually, since, as shown in Lemma 1 in Appendix A, @y, () is the c.f. of
a sum of independent log Beta r.v.’s, the approximation of the distribution
of W by a mixture of Gamma distributions is a well justified procedure,
since as Coelho et al. (2006) proved, a log Beta distribution may be rep-
resented as an infinite mixture of Exponential distributions, and as such a
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sum of independent log Beta r.v.’s may be represented as an infinite mix-
ture of sums of independent Exponential distributions, which are particular
Generalized Integer Gamma distributions (Coelho, 1998). Thus, the use of
a finite mixture of Gamma distributions to replace a log Beta distribution
seems to be a much adequate simplification.

We will also use as asymptotic distributions the Gamma distribution
from Jensen (1991, 1995) which matches the two first moments of W. This
asymptotic distribution will indeed always be outperformed by the M2G and
M 3G asymptotic distributions since it may be seen as the single component
member of the Gamma mixture family that comprises M2G and M3G. We
will also use as a reference the asymptotic saddle-point approximation from
Jensen (1991, 1995).

3. The characteristic function of W = —log(A*). In this section
we will present two results that will enable us to obtain a factorization of
the c.f. of W which will be used to build near-exact distributions for W and
A*.

In a first step we will show how the c.f. of W = —log(A\*) may be fac-
torized in two factors, one of them being the c.f. of the sum of independent
Logbeta r.v.’s (multiplied by n or n/2) and the other the c.f. of the sum of
independent Exponential r.v.’s.

In a second step we will identify the different Exponential distributions
involved and devise a method to count them and to obtain analytic ex-
pressions for the number of times each different Exponential distribution
appears in order to convert this part of the c.f. of W into the c.f. of a sum of
independent Gamma distributions with integer shape parameters, that is,
the c.f. of a GIG distribution, identifying the depth of this distribution.

Corresponding to the first step above, we have the next Theorem.

THEOREM 3.1. The characteristic function of W = —log \* may be writ-
ten as

O, (t)=E (eitW) = By (t) Bo(t),

where

2N (n=D/n
(n—1)/n—it

p/2] q
o(t)=1¢ I II

J=1 k=1 g k=2
q

pl2

% o +1—1)/n
M e

k=11=1



8 C. A. COELHO AND F. J. MARQUES

and

p/2] ¢ b D(a:+b*, —nit
(1)2(15):{. H ?(a]‘—l—bik) (a; ]k m)

12[ D(ap+byi) Tlap+bi,—2it) )"
T(ap+byy,) T (ap+byr—5it)

k=1
with
(31)  aj=nt+1-2j,  bp=24-1+52 by =[by,
n+1l—p *
(32) ap = 5 ’ bpk = Tl_’_%_pgiqla bpk: = prk?J ’

forj=1,...,5] and k =1,...,q, and where
piL2:p—2r;iJ = Mod(p,2).

PROOF. See Appendix A. O

Corresponding to the second step described above, we have the following
Theorem.

THEOREM 3.2. We may write for ®1(t) in Theorem 3.1,
p—1 T
(n—Fk)/n k
o) =1 <— )
i \(n—Fk)/n —it

where for a = [”;IJ and

q 2 2
T} for k=1,. ,p -1,
dk —1-2
(3.3) Iy = and k # p=1=20
ri+a* fork=p—1-—2a
with
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and

Chs ke{l,...,a+1}

p| _ |k « ...,min(p—2aq,p—

T R il i

q ([’%IJ - [%J) , ke{l+p—2ay,...,p—1; step 2} ,
where, fork=1,...,q,

e [ s un[ ]« g 2242
and
R R )
ot o5+ 25 7 -]
PROOF. See Appendix A. O

From the results in Theorems 3.1 and 3.2 we may write

o = T (2 s)"

k=1

. \pL2
" 12[ T(ap+by) Tlap+b5,—5it)\
T(ap+05;) T (ap+byr—5it) ’

v

Po(t)

for aj, bjk, ap, bpk, b}, and by, defined in (3.1)-(3.2) and where ®;(%) is
the c.f. of a GIG a distribution of depth p — 1 and ®,(¢) is the c.f. of the
sum of independent Logbeta r.v.’s (some of them multiplied by n and other
multiplied by n/2).

It will be based on this expression of the c.f. of W that we will develop
the near-exact distributions in the next section.
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Dy (t) = D4 (t) X D(t)
~—— ——
GIG dist. sum of indep. Logbeta
asymptotic replacement
for ®o(t) l

Dy (t)

Q

k
Bi(t) x> Oipi(p—it)
i=1

~ v
'

mixture of k GNIG distributions
(yielding a single GNIG dist. for k = 1)

F1a 1. How the near-exact distributions are built.

4. Near-exact distributions for W and A*. In all cases where we
are able to factorize a c.f. into two factors, one of which corresponds to a
manageable well known distribution and the other to a distribution that
although giving us some problems in terms of being convoluted with the
first factor, may however be adequately asymptotically replaced by another
c.f. in such a way that the overall c.f. obtained by leaving the first factor
unchanged and adequately replacing the second factor may then correspond
to a known manageable distribution. This way we will be able to obtain
what we call a near-exact c.f. for the r.v. under study.

This is exactly what happens with the c.f. of W. In this section we will
show how by keeping @1 (¢) in the c.f. of W in (3.6) unchanged and replacing
®y(t) by the c.f. of a Gamma distribution or the mixture of two or three
Gamma distributions, matching the first two, four or six derivatives of ®5(t)
in order to ¢t at ¢ = 0, we will be able to obtain high quality near-exact
distributions for W under the form of a GNIG (Generalized Near-Integer
Gamma) distribution or mixtures of GNIG distributions (see Figure 1). From
these distributions we may then easily obtain near-exact distributions for
M= W,

The GNIG distribution of depth g + 1 (Coelho, 2004) is the distribution
of the r.v. g
Z=Y+> X,

i=1
where the g + 1 r.v’s Y and X; (1 = 1,...,g) are all independent with
Gamma distributions, Y with shape parameter r, a positive non-integer,
and rate parameter A and each X; (; = 1,...,g) with an integer shape
parameter r; and rate parameter \;, being all the g + 1 rate parameters
different. The p.d.f. of Z is given by
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fz(z|r1, . rg, s Aty oy Mgy A) =

I'(k
(41) KN Z e —Ajz Z{c],kr(k(_i_),r) Zk+7‘71

k=1

for z > 0, and the c.d.f. given by

r z
FZ(Z|7'1,...,7"9,7"; )\1,...,)\9,)\) =\ mlFl(’l",’l"—i-l,—)\Z)

r+z>\z

(42) _KATZG /\ZZC]]CZ{ ’I“+1+’L

1F1(T,T+1+i, —()\ — )\])Z)}

also for z > 0, where

g
K=T["/ and ¢ = )’\;ff‘(k)
j= J
with ¢; given by (11) through (13) in Coelho (1998). In the above expres-
sions 1Fy(a,b;z) is the Kummer confluent hypergeometric function. This
function has usually very good convergence properties and is nowadays eas-
ily handled by a number of software packages.
In the next Theorem we develop near-exact distributions for W under
the form of a single GNIG distribution or a mixture of two or three GNIG
distributions, using the procedure described in Figure 1.

THEOREM 4.1. Using for ®o(t) in the characteristic function of W =
—log X in (3.6), the approzimations:

i) A(A—it)”° with s,\ > 0, such that, for h =1,2,

ol ol
(4.3) i AN (A—it) 7’ = 5 ©a(t) :

ot o ot 0

ii) Z O 1°F (u — it) ™%, where O = 1 — 01 with O, sk, p > 0, such that,
k=1
forh=1,...,4,
Sk 8}7,
(1.4) Z (L) | s
= t=0
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3
i) ZOZ vk (v —it) %k, where 05 = 1 — 07 — 05 with 0}, st,v > 0, such

k=1
that, for h=1,...,6,

o & . .
(4.5) 5 > O vk (v—it) "5
t k=1

t=0
we obtain as near-exact distributions for W, respectively,

i) a GNIG distribution of depth p with c.d.f.
(4.6) F(wlri,...,rp-1,8 A, .., Ap—1, ),

where the rj (j =1,...,p—1) are given in (3.3) and

n—j )
n

and

ma m%
(4.8) A= 5 and s = 5
with

—h ol

mp =1 ﬁ@Z(t) ) h=1,2;

=0
ii) a mizture of two GNIG distributions of depth p, with c.d.f.

