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Abstract

An integral representation result is provided for the Γ-limit of integral functionals arising in the study
of homogenization problems for the study of coherent thermochemical equilibria in multiphase solids.
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1 Introduction

The target of this paper is the treatment of a single scale homogenization problem, formulated in terms of an
integral energy, occurring in the description of elastic materials which exhibit an overall behavior depending
not only on the strain but also on the chemical composition.

Homogenization theory deals with composites whose overall behavior is established taking into account
their microstructure. Indeed such materials are characterized by the fact that they contain two or more
several mixed constituents, that in a first approximation, can be thought to be periodically distributed, but
even more general dependences can be considered. The size of the heterogeneities is very small compared
with the dimension of the composite: the ratio between the microscopic and the macroscopic dimensions is
the ‘so called’ homogenization parameter ε.

In detail we study the asymptotic behavior, as ε→ 0+ of integral functionals of the form∫
Ω

fε (x,∇u(x), v(x)) dx (1.1)

where fε is some oscillating integrand, Ω is an open bounded subset in RN and∇u represents the deformation
gradient of some field u belonging to some Sobolev space whose fields are p-th power summable, and v is an
Lq-function, (not necessarily scalar valued in our analysis), taking into account the chemical composition of
the material.

This type of integrals find applications not only in the study of coherent thermochemical equilibria for
multiphase solids as in [28, 29], but even in the ‘directors’ theory in Elasticity, (cf. [36] in the framework of
thin structures), and, when u is a field of Bounded Variation, the integrand can be intended as a TV model
(total variation model) for image decomposition (see [38], [42]).

For energies growing linearly without considering the chemical composition of the material, these kind of
homogenization problems have been sucessively studied in [7], [23] and in [14] with an extra surface energy
term.

To understand the asymptotic behavior of the (almost) minimizers of such energies, we perform a Γ−
convergence analysis (see [10, 22] for a detailed description of this subject), showing that the Γ-limit still
admits an integral representation.

Similar problems, when the integrands depend just on one field and exhibit a periodic behavior in the
spatial variable, i.e., fε(x, ξ, b) = f

(
x
ε , ξ
)

or f
(
x
ε , b
)

have been studied by many authors with different sets
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of assumptions and techniques. In the first case for energies with superlinear growth, i.e.,
1
C |ξ|

p−C ≤ f(x, ξ) ≤ C(|ξ|p + 1), p > 1 we refer to pioneering papers [37] and [17] (where in the scalar case
f = f (y, ξ) is assumed to be convex with respect to ξ). The vectorial case is presented in the independent
works of [9] and [40]. A wide literature has been produced since the present time with different methods:
among the others we recall the papers [1] where the two-scale convergence method ([41]) has been adopted
in the scalar setting, [20], with the approach of the unfolding method ([18, 19]). The case when the function
fε is periodic in the first variable and it has just dependence on b has been treated in [39], adopting the
two-scale convergence method.

For what concerns the multiple scale case, for example, fε(x, ξ) = f
(
x, xε ,

x
ε2 , ξ,

)
we refer, in particular

to [2, 11, 12, 35], (see also [4] in the realm of thin structures). In details, in [2], with very mild hypotheses
a characterization as ε → 0+ of a family of integral functionals of the type

∫
Ω
f
(
x, xε ,∇u(x)

)
dx where

u ∈ W 1,p
(
Ω; Rd

)
and p > 1 is obtained, using Γ−convergence techniques combined with techniques of

two-scale convergence. Moreover, we recall [5, 6] where the approach through Young measures has been
adopted.

Besides we provide an integral representation theorem for the Γ-limit (up to a subsequence) of the
functionals in (1.1) (see Theorem 3.2). We emphasize that we are mainly concerned with a single scale
model, i.e., fε(x, ξ, b) = f

(
x
ε , ξ, b

)
, leaving to a forthcoming paper the multiple scales case. The case p = q

has already been studied in [13], in the realm of A-quasiconvexity, even if under the continuity assumption
on f on all the variables. In the present work, we consider any p, q > 1 and we only require f to be a
Carathéodory integrand satisfying

(H1) f(·, ξ, b) is Q−periodic, for all (ξ, b) ∈ Rd×N × Rm, (Q being the unit cube in RN );

(H2) there exist p, q > 1 and a positive constant C such that

1
C

(|ξ|p + |b|q)− C ≤ f(x, ξ, b) ≤ C(1 + |ξ|p + |b|q),

for a.e. x ∈ Ω and for every (ξ, b) ∈ Rd×N × Rm.