2
(49) ZokF(w|T17"'7Tp7178k;>\17"'7>‘p717:u‘)7
k=1

where r; and X\j (j =1,...,p—1) are given in (3.3) and (4.7) and 601,
1, s1 and so are obtained from the numerical solution of the system of
four equations

F(Sk+h) _h ._h (9h
O —r T = i 2 By (1)
<F T (sp) oth |

—1,...,4)

M

(4.10)

—_
=l

for these parameters, with 05 =1 — 0y;



NEAR-EXACT DISTRIBUTIONS TO TEST EQUALITY OF MATRICES 13

iii) or a mizture of three GNIG distributions of depth p — 1, with c.d.f.

3
(4.11) ZG,’; F(wlry,...,rp—2,553 A1, ..., Ap_2, V),

with r; and X\j (7 =1,...,p—2) given by (3.3) and (4.7) and 607, 03,
v, s, s5 and s3 obtained from the numerical solution of the system of
s equations

3 h
« Dlsp +h) Lh _h 9
203 F k) - 8th (1)2( )

(hzl,...,6)

(4.12) =0

for these parameters, with 05 =1 — 07 — 05.

PRrROOF. If in the c.f. of W we replace ®2(t) by A*(A — it) * we obtain

pl n—=k)/n Tk
By (t) ~ XA — i)~ ] <#) ,

P —k)/n —it

Dy (t)

that is the c.f. of the sum of p — 1 independent Gamma r.v.’s, p — 2 of which
with integer shape parameters r; and rate parameters A; given by (3.3)
and (4.7), and a further Gamma r.v. with rate parameter s > 0 and shape
parameter A. This c.f. is thus the c.f. of the GNIG distribution of depth
p with distribution function given in (4.6). The parameters s and A\ are
determined in such a way that (4.3) holds. This compels s and A to be given
by (4.8) and makes the two first moments of this near-exact distribution for
W to be the same as the two first exact moments of W.

2
If in the c.f. of W we replace ®o(t) by Y. 0 p°(p — it)~*F we obtain
k=1

2 p_1 "
- Sp — i) TSk« M k
Nkz::leku (ko — it) 51_[1<(n_k)/n—it> ’

J

~~

®1(t)
that is the c.f. of the mixture of two GNIG distributions of depth p with
distribution function given in (4.9). The parameters 6y, p, s and so are

defined in such a way that (4.4) holds, giving rise to the evaluation of these
parameters as the numerical solution of the system of equations in (4.4) and
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to a near-exact distribution that matches the first four exact moments of
W.

3
If in the c.f. of W we replace ®5(t) by 3 0jv°k (v—it) k we obtain
k=1

3 p—1 "
* g% s\ —S7 (n_k)/n '
P (1) ~ 0, vk (v —it) "%k x T N g ’
w(#) kgk (v —it) g((n—k)/n_lt>

J

1 (1)

that is the c.f. of the mixture of three GNIG distributions of depth p with
distribution function given in (4.11). The parameters 07, 05, v, s7, s5 and sj
are defined in such a way that (4.5) holds, what gives rise to the evaluation
of these parameters as the numerical solution of the system of equations in
(4.5), giving rise to a near-exact distribution that matches the first six exact
moments of W. O

We should note here that the replacement of the c.f. of a sum of Logbeta
r.v.’s by the c.f. of a single Gamma r.v. or the c.f. of a mixture of two or
three of such r.v.’s has already been well justified at the end of Section 2.

COROLLARY. Distributions with c.d.f.’s given by
i) 1—F(=logz|ri,...,Tp—1,8; Alseevs Ap—1, ),

2
i) 1— Z Or F(—log z|r1,...,rp—1, Sk;
k=1

>\17"'7>‘p717:u‘)7
or
3
i) 11— Z 0p F(—log z|r1,...,rp—1, S;
k=1
>\1,...,>\p,1,l/),
where the parameters are the same as in Theorem 3.1, and 0 < z < 1
represents the running value of the statistic \* = e~V may be used as

near-ezact distributions for this statistic.

PROOF. Since the near-exact distributions developed in Theorem 4.1 were
for the r.v. W = —log(\*) we only need to mind the relation

Fy-(2) =1— Fy(—logz)

where Fy«(-) is the c.d.f. of A* and Fy(-) is the c.d.f. of W, in order to
obtain the corresponding near-exact distributions for A*. O
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We should also stress that although we advocate the numerical solution
of systems of equations (2.4), (4.10) and (4.12), the remarks at the end of
Section 3 in Marques and Coelho (2008), also apply here.

5. Numerical studies. In order to evaluate the quality of the approx-
imations developed we use two measures of proximity between c.f.’s which
are also measures of proximity between distribution functions or densities.

Let Y be a continuous r.v. defined on S with distribution function Fy (y),
density function fy(y) and c.f. ¢y (¢), and let ¢, (¢), F,(y) and f,(y) be
respectively the characteristic, distribution and density function of a r.v.
X,,. The two measures are

Bi=o [ lev(®) - sa)t

and,

Ay = 1o ‘¢Y(t)

an t
( )‘ dt,
with

(5.1) r;lgglfy(y)—fn(y)léAl and r;lgsichy() Fa(y)l < A

We should note that for continuous r.v.’s,

n— o0

n—oo
and either one of the limits above imply that

(5.3) X, L v.

Indeed both measures and both relations in (5.1) may be derived directly
from inversion formulas, and Ay may be seen as based on the Berry-Esseen
upper bound on |Fy(y) — F,(y)| (Berry, 1941; Esseen, 1945; Loeve, 1977,
Chap. VI, sec. 21; Hwang, 1998) which may, for any b > 1/(27) and any
T > 0, be written as

Py (1) C(b)M

(5.4) max| Py (y) ~ Fa(0)] < b/

()‘dt

where M = mazycs fr(y) and C(b) is a positive constant that only depends
of b. If in (5.4) above we take T' — oo then we will have Ag, since then we
may take b =1/(2m).
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These measures were used by Grilo and Coelho (2007) to study near-exact
approximations to the distribution of the product of independent Beta r.v.’s
and by Marques and Coelho (2008) to the study of near-exact distributions
for the sphericity Lr.t. statistic.

In this section we will denote Box’s asymptotic distribution by 'Box’,
by 'G’, 'M2G’ and 'M3G’ respectively the asymptotic Gamma distribu-
tion developed by Jensen (1991, 1995) and the mixture of two and three
Gamma distributions proposed in Section 2 and by ’GNIG’, 'M2GNIG’ and
"M3GNIG’ the near-exact single GNIG distribution and the mixtures of two
and three GNIG distributions.

We show in this section the Tables for values of Ay while in Appendix C
are the corresponding Tables for the values of A;.

In Table 1, we may see for increasing p (number of variables), with the
sample size remaining close to p (n — p = 2), the continuous degradation
(increase) of the values of the measure Ay for Box’s asymptotic distribution,
even with a value which does not make much sense for p = 50 (since Ag is an
upper-bound on the absolute value of the difference between the approximate
and the exact c.d.f.). Also the three asymptotic distributions G, M2G and
M3G show slightly increasing values for Ay, although remaining within much
low values. For the distribution M3G it was not possible to obtain, for p = 20
and p = 50, stable solutions for the system of equations (2.4) for k¥ = 3. This
distribution, for values of p < 7 even shows lower values of A, than the
GNIG near-exact distribution.

Opposite to this behavior, all three near-exact distributions show a sharp
improvement (decrease) in their values for Ay for values of p large enough,
showing the asymptotic character of these distributions for increasing values
of p.

Table 7 in Appendix B, has the corresponding values for A; and would
lead us to draw similar conclusions.

In Tables 2 and 8 we may see the clear asymptotic character of the
near-exact distributions for increasing values of ¢ (the number of matri-
ces being tested), with a similar but less marked behavior of the G, M2G
and M3G asymptotic distributions, opposite to what happens with Box’s
asymptotic distribution.

In Tables 3 and 9 we may see how, for increasing sample sizes, the
asymptotic character is stronger for the near-exact distributions than for the
asymptotic distributions. This asymptotic character being more marked for
the near-exact distributions based on mixtures. However, the M3G asymp-
totic distribution for p = 7, ¢ = 2 and n = 50 even beats the M2GNIG
near-exact distribution and the M2G asymptotic distribution performs bet-
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TABLE 1

Values of the measure Ay for increasing values of p, with small sample sizes

pqg n Box G M2G M3G GNIG M2GNIG M3GNIG
3 2 5 1.364x107! 1.737x107% 2.601x10* 2.826x10°° 3.461x10°% 4.503x10°% 4.503x10°°
4 2 6 2058x1071 2.547x107% 1.417x107% 9.342x107° 9.733x107° 1.623x1077  9.621x107'°
5 2 7 2.690x107! 3.036x107% 2.092x107* 1.940x107° 1.952x107° 2.261x1077  9.605x107°
6 2 8 3.256x10°! 3.377x107% 2.601x10* 2.826x10°° 6.091x10°° 4.167x10"7  3.404x10°°
72 9 3.762x107!  3.632x107%  3.000x10"* 3.579x107° 1.022x10~* 1.037x107°% 1.537x10®
8 2 10 4.214x107' 3.831x107% 3.319x10™* 4.216x107° 3.493x10~° 1.906x10"7  1.492x107°
9 2 11 4.621x107' 3.988x10™% 3.579x10"% 4.755x107° 2.244x107° 6.825x107%  1.940x1071°
10 2 12 4.986x107' 4.116x107% 3.794x107* 5.213x107° 2.141x107° 8.573x107%  5.282x10~'°
20 2 22 T7.099x107' 4.658x107% 4.749x107* ——x— 4.070x107% 4.854x107°  9.293x107'2
35 2 37 9.253x10°! 4.758x107% 4.950x10°* ——x— 1.208x10°% 5.869x107 1% 4.510x10 '3
50 2 52 1.286x10°  4.701x10™% 4.864x107% ——x— 4.184x1077 9.503x107't 3.325x10 %

TABLE 2

Values of the measure A» for increasing values of q, with small sample sizes

p q n Box G M2G M3G GNIG M2GNIG M3GNIG
3 2 5 1.364x107' 1.737x107% 2.601x107* 2.826x107° 3.461x10°* 4.503x10°°% 4.503x10°°
3 5 5 1.669x107' 1.157x107% 3.947x107° 1.697x107°% 4.234x10"*% 8.892x107°%  3.004x10~"
3 7 5 1.869x107' 1.003x107% 3.283x107° 1.423x107°% 2.870x10"*% 4.725x107°%  1.320x10~"
3 10 5 2.143x107' 8.566x107* 2.633x107° 1.111x107°% 1.796x10~* 2.168x107° 4.610x10~®
10 2 12 4.986x107" 4.116x107% 3.794x107* 5.213x107° 2.141x107° 8.573x10™%  9.293x10~'°
10 5 12 5820101 2.600x10°% 1.796x10 4 x— 8.878x10°7 2.092x10° 1% 3.988x10 !4
10 7 12 6.376x107" 2.212x107% 1.389x107* x— 4.090x1077 6.378x107 ! 1.125x107
10 10 12 7.066x107% 1.861x107% 1.056x107*4 x— 1.657x1077  6.354x107*2  9.907x107¢

TABLE 3

Values of the measure Ao for increasing sample sizes

p g n Box G M2G M3G GNIG M2GNIG M3GNIG
32 5 1.364x107' 1.737x107% 2.601x107* 2.826x107°  3.461x107* 4.503x107¢  4.503x107°
3 2 20 4.629x1072 7.343x107° 2.186x107® x— 2.010x107° 1.250x1077  1.040x107°
3 2 50 6.684x107% 1.083x107° 4.014x10~° x— 3.033x107°% 6.261x107°  5.697x10'2
72 9 3.762x107' 3.632x107% 3.000x10"* 3.579x107°  1.022x10"* 1.037x10° ¢ 1.537x10°®
72 20 3.897x1072 3.021x107* 3.912x107% 5.604x107%  2.059x107° 4.180x107%  7.620x10" !
7 2 50 4.829x107% 3.694x107° 7.172x107% 8.263x107'! 3.021x107% 9.071x107° 4.811x10”*
10 2 12 4.986x107" 4.116x107% 3.794x10™* 5.213x107°  2.141x107° 8.573x10™%  5.282x10~'°
10 2 50 1.090x10"2 5.712x107° 2.093x10~" x— 1.844x107% 5.352x107!° 1.601x107'3
10 2 100 2.433x10™% 1.269x107° 1.159x107® x— 4.595x1077 3.272x10° 'Y 2.338x10 1'%
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TABLE 4
Values of the measure As for large q and large sample sizes

g n Box G M2G M3G GNIG M2GNIG

3 10 20 8.659x107% 3.260x107° 7.104x107% 1.313x107° 5.882x107% 9.800x107° 3.224x10" !
3 10 50 1.283x107% 4.763x107°% 1.852x107° 1.330x107'' 8.294x1077 4.831x10"'° 6.378x107'3
7 10 20 6.879x10°2 1.268x10°* 1.099x10° x— 1.226x107% 3.699x107'° 1.942x107'?
7 10 50 8.980x1073% 1.505x107° 2.574x107% x— 2.172x1077  1.753x107'"  5.605x107'°
10 10 50 2.007x1072 2.350x107° 6.342x10® x— 3.343x107% 1.458x1071* ———
10 10 100 4.565x107% 5.158x107% 4.263x107° x— 9.210x107° 4.031x107 ' —«—

ter than the GNIG near-exact distribution for most of the cases, namely
those with larger sample sizes.

In Tables 4 and 10, if we compare the values of Ay for different values
of p and the same sample size, we may see how, opposite to the asymptotic
distributions, the near-exact distributions show a clear asymptotic character

for increasing values of p.
In order to be able to compare the asymptotic saddle-point approximation

from Jensen (1991, 1995) with the asymptotic and near-exact distributions
proposed in this paper we have computed the tail probabilities for these
approximations as well as for the Box asymptotic approximation for the
exact 0.05 and 0.01 quantiles of A\* for given values of p, ¢ and n. This
alternative approach to the use of the measures Ay and As is due to the
fact that saddle-point approximations are not able to yield a c.f., indeed they
do not even yield neither a p.d.f. nor a c.d.f. but only an approximation for
the cumulative probability at a given point.

Since, mainly in order to be able to adequately evaluate the performance
of the near-exact distributions we need to have the exact quantiles com-
puted with enough precision (at least 12 decimal places), we have used the
Gil-Pelaez (1951) inversion formulas, together with a bisection or secant
method, to compute the exact quantiles. However, this computation proce-
dure has its own limitations for values of p larger than 7.

From the tail probabilities in tables 5 and 6 we may see how the saddle-
point approximation from Jensen (1991, 1995) although clearly beating his
own Gamma asymptotic distribution and even displaying a better behavior
than the one reported by the author in Jensen (1991, 1995), it has a worse
behavior than the asymptotic distributions M2G and M3G proposed in this
paper and it is no match for the near-exact distributions proposed in this

paper.
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TABLE 5
Absolute value of the difference between the exact tail probability (0.05) and the tail
probabilities for the approximating distributions