For ε > 0, we define the family of functionals Fε : Lp(Ω; Rd)× Lq(Ω; Rm)→ R by

Fε(u, v) :=


∫

Ω

f
(
x
ε ,∇u (x) , v (x)

)
dx if (u, v) ∈W 1,p(Ω; Rd)× Lq(Ω; Rm),

+∞ otherwise.
(1.2)

We are interested in studying the asymptotic behavior of Fε as ε → 0+, using Γ-convergence, i.e., we want
to show that the following functionals

F−{ε}(u, v) := inf
{

lim inf
ε→0+

Fε(uε, vε) : uε → u in Lp(Ω; Rd), vε ⇀ v in Lq(Ω; Rm)
}

F+
{ε}(u, v) := inf

{
lim sup
ε→0+

Fε(uε, vε) : uε → u in Lp(Ω; Rd), vε ⇀ v in Lq(Ω; Rm)
}

coincide, denoting the common value by F{ε}, the Γ-limit of {Fε}, we will provide an integral representation
for it. Indeed, cf. Theorem 1.1, we will show it coincides with the functional Fhom : Lp(Ω; Rd)×Lq(Ω; Rm)→
R, such that

Fhom(u, v) :=


∫

Ω

fhom(∇u (x) , v (x)) dx if u ∈W 1,p(Ω; Rd)× Lq(Ω; Rm),

+∞ otherwise,

where the energy density fhom is defined as

fhom(ξ, b) := lim
T→∞

inf

{
1
TN

∫
(0,T )N

f(y, ξ +∇ϕ (y) , b+ η (y)) dy :

ϕ ∈W 1,p
0 ((0, T )N ; Rd), η ∈ Lq((0, T )N ; Rm) :

∫
(0,T )N

η (y) dy = 0

}
.

(1.3)
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Using the classical techniques of Γ-convergence (see [22]), integral representation theorems, together with
the local Lipschitz continuity properties of integrands (see Proposition 2.11) we prove our main result.

Theorem 1.1 Let Ω ⊂ RN be a bounded open set and let f : Ω × Rd×N × Rm → R be a Carathéodory
function. Let {Fε} be the family of functionals defined in (1.2). Under the hypotheses (H1) and (H2), the
sequence {Fε} Γ-converges to Fhom, as ε→ 0+, i.e.,

F{ε} (u, v) = Fhom (u, v) .

Moreover in order to achieve Theorem 1.1 and to characterize the convexity properties of the limit energy
density fhom in (1.3), namely its quasiconvexity-convexity in the last two variables (see Definition 2.9) we
prove the relaxation result below

Theorem 1.2 Let 1 ≤ p <∞ and 1 < q <∞ and assume that f : Ω× Rd×N ×Rm → R is a Carathéodory
function that satisfies

1
C

(|ξ|p + |b|q)− C ≤ f (x, ξ, b) ≤ C (1 + |ξ|p + |b|q)

for a.e. x ∈ Ω, for every (ξ, b) ∈ Rd×N × Rm and for some C > 0.
Then for every u ∈W 1,p

(
A; Rd

)
, v ∈ Lq (A; Rm) and A ∈ A (Ω) we have

F (u, v,A) =
∫
A

QCf (x,∇u (x) , v (x)) dx,

where F (u, v,A) stands for the sequential lower semicontinuous envelope with respect to W 1,p
w ×Lqw conver-

gence, namely

F(u, v,A) = inf
{

lim inf
n→+∞

∫
A

f(x,∇un(x), vn(x))dx : un ⇀ u in W 1,p(A; Rd), vn ⇀ v in Lq(A; Rm)
}
, (1.4)

and QCf stands for the quasiconvex-convex envelope of f with respect to the last two variables (cf. (2.3)).

Theorem 1.2 provides also an extension of the relaxation theorem in [28] to the case where f exhibits
also dependence on x, (see also [43] for the homogeneous constrained case).

The paper is organized as follows. In section 2 we recall the notion of Γ−convergence and present
standard results on this theory. A local Lipschitz property inherited by quasiconvex-convex functions which
satisfies (H2) is derived. In section 3 we provide an integral representation result for functionals depending
on the strain and the chemical composition in the spirit of that obtained in the nonlinear elastic setting
by Buttazzo and Dal Maso in [16] to local functionals defined in W 1,p

(
Ω; Rd

)
× Lq (Ω; Rm) . This result is

applied to obtain an integral representation for a general family of functionals (see Theorem 3.2 below). In
section 4, Theorem 1.2 and Theorem 1.1 are proved as an application of Theorem 3.2 .

2 Preliminaries

This section is devoted to recall and prove concepts and results that will be exploited throughout the paper.
In the following Ω ⊂ RN is an open bounded set and we denote by A (Ω) the family of all open subsets

of Ω. The unit cube in RN ,
(
− 1

2 ,
1
2

)N
, is denoted by Q and we set Q (x0, ε) := x0 + εQ for ε > 0. We write

Bρ (x) for the open ball in RN centered at x with radius ρ > 0.
The constant C may vary from line to line.

2.1 Γ-convergence

First we remind De Giorgi’s notion of Γ-convergence and some of its properties (see De Giorgi and Dal Maso
[24] and De Giorgi and Franzoni [25]). For a more extended treatment of the subject we refer to the books
[10] and [22].