p q n Saddle G M2G M3G GNIG M2GNIG  M3GNIG
4 3 6 253x107% 3.07x107* 1.22x107° 3.07x1077  1.08x107% 1.14x10"% 4.86x10"'!
4 10 6 1.67x107* 347x107% 1.85x107° —x— 2.90x107% 4.20x10°° 7.08x10 *2
4 3 30 4.91x107% 6.07x107°% 1.12x107% 7.65x107'% 7.84x107% 1.36x107'° 1.08x107'3
4 10 30 3.07x107% 6.61x107°% 1.63x107% —x— 1.66x1077 3.75x107  2.62x10 ™
5 3 7 3.30x107% 4.65x10°* 2.84x10°° 7.22x1077 1.04x10°° 3.38x10°% 5.82x10 !
5 10 7 1.98x107% 4.42x10™*% 2.74x107° —x— 5.93x107% 1.64x107%  5.05x107 "
5 3 30 7.37x107% 1.10x107° 3.86x107% 8.24x107!' 6.67x1077 2.07x107'* 2.80x107'2
5 10 30 4.15x10°°% 9.80x10° % 3.48x10°% —x— 3.86x1077 1.78x10° 0 1.47x10° %
6 3 8 3.86x107% 6.01x107* 4.56x107° 2.57x107% 3.47x107° 6.87x107° 1.11x107
6 10 8 2.20x107* 5.16x107*% 3.49x107° —x— 6.24x1077  2.25x107'° 5.45x107 '
6 3 30 9.75x10°°% 1.65x10°° 8.58x10° % 3.15x107!° 3.61x10° 7 8.62x10 ' 1.50x10 4
6 10 30 5.25x107% 1.32x107° 6.09x107% —x— 9.60x107% 6.01x107"> 1.65x107'°
7 3 9 428x107% 7.16x107* 6.21x107° 4.81x107°% 2.13x107°% 1.31x107° 3.71x10"'2
7 10 9 235x107% 5.73x10°% 4.12x10°°  —x— 1.26x107°% 1.02x107°  7.26x10'3
7 330 1.22x107° 2.26x107° 1.56x1077 —x— 3.79x1077  6.21x107  7.18x107'°
7 10 30 6.40x107% 1.70x107° 9.54x107% @ —x— 2.10x1077 4.56x107"  1.62x10"'4
TABLE 6
Absolute value of the difference between the exact tail probability (0.01) and the tail
probabilities for the approximating distributions
p q n Saddle G M2G M3G GNIG M2GNIG  M3GNIG
4 3 6 4.19x107° 3.83x107* 1.75x107° 1.12x107% 7.20x1077 2.19x107° 2.17x107!'?
4 10 6 3.15x107° 2.94x107* 7.70x107% —x— 2.00x107°% 6.13x1071° 1.44x107'2
4 3 30 7.64x1077 7.64x107% 1.14x107% 2.20x107'' 8.92x107% 9.11x107'' 7.56x107!*
4 10 30 5.81x1077 5.55x107°% 5.42x107° —x— 1.36x1077  1.05x107'"  1.02x10~'?
5 3 7 5.72x107°% 5.07x107* 2.73x10°° 2.24x107% 7.32x10°¢ 8.85x10°° 3.93x10 '2
5 10 7 3.75x107°% 3.59x10°* 1.00x10°° —x— 4.03x107% 2.09x107° 1.27x107 !
5 3 30 1.30x107% 1.17x107° 2.59x107% 6.47x107 6.69x1077 2.33x107'%  2.22x107'2
5 10 30 7.84x1077 7.86x10°° 9.66x10°° —x— 3.02x1077 4.17x107*  1.48x107 4
6 3 8 6.89x107° 6.04x107* 3.51x107° 3.20x107% 2.24x107°% 9.05x107° 1.61x10'2
6 10 8 4.17x107° 4.08x10™* 1.16x107° —x— 4.04x1077  1.50x10"'"  2.21x107 %
6 3 30 1.79x10°°% 1.60x10°° 4.53x10°% 1.36x107!° 3.27x10°7 3.70x10 ' 3.62x10°'°
6 10 30 9.88x1077 1.03x107° 1.47x107% —x— 7.23x107% 1.16x107*? 1.91x1071'¢
7 3 9 7.78x107° 6.81x107* 4.10x107° 3.89x107% 1.32x107% 1.30x107'° 1.05x107'2
7 10 9 4.48x107° 4.45x107% 1.27x107° @ —x— 8.12x1077 6.03x10° ' 3.20x10°*°
7 330 227x107% 2.06x107° 6.96x107% —x— 3.21x1077 1.71x107'"  4.69x10~'°
7 10 30 1.20x107% 1.29x107° 2.08x107% ——x— 1.55x1077  7.65x107'2 3.61x107*°
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6. Computational implementation of the near-exact distribu-
tions developed. The computational implementation of the near-exact
distributions developed in this paper is made quite simple if we use an ade-
quate high-level language software like Mathematica®.

NEdistW[p_,q_,n_,t_,opts___]:=Module[{d,prl,pr2,pr3,adn,func,vp,rj,a,xr},
Options[NEdistW]={dist->1,prcm->300,prcpar->200,prcf->16,ad->0,function->1};
d = dist/.{opts}/.Options[NEdistW];

prl = prcm/.{opts}/.0Options[NEdistW];
pr2 = prcf/.{opts}/.0Options[NEdistW];
pr3 = prcpar/.{opts}/.Options[NEdistW];
adn = ad/.{opts}/.Options[NEdistW];

func = function/.{opts}/.Options[NEdistW];
vp=If [d==1,Modulel[p,q,n,prl],If [d==2,Module2[p,q,n,prl],Module3[p,q,n,prl,
pr3,adn]]];
rj = Rjlp,q,nl;
a = Table[(n-k)/n,{k,1,p-1}];
xr = Rationalize[t,0];
If [func==3,prd=Product [((n-k) /n) “rj[[k]1]*((n-k) /n-I*xr) " (-rj[[k]1]),{k,1,p-1}1;
If[d==1,vp[[2]1]1 " vp[[11]*(vp[[2]1]-I*xr) " (-vp[[1]1])+*pzd,
If[d==2, (vp[[11]*vp[[4]11 " vp[[2]]* (vp[[4]]1-TI*xr)~ (-vp[[2]1]1)+(1-vp[[1]1])*
vpl[[41]1~vp[[3]11*(vp[[4]1]1-I*xr)"~ (-vp[[311))*prd,
(vp[[111*vp[[61]1-vp[[3]1]1*(vp[[6]1-I*xr)~ (-vp[[3]11)+vp[[2]]1*vp[[6]] vp[[4]1]*
(vpl[[6]]1-TI*xr)~ (-vp[[4]11)+(1-vp[[1]1]1-vp[[2]1])*vp[[6]]1 vp[[5]1]*
(vp[[6]11-I*xr) "~ (-vp[[511))*prdll,
If [func==2,GNIG[r_,b_,1_,a_,w_]:=GNIGpdf [r,b,1,a,w],GNIG[r_,b_,1_,a_,w_]:=
GNIGcdf[r,b,1,a,wl];
If[d==1,SetPrecision[GNIG[rj,vp[[1]],a,vp[[2]],xxr],pr2],
If[d==2,SetPrecision[vp[[11]1*GNIG[rj,vp[[2]],a,vp[[4]],xr]l+(1-vp[[1]])*
GNIG[rj,vp[[31],a,vpl[4]],xr],pr2],
SetPrecision[vp[[1]1]1*GNIG[rj,vp[[3]1],a,vp[[6]1],xr]+vp[[2]1]1*GNIG[rj,vp[[41],
a,vp[[61],xr]1+(1-vp[[111-vp[[2]1]1) *GNIG[rj,vp[[61],a,vp[[61],xr],pr2]]
111

Fic 2. MATHEMATICA module to implement and compute the c.d.f., p.d.f. or c.f. of the
near-ecact distributions developed in the paper

In Figures 2 through 4 we have a set of Mathematica modules that may be
used to compute either the c.f., the c.d.f. or the p.d.f. of W = —log(\*). The
main module is module NEdistW in Figure 2, which acts as the interface with
the user, who will be able to choose which of the characteristic, cumulative
distribution or probability density functions he wants to compute, through
the use of an optional argument.

This module has four mandatory arguments which are:

i) p — the number of variables involved, that is, the dimension of the
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Modulel([p_,q_,n_,prcm_:300] :=Module [{mm},
mm=Table [SetPrecision[MomPhi2[p,q,n,i],prem] ,{i,1,2}];
{mm[[117172/ (mm[[2]]-mm[[111°2) ,mm[[1]1]/ (um[[2]]-mm[[1]11"2)}
]

Module2[p_,q_,n_,prcm_:300] :=Module [{mm},

mm=Table [SetPrecision[MomPhi2[p,q,n,i],precm] ,{i,1,4}];

Sort [Cases[{pl,r1,r2,m}/.NSolvel
{mm[[1]]==MomMixGam[{p1},{rl,r2},{m,m},1],
mm[[2]]==MomMixGam[{p1},{rl,r2},{m,m},2],
mm[ [3]]==MomMixGam[{p1},{rl,r2},{m,m},3],
mm[ [4]]==MomMixGam[{p1},{rl,r2},{m,m},4]1},
{p1,r1,r2,m}],{_Real,_Real,_Real,_Reall}]][[2]]

]

Module3[p_,q_,n_,prcm_:300,prcpar_:200,ad_:0] :=Module [{mm,vpn},
mm = Table[SetPrecision[MomPhi2[p,q,n,i],prcm],{i,1,6}];

vpn = Module2[p,q,n,prcm];

{p1,p2,r1,r2,r3,m}/.

FindRoot [{mm[[1]]==MomMixGam[{p1l,p2},{rl,r2,r3},{m,m,m},1],
mm[[2]]==MomMixGam[{pl,p2},{rl,r2,r3}, {m,m,m},2],
mm[[3]]==MomMixGam[{p1,p2},{r1,r2,r3},{m,m,m},3],

mm[ [4]]==MomMixGam[{p1l,p2},{rl,r2,r3},{m,m,m},4],
mm[ [5]]==MomMixGam[{p1l,p2},{rl,r2,r3},{m,m,m},5],
mm[[6]]==MomMixGam[{pl,p2},{rl,r2,r3},{m,m,m},61},{pl,vpn[[111},
{p2,.99%(1-vpn[[111)},{rl,vpn[[2]1]1},{r2,vpn[[3]1]},{r3,ad+
2*%vpn[[3]1]1-vpn[[2]11},{m,vpn[[4]1]},
WorkingPrecision -> prcpar]

]
T

F1G 3. MATHEMATICA modules to compute the parameters for the non-integer Gammas in
the near-ezact distributions

matrices being tested,

ii) ¢ — the number of matrices being tested,

iii) » — the sample size minus one,

iv) the point-value at which we want to evaluate the function being com-
puted (c.f., c.d.f. or p.d.f.).

These four mandatory arguments have to be given in the order they are
listed above.
This module also has six optional arguments. These are:

i) function — the argument that defines which function we want to
compute (1 — for the c.d.f., 2 — for the p.d.f.;; 3 — for the c.f.); this
argument has the default value of 1 and if given a value outside of the
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above mentioned values the module computes the c.d.f.;

ii) dist — the argument that defines which near-exact distribution is to be
used (1 - for the single GNIG; 2 — for the M2GNIG; 3 — for the M3GNIG);
this argument has the default value of 1 and if given a value out of the
above mentioned range will make the module to compute the Mm3aNIG
distribution;

iii) prem, prcf and prepar — the arguments with respective default values
of 300, 16 and 200 which define the number of precision digits for
the computation of respectively: (a) — the exact moments of W to be
matched by the near-exact distributions, (b) — the near-exact functions
(that is either the c.d.f., the p.d.f. or the c.f., according to the value
given for the argument function), and (c) — the parameters for the
M3GNIG near-exact distribution;

iv) ad — the argument with a default value of zero, which may be given
any real positive or negative (usually small) value to try to stabilize
the convergence of the solution of the system of equations for the
M3GNIG distribution (in Module3) for cases where this convergence
is not attained through the use of the automatically generated initial
values.

The modules Modulel, Module2 and Module3 in Figure 3 are called by
the module NEdistW to compute the parameters respectively for the GNIG,
the M2GNIG and the M3GNIG near-exact distributions. While modules
Modulel and Module?2 have as mandatory arguments the values for p, ¢ and
n, in this order, and as optional argument, with a default value of 300, the
parameter prcm described above, Module3 has as further optional arguments
the parameters prcpar and ad, also described above, given in this order and
with default values 200 and zero, respectively.

In Figure 4 we have modules Phi2, MomPhi2 and MomMixGam. The former
of these modules is used to compute the part of the c.f. of W denoted
by ®,(t) in expression (3.6). This module has four mandatory arguments
which are the values for p, ¢, n and the value for the running variable ¢,
which may be not numerically specified. This module is called by module
MomPhi2, which computes the derivatives of Phiy(t) at ¢ = 0, or rather,
the moments, corresponding to the c.f. ®5(¢). This module also has four
mandatory arguments, p, ¢, n and a fourth argument which has to bear a
positive integer value, specifying the order of the derivative of ®5(t) to be
computed.

The module MomMixGam is used to compute (usually only symbolically) the
moments of a finite mixture of Gamma distributions. It has four mandatory
arguments which, for a mixture of v Gamma distributions are:
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Phi2[p_,q_,n_,t_]:= Module[{aj,bjk,bjks},
aj = Table[n+1-2%j,{j,1,Floor[p/2]1}];
bjk = Table[Table[2*j-1+(k-2%j)/q,{k,1,q9}]1,{j,1,Floor[p/2]1}];
bjks = Floor[bjk];
ap = (n + 1 - p)/2;
bpk = Table[(p-1)/2-(p+1)/(2%q)+k/q,{k,1,q}];
bpks = Floor[bpk];
Product [Product [Gamma[aj[[j1]1+bjk[[j,k]11]*Gamma[aj[[j1]1+bjks[[j,k]1]1-n*I*t]/
(Gamma[aj[[j11+bjks[[j,k]]1]1*Gammal[aj[[j11+bjk[[j,k]1]1-n*xI*t]),{k,1,q}],
{j,1,Floor[p/2]1}1* (Product [Gamma [ap+bpk [ [k]]]*Gamma [ap+bpks [[k]]-n/2*xI*t]/
(Gamma [ap+bpks [ [k]]]*Gamma [ap+bpk [ [k]]-n/2*I*t]),{k,1,9}]) "Mod[p,2]
]

MomPhi2[p_,q_,n_,h_]:=1/I"h*D[Phi2[p,q,n,t],{t,h}]/.t->0

MomMixGam[p_,r_,m_,h_]:=Module [{nt,ptot},
nt = Length[r];
ptot = Apply[Plus,p];
(1-ptot)*Product [r[[nt]]+i,{i,0,h-1}]1*m[[nt]] " (-h)+Sum[p[[j]1]*
Product[r[[j1]1+i,{i,0,h-1}1*m[[j1]1"(-h),{j,1,nt-1}]
1

F1G 4. MATHEMATICA modules to compute ®2(t), its moments and the moments of Gamma
miztures

p — a vector of weights of length v — 1, specifying the first v — 1 weights
for the distributions in the mixture, being the r-th weight computed
as 1— /21 pi

r — a vector of length v with the shape parameters of the Gamma distri-
butions in the mixture;

m — a vector of length v with the rate parameters of the
Gamma, distributions in the mixture;

h — a positive integer specifying the order of the moment to be computed.

Module MomPhi2 is called by modules Modulel, Module2 and Module3,
while module MomMixGam is called only by modules Module2 and Module3
in order to compute the values for the parameters for the single Gamma
distribution or for the mixture of two or three Gamma distributions used to
build the near-exact distributions with the first 2, 4 or 6 moments matching
the first 2, 4 or 6 exact moments of W.

One of the most useful applications of the modules above is to compute
near-exact p-values. Let us suppose that we had forp =5, ¢ =4 and n = 15
a computed value of 37.2026 for W. An example of a call to module NEdistW
to compute the near-exact p-value for the M3GNIG distribution, would be



24 C. A. COELHO AND F. J. MARQUES

1-NEdistW[5,4,15,37.2026,dist->3,function->1]
or, equivalently,
1-NEdistW[5,4,15,37.2026,dist->3]

The result obtained would be 0.0405706732106333, in about 1.30 seconds
(average time for 5 executions in a double core processor of 1.66GHz). If we
would like to obtain the near-exact p-value for the simple GNIG near-exact
distribution, then the command

1-NEdistW[5,4,15,37.2026]

would be good enough, given the default values assumed for the optional
arguments function and dist. The result obtained in this case would be,
0.0405678479033504, in about 0.43 seconds (average time for 5 executions
with the same processor as above).

7. Conclusions. The results presented in this paper, together with the
ones already published on the Wilks A statistic (Coelho, 2004;
Alberto and Coelho, 2007; Grilo and Coelho,
2007) and on the sphericity Lr.t. statistic (Marques and Coelho, 2008), show
that the distribution of the negative logarithm of the three main l.r.t. statis-
tics used in Multivariate Analysis may be written as the sum of a GIG
distribution with an independent sum of independent Logbeta r.v.’s. These
results are intended to be used as the basis for two future works: one on a
common approach for the more common lLr.t. statistics used in Multivari-
ate Analysis which will recall the common traits of these statistics both in
terms of their exact and near-exact distributions, and the other on a general
approach for two families of generalized sphericity tests, which we may call
as multi-sample block-scalar and multi-sample block-matrix sphericity tests,
their common links and particular cases.

All the near-exact distributions developed in this paper show a very good
performance, with the ones based on mixtures showing an outstanding be-
haviour. For the approximate distributions developed in this paper, the near-
exact distributions clearly outperform their asymptotic counterparts, for a
given number of exact moments matched.

Moreover, opposite to the usual asymptotic distributions, the near-exact
distributions developed show a marked asymptotic behavior not only for in-
creasing sample sizes but also for increasing values of p (the number of vari-
ables) and for increasing values of ¢ (the number of matrices being tested).
Yet, all the near-exact distributions proposed may be easily used to compute
near-exact quantiles.
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Indeed, two of the great features of the near-exact distributions are the
facts that, opposite to the usual asymptotic approximations and mainly to
the single chi-square approximations which show quite bad fits for small
samples (see for example, Lo 2008; Zhang and Boos 1992), the near-exact
distributions show a very good fit even for small samples, and their closeness
to the exact distribution even increases when the dimension increases.

We should stress here that also the two new asymptotic distributions
proposed show an asymptotic behavior for increasing values of ¢ (the number
of matrices being tested).

Thus, as a final comment, and given the values of the measures Ay and Ay
obtained for the distributions, we would say that we may use the asymptotic
distributions proposed in this paper in practical applications that may need
a not so high degree of precision, although higher than the one that the
usual asymptotic distributions deliver. For applications that may need a high
degree of precision in the computation of quantiles we may then use the more
elaborate near-exact distributions, mainly those based on mixtures of GNIG
distributions, which anyway allow for an easy computation of quantiles. The
distribution M3GNIG, given its excellent performance and manageability,
may even be used as a replacement of the exact distribution.

As a conclusion we may say that given its quite good precision, actually
higher than the asymptotic and saddle-point approximation in Jensen (1991,
1995), as well as the easiness in computing its parameters, the M2G asymp-
totic distribution seems to be the most adequate for cases where a moderate
precision is needed, while the near-exact distributions are appropriate for
situations where further precision is needed. The implementation of these
distributions is rendered rather (almost, nearly, somewhat) easy when using
one of the extended precision and symbolic computation softwares nowadays
commonly available, like Mathematica® .
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APPENDIX A: PROOFS OF THEOREM 3.1 AND THEOREM 3.2 IN
SECTION 3

A.l1. Proving Theorem 3.1. In order to prove Theorem 3.1 in section
3 we will first show how @, () may be factorized in two factors, one of
them being ®4(¢) in Theorem 3.1 and a second factor which will be later on
identified with the c.f. of a sum of Exponential distributions.

LEMMA 1. The characteristic function of W = —log A\* may be written
as

BB (g +b)  T(a; — nit)
Tl = 31;[1,};[1 [(aj)  T(aj+bj—nit)
@ D(ap+by) T (a—Bit) }p”
X{Icl;ll I'(a) T(ap+by—5it)

(
\

~~

Dy (t)
(A.1) ti/2J12[F(a_,]+bjk) T(aj+b% —nit)
j=1 oo Dai+05) T(a;+bjp—nit)
X{ﬁf(aﬁ%k) I'(ap+8, git)}”“
i L (atb) T (gp+bre—3it) |

wherep 1L 2 =p—2 L%J = Mod(p,2) represents the remainder of the integer
division of p by 2,

: , k—2j x
(A.2) aj =n+1-27, bjk:2]_1+T ) ik = bkl
n+l—p pg—g—p+2k—1 *
(A.3) ap = 5 y bpe = 2 ) ok = LOpk]

ProOOF. Using the fact that

['(2z) =7 2227 1D(2) (2 + 1/2)
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we may write, from (1.7), the c.f. of W = —log \* as

lp/2] ; a j i
o T(ng+1—2§) T(n + 1 —2j — nit)
— ,—npgqit/2

Then, using
—m=l mz—1/2 r k-1
C(mz)=(27)" 2 m HF Z 4 —
m
k=1
and taking into account that since for any p € IN, [p/2] + [(p+ 1)/2] = p,

2
q—npqit/Q (q%it) \-%J_\-%J UﬁJ qnqit

J=1

_ qfnpqit/2+nlﬂp/2jit/2+nq[%ﬁt/2 —1,

we may write

jioiioi | T (nti-Zabstopip)  Tlnt+1-2j)
)

2 .
D (1) :Lp/ ! ﬁ I'(aj+bjr)  I'(aj—nit)
J

1 kel I'(aj+bjr—nit) T'(a;)

" ﬁ D(ap+bpr) T (ap—5it) s
L (ap+bpr—5it)  T(ap)

k=1
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that taking b7, and by, given by (A.2) and (A.3) may be written as

/2] 0 (D(a4+b5,)  T(a;—nit)
ow(t) =[] H{ p(aj)] I‘(aj—i-]b?‘k—nit)

j=1 k=1
I'(a;+bjx) ' (a;+ k —nit)
T(a;+b%) T(aj+bj,—nit)

“ (e + by (ap+b;k——lt)>’f“
X(,g T(ay+by) T (ap+bpr—5it)

C(gp+0) T (a,—2it) )’””
X<H T(ap) Dlapty—2it))

k=1

what, after some small rearrangements yields the result in the Lemma. [J

Let us now take

_ “ﬁ“ 12[ D(aj+b%)  T'(a—nit)
I'(aj + b, —nit)

-

CI>1,1(t)

. 12
{ﬁ (ap+85 pk T (ap—5it) }p
. Dia) T(a+b—3it)

-

@1,2(t)

We will now show that ®,(¢) is indeed the c.f. of the sum of independent
Exponential r.v.’s and we will identify the different Exponential distributions
involved, by adequately decomposing first @ ;(¢), in Lemma 2, and then
®; 9(t), in Lemma 3.

LEMMA 2. We may write

lp/2] 2j—-1 n—1
eaO=111H Il =
J=1 k=1 k2 n n
PRrOOF. Applying now
T n—1
(A.5) M:H(a—i—l)
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and noticing that

) k—25 ) k—2j
;fk:P]—l—i— szZj—l—l—{ jJ,
q q

we may write

[p/2] q g ‘
Pi1(t) = H H I'(aj+bj,)  T(aj—nit)

- H H H n—2j5+1+1
G1 kel o T 2gl+lenit
b*
_ Uﬁj ﬁ LA - 23—)—[
B J=1 k=li=1 """ 2j+l—n1t
2j—1+ ]
T ﬁ e
- j=1 k=1 n—2j5+1—nit
lp/2] 2171+[

<] n— l+[k 27J

n— l-{—[k 27J it

29

that by a simple change in the limits of the last product yields the desired

result.

12

O

LEMMA 3. For @, ,(t) = (@{’Q(t))p , with ap and by defined in (A.3),

we may write,

. (1) = 12[ D(ap+byp) T (ap—Bit)
1,2 it T(ap)  T(ap+by,—5it)

(A.6)
2(ap+i—1)

- HHzap+z 1)

k=11=1 it

PROOF. Using (A.5) we may always write, for by, = [by],

@ T(ay + b5 T (a -

o) =11

k=1 F(ap) r (ap + b;()k -

7 ap +1—1
- HHap-i—l—l—ﬂlt

k=11=1

it)

it

n
2
n
2
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The results in Lemmas 1 through 3 prove Theorem 3.1.

A.2. Proving Theorem 3.2. To prove Theorem 3.2 we need the fol-
lowing three Lemmas. In the first two Lemmas we identify the different Ex-
ponential distributions involved in ®, ;(#) and obtain analytic expressions
for their counts. The first Lemma, refers to even ¢ and the second to odd gq.

LEMMA 4. For even q we may write

2p/2]=1/ ng \IIP/2]=1i/2]) at1 n—k Ok +Vk
A7) Dy(t) = - P
YO | | <ﬂ_it) kHI(nT_k_it)

j=a+2 n

— |p=l
where o = {TJ’

2/4 k=1,...
(A8) ak:{q/ 2 bl 7a

(A.9) e = 4] ((k —1)g -2 EJ)

PROOF. Since for k=1,...,qand j=1,..., |p/2], v = — []“_TQJJ takes

the values 0,1,2,...,a, with a = V’%IJ, we may write, from the result in
Lemma 2,

2j—1
J n—I

i

'1)11

i ’:]\

n—I[—nit

min(a+1,25—1) 25—1

Uﬁ% mf o -t

(A.10) _ el nel

=1 k=1 = | A2 | n—l-nit oL, n—l-nit
lat+12-1)

lp/2] 231< i >q p/2] ¢
]1_[111012 JrIlkl_[l 1H n—l=nit

=

—nit
1=
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where

lp/2] 25— 1< _] >q 2LI)/2J—1< n—j >Q(U’/2JU/2J)

a1y 111 I1

il lmade NPT [—nit i—at2 n—7j—nit

and, for even ¢ (for which although |¢/2| = ¢/2, we will use the notation
|¢/2] to make it more uniform with the notation for odd ¢), taking

(120 (2o 4])1)
n l q J 2
Prod(iana. )= I ()
ity n—I[—nit
(A.12)
[(a+1,25-1) n—I 2(] I/L%J) 1
% lzlg_u <n—l—nit> ’
we have, for ¢(v,7,q) =2(j +v|q/2]) —
L]ﬁj 12[ |_(Oé+ﬁ] 1) n—1
iR ,Jn—l—nit
q
—1 (v+1)[q/2] lp/2]
— H H Prod(v; a, q,7) H Prod(o; v, q, )
v=0 j=1+v|q/2| Jj=1+alq/2|

Oﬁl LﬁJ L(a+1,w(v,j,q))< n—I >q—(2j—1)
v=0 j=1 I=14v n—l—nit

[(a+1,0(r,5,0)) 2j—1
n—1 J
% H <n -1 — nit> }

=24V

X

Lp/2J—an/2J< n(a+1) >q—<2j—1>
] (

i= —(a+1)—nit
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lg/2] a—1 [(a+1,2j+vq—-1)

SR INTE || (Ll.)q

j=1 =0 1=2+4v n—1—nit
i, y+1) nit

brislan ( n—(a+1) >q(zj1>

ol —(a+1)—nit

where, for even ¢, and for v, and «y, given respectively by (A.9) and (A.8),

l¢/2] a—1 min(a+1,2j+vg—1)

CHET T () T )

j=1 v=0 [=2+4v poo \T— k — nit
“ﬁJ “1—[1 ( u+1) >q‘(2"‘” i < n—k >k

iii)

Lp/2J—an/2J< n—(at1) >q—(2j—1) _< n—(a+1) >aa+1
| ( (a

i- —(a+1)—nit + 1) — nit

so that we may write @ ;(¢) as in (A.7). O

LEMMA 5. For odd q, and once again for a = V’%IJ, we may write

2|p/2)-1 a(lp/2]-15/2))
_ _(n=g)/n
P1,(t) = jl;[H ((n ])/n—1t>
(A.13) 1
a+ (n—k)/n Ak +Yk
where
=13 [H#52], k=10
(A.14) P 1]l Pl | 2] |akl
aar1 = (g (18] -8 -15)) (18] - l4]-]25]) .
and

(A.15) w=la/2)(k =g (k=1,...,a+1).



NEAR-EXACT DISTRIBUTIONS TO TEST EQUALITY OF MATRICES 33

PrOOF. Following the same lines used in the proof of Lemma, 3, we obtain
once again expressions (A.10) and (A.11). Then, taking Prod(var;«,q,j)
given by (A.12) and taking into account that [I + ¥|— VT—HJ =(v+1)1L2
and that for odd ¢, 2 || = ¢ — 1, we have,

lp/2] [(a+1,25-1) n—1
].1;[ H H n — 1 —nit

a—1 (v+1)]g/2]+|1+v/2]

=11 11 Prod(v;a,q+1,5 + 1)

v=0 j=1+v|q/2|+[(1+Vv)/2]
lp/2]
X 11 Prod(y;a,q+1,j+%)
j=1+alq/2|+[(1+2)/2]

II

[a 1 la/2]+[1+v/2] {L(a+1,<ﬂ(m'41))( n—] \—(2i—(+1)
n t)

[u 0 j=1+[(14v)/2] I=14v —l—ni
L(et10(v.5,0)) _ 2j—(v+1)
" H < n—I )
=540 n—I[—nit

X

LP/ZJ—an/2J< n—(a+1) >q—(2j—(a+1))
j=141(1+a)/2) " !

—(a+1)—ni

=10 II
v=0 j=1+ 1';VJ =2+v

a1 [5]HH5] [t 2itvg—v1), g
(n—l—nit)
L

a—1 Lq/2J+L1+V/2J< n—(v+1) q—2j+v+1
)=

<11 11

v=0 j=1+|(1+v)/2| o U-I—l)—’l’blt

. LP/QJ—an/QJ< n—(a+1) >q2j+a+1
(

=1t [(itay2) N a+1)—nit

where, for odd ¢,, and for y; and a4, given respectively by (A.15) and (A.14),
and yet for § = (v+1) 12,
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a—1 lg/2]+|14+v/2] L(oz+1,2j+1/q1/1)< n—1 >q
v=0 j=1+|(1+v)/2] I=2+v n—l—ni
119/2]+6 |[(a+1,2j+vg—0

x n—l \ n—k Tk
1;[ ]1—[1 (n—l—nit) - H (n—k—nit) ’

[=2+v k=2
a—1 lg/2]+[1+
(

v/2] n—(V+1) q—2j+v+1
( —(v+1)—nit>

i) [ 11

v=0 j=1+|(1+v)/2]

L O I (R

Jj=1

lp/2]—alq/2] n—(a+1) q—27+a+1
(( —(a+1)—nit>

n— (O[+ 1) q—2j—al2+1
( —(a+1)—nit>

< n(—(oz—i—l)

—(a+1)—nit

so that we may write @ ;(¢) as in (A.13).

Equalities i), ii) and iii) in the proofs of Lemmas 4 and 5 are quite straight-
forward to verify and may be proven by induction but the proofs are not

shown since they are a bit long and tedious.

In the next Corollary we show how we can put together in one single

expression the results from Lemmas 4 and 5, for both even and odd gq.

COROLLARY. For both even and odd q we may write

2[p/2|-1 n n \d(p/21-13/2])
Py(t) = H <—(( 7/ > j

izata M7 7)/n—it

- oﬁl < /7)1/ﬁ 1t>ak+%

(A.16)
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where
(A17) Saatr = (= (5] - |§)) (5] -« ()

and, fork=1,...,a+1,

(A.18) = |8 (-va-2@+n e [5)) .

PROOF. Since for k € INy and even g we have [%J = 2], and since

(2l
4 21 12]°
from (A.8) and (A.14), for any ¢, even or odd, we may write
o = H {“’“”J . k=1...a,
2 2
while from (A.9) and (A.15) we may write (A.18). Finally, since

ERIEIRG

for even g we also have

and
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In the next Lemma we show how @7 ,(Z) may also be seen as the c.f.
of a GIG distribution by identifying the different Exponential distributions
involved and obtaining analytic expressions for their counts.

LEMMA 6. We may write, for ®] o(t) defined as in Lemma 3,

(A.19) @;,Z(t):<%>ﬂamﬂ ”ﬁ ( ((n;)/n ),,’

I=1ip-20 n—1[)/n—it
step 2
where
p—1 ) P
A.20 :q_<__5>, with 5:{_Jq,
(A.20) v 5 2
q—1 p—lJ {q—l p+1J
A.21 = _— ol R
(A21) o= |TEE = |TEEE
and
(A.22) E*=1+4+p—2as.

PROOF. In Lemma 3 we have by, = [bp|, with

pq—q—p+2k—1 q—1p—1 k-1
= +
2q q 2 q

bl =

so that, given that here p is odd and thus p—;l is an integer,

qg—1p—1 k-1
;k - { 9 +
q q
B aq for kzl,...,’%l—ﬁ
a9 for :’%1— yees

with 8 given by (A.20) and «; and a9 given by (A.21).
We may thus write, taking into account the definitions of a, in (A.3), v
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n (A.21) and a; and ay in (A.22),

p—1

2*5a1
. ap+1—1 ap+1—1
o) = II Il —= I I

P lila;,ﬂ—l—l—%t pﬂ 511al’+l_1_%lt

p—1_ —(ptl_
B ﬁ ap +1— z ﬂﬁ ap+1—1 = (57-5)
B ap+l—1—§1t ap+1—1—5%it

=1 =1

_ ﬁ ap+1-1 Y\ ap+ag —1 702 —ar)

= = ap+l 1—%it ap—i—oQ—l_%it

1 < (n—p—1+20)/n )"( (n—p—1+2as)/n >7(a2“1)
( t

N l:l—[l (n—p—1+4+20)/n—it) \(n—p—1+2a2)/n—i

p—1 n—1I1*\/n q n—k*)/n (aa—an)
step 2

where the last equality is obtained by taking [* = p+ 1 —2[ and k* given by
(A.22). O

From the above Corollary and Lemma 6, while for £ = 1,...,«, rg is
obtained just by adding -y in (A.18) and ay in the first row of (A.17), for
k = a+ 1 we have, from (A.17),

tat1 = (a=(l5]=a[3)) (5] - [§])

while, from (A.18),

var =ao | 2] =2 |4 |22 @y

where
214] |22 (g+1) L2) = (1) L2) ¢ |25]

so that aq+1 + Yat+1 comes given by (3.5), since

(g112)q |22| + ((g+1) 1.2) g |25 = q |25 -
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For k=a+2,...,min(p —2a;,p—1) and k =2+p—2ay,...,2 5] -1,
with step 2, we have to consider the result in the first row in (A.16), while
for k=14+p—2ay,...,p — 1, with step 2, we have to consider this same
result together with the result in Lemma 6 and notice that

pl2

() = (@1,(1))

and that, as such, the exponent ¢ in (A.19) in Lemma 6 only appears for
odd p and that

(18- 8]) o) = o (23] - |3])

Finally, from (A.19) and (A.22) in Lemma 6, we see that for & = p+1—2as
we have to add, for odd p, y(as — ay), where v = q — (1’%1 —q [Q%J), to
the value of 7 to obtain rj. It happens that the only possible values for
ag — « are either zero or 1, so that it will be only for sy — a; = 1 or
1+p—2a9 =p—1—2a; that we will have to add y(ae — aq) to 7.

This concludes the proof of Theorem 3.2.
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APPENDIX B: PLOTS OF P.D.F.’S AND C.D.F.”’S OF BOX’S
ASYMPTOTIC DISTRIBUTION FOR W = — LOG(X\*)

Figures 5 and 6 in this Appendix show plots of p.d.f.’s and c.d.f.’s of Box’s
asymptotic distribution corresponding to the c.f. in (2.1) for W = —log(\*),
for some combinations of p, ¢ and n for which this distribution is not a proper
distribution. In all the four cases presented the p.d.f. displays some negative
values and consequently for p = 5,7 and 10 the c.d.f. assumes values above
1, while for p = 50 it has negative values for smaller values of the argument.

p=>5 p=7

0.08

0.06

0.05

0.04

F1G 5. Plots of p.d.f.’s of Boz’s asymptotic distribution for W = —log(\*) for ¢ = 2 and
n=p+2.

0.2

F1G 6. Plots of c.d.f.’s of Box’s asymptotic distribution for W = —log(X*) for ¢ = 2 and
n=p+2.
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APPENDIX C: TABLES WITH VALUES OF A,

Tables 7 through 10 in this Appendix have the values of the measure
Ay for the asymptotic Box, G, M2G and M3G and the near-exact GNIG,
M2GNIG and M3GNIG distributions corresponding to the cases treated in

Section 5.

TABLE 7
Values of the measure A1 for increasing values of p, with small sample sizes

q Box G M2G M3G GNIG M2GNIG M3GNIG
2 5.100x1072 1.942x107% 1.057x107* 1.378x107° 3.926x10"* 8.756x107°  8.756x107°
2 5.151x1072 1.513x1072 1.134x10~* 9.118x107°% 6.086x107> 1.413x10~7  1.085x107°
2 5.094x1072 1.229x107% 1.128x10~*% 1.261x107° 8.648x107 % 1.461x10~7 8.152x107°
2 4.955x1072  1.034x107% 1.057x10"* 1.378x107° 1.991x107° 1.904x10"7 1.932x107°
2 4.773x1072  8.912x10°* 9.760x10 % 1.394x10°° 2.653x10°° 3.726x10°7  6.828x10°°
2 4.571x1072 7.816x10"* 8.984x10°° 1.365x10°° 7.580x10° % 5.747x10°%  5.580x10 '°
2 4.362x1072  6.947x107*% 8.276x107° 1.314x107° 4.152x107% 1.751x10"%  6.154x10~ !
2 4.152x1072  6.239x10™* 7.642x107° 1.256x107° 3.431x107° 1.898x107%  1.447x1071°
2 2.377x1072  2.943x107* 4.022x107° —x— 2.666x1077 4.324x107° 1.012x107*2
2 1.463x1072  1.526x10™% 2.142x107° —— 3.974x107%  2.605x107 ! 2.430x107 4
2 1.523x1072 9.874x107° 1.382x107° —x— 8.971x107°% 2.741x107 2 1.161x107*°
TABLE 8
Values of the measure Ay for increasing values of q, with small sample sizes
q Box G M2G M3G GNIG M2GNIG M3GNIG
2 5.100x1072  1.942x107% 1.057x107* 1.378x107° 3.926x10"* 8.756x107°% 8.756x107°
5 2.929x1072 4.239x10™* 1.938x107° 1.007x107% 1.566x10"*% 4.447x107°% 1.830x10~"
7 2.687x1072 2.924x10°% 1.280x107° 6.685x107 7 8.435x10°° 1.872x10°°%  6.352x10°®
10 2.524x1072  2.006x107* 8.247x107° 4.191x1077 4.238x10™° 6.879x10"7  1.771x1078
2 4.152x1072  6.239x10™* 7.642x107° 1.256x107° 3.431x107°% 1.898x107%  1.447x107'°
5 2.563x1072  2.168x10™* 2.008x107° x— 7.559x107%  2.407x107'"  5.573x107'°
7 2.257x1072 1.532x107* 1.292x107° x— 2.875x107%  6.034x107'2 1.288x10'®
10 1.974x1072 1.066x10°* 8.127x10°° x— 9.588x107° 4.935x10 ! 9.208x10° 7
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TABLE 9
Values of the measure A1 for increasing sample sizes

g n Box G M2G M3G GNIG M2GNIG M3GNIG

2 5 5.100x1072 1.942x107% 1.057x107* 1.378x107° 3.926x107* 8.756x107¢  8.756x107°

2 20 2.355x107% 1.111x10"* 5.564x107® x— 3.040x107° 2.849x10° 7  3.113x10°°

2 50 3.581x107% 1.724x107° 9.763x107° x— 4.826x107% 1.498x107%  1.768x10~ '

2 9 4.773x1072 8.912x107* 9.760x107° 1.394x107°  2.653x107° 3.726x10"7  6.828x107°

2 20 6.963x107% 1.138x107* 1.980x107°% 3.425x107% 7.832x107° 2.157x107%  4.763x 10!

2 50 9.812x10°% 1.596x107° 4.175x10°% 5.771x10° 'Y 1.309x10° % 5.310x10°° 3.406x10 *

2 12 4.152x1077 6.239x107" 7.642x107° 1.256x107°  3.431x107° 1.898x107°  1.447x107'°

2 50 1.506x1072 1.623x107° 7.965x10 % x— 5.258x10°7  2.051x107'% 7.399x10 4

2 100 3.559x10% 3.825x107°% 4.684x107° x— 1.387x1077  1.326x107 'Y 1.141x107'°

TABLE 10
Values of the measure Ay for large q and large sample sizes

g n Box G M2G M3G GNIG M2GNIG M3GNIG
3 10 20 1.268x1073 9.834x107% 2.872x107%  6.017x107'° 1.776x107¢  4.018x107°  1.588x10~ '
3 10 50 1.951x10°% 1.494x10°°% 7.791x107'% 6.342x107'% 2.602x10°7  2.040x10°'° 3.269x10 '3
7 10 20 4.219x107% 1.550x107° 1.794x1077 ——x— 1.503x1077  6.064x107*" 3.831x10~ %
7 10 50 6.052x10°% 2.039x10°°% 4.654x107° @ ——x— 2.946x107%  3.176x107'% 1.222x107%°

10 10 50 9.398x10°* 2.203x10° % 7.933x10°° ——x— 3.137x107°%  1.828x10 4 x—

10 10 100 2.229x10°* 5.052x10° 7 5.569x10°1° ——x— 9.023x1071% 5.274x10°15 x—
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