Let (X, d) be a metric space.
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Definition 2.1 (Γ-convergence for a sequence of functionals) Let {Fn} be a sequence of functionals
defined on X with values in R. The functional F : X → R is said to be the Γ − lim inf (resp. Γ − lim sup)
of {Fn} with respect to the metric d if for every u ∈ X

F (u) = inf
{

lim inf
n→∞

Fn(un) : un ∈ X,un → u in X
}

(resp. lim sup
n→∞

).

Thus we write
F = Γ− lim inf

n→∞
Fn (resp. F = Γ− lim sup

n→∞
Fn).

Moreover, the functional F is said to be the Γ−limit of {Fn} if

F = Γ− lim inf
n→∞

Fn = Γ− lim sup
n→∞

Fn,

and we may write
F = Γ− lim

n→∞
Fn.

For every ε > 0, let Fε be a functional over X with values in R, Fε : X → R.

Definition 2.2 (Γ-convergence for a family of functionals) A functional F : X → R is said to be the
Γ-liminf (resp. Γ-limsup or Γ-limit) of {Fε} with respect to the metric d, as ε → 0+, if for every sequence
εn → 0+

F = Γ− lim inf
n→∞

Fεn (resp.. F = Γ− lim sup
n→∞

Fεn or F = Γ− lim
n→∞

Fεn),

and we write
F = Γ− lim inf

ε→0+
Fε (resp. F = Γ− lim sup

ε→0+
Fε or F = Γ− lim

ε→0+
Fε).

Next we state the Urysohn property for Γ-convergence in a metric space.

Proposition 2.3 Given F : X → R and εn → 0+, F = Γ − lim
n→∞

Fεn if and only if for every subsequence{
εnj
}
≡ {εj} there exists a further subsequence

{
εnjk

}
≡ {εk} such that {Fεk} Γ−converges to F.

In addition, if the metric space is also separable the following compactness property holds.

Proposition 2.4 Each sequence εn → 0+ has a subsequence
{
εnj
}
≡ {εj} such that Γ− lim

j→∞
Fεj exists.

Proposition 2.5 If F = Γ− lim inf
ε→0+

Fε (or Γ− lim sup
ε→0+

Fε) then F is lower semicontinuous (with respect to

the metric d). Clearly, if F = Γ− lim
ε→0+

Fε then F is lower semicontinuous.

Definition 2.6 A family of functionals {Fε} is said to be equi-coercive if for every real number λ there exists
a compact set Kλ in X such that for each sequence εn → 0+,

{u ∈ X : Fεn (u) ≤ λ} ⊂ Kλ for every n ∈ N.

The next result states that Γ-convergence is a variational convergence, in fact under suitable compactness
conditions, there is convergence of minimizers (or almost minimizers) of a family of equi-coercive functionals
to the minimum of the limiting functional.

Theorem 2.7 (Fundamental Theorem of Γ−convergence) If {Fε} is a family of equi-coercive func-
tionals on X and if

F = Γ− lim
ε→0+

Fε,

then the functional F has a minimum on X and

min
u∈X

F (u) = lim
ε→0+

inf
u∈X

Fε (u) .
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Moreover, given εn → 0+ and {un} a converging sequence such that

lim
n→∞

Fεn (un) = lim
n→∞

inf
u∈X

Fεn (u) , (2.1)

then its limit is a minimum point for F on X.

If (2.1) holds, then {un} is said to be a sequence of almost-minimizers for F .
Now we recall the notion of Γ−convergence for sequences of functionals on a suitable rich family of sets.

Let A0 (Ω) be the family of all open subsets of Ω compactly included in Ω and E (Ω) any class of subsets of
Ω containing A0 (Ω) .

Definition 2.8 We say that {Fn} Γ−converges to F in X if F is the inner regular envelope of both Γ −
lim inf
n→∞

Fn and Γ− lim sup
n→∞

Fn, this means

F (u;A) = sup
{

Γ− lim inf
n→∞

Fn (u;B) : B ∈ E (Ω) , B ⊂⊂ A
}

= sup
{

Γ− lim sup
n→∞

Fn (u;B) : B ∈ E (Ω) , B ⊂⊂ A
}

for any A ∈ A (Ω) .

2.2 Quasiconvexity-convexity and Lipschitz continuity

Following [28, 36], see also [29] and [27] we recall the definition of quasiconvexity-convexity.

Definition 2.9 A Borel measurable function h : Rd×N × Rm → R is said to be quasiconvex-convex if there
exists a bounded open set D of RN such that

h(ξ, b) ≤ 1
|D|

∫
D

h(ξ +∇ϕ(x), b+ η(x)) dx, (2.2)

for every (ξ, b) ∈ Rd×N×Rm, for every η ∈ L∞(D; Rm), with
∫
D
η(x) dx = 0 and for every ϕ ∈W 1,∞

0

(
D; Rd

)
.

If h : Rd×N × Rm → R is any given Borel measurable function bounded from below, it can be defined
the quasiconvex-convex envelope of h, that is the largest quasiconvex-convex function below h:

QCh(ξ, b) := sup{g(ξ, b) : g ≤ h, g quasiconvex-convex}.

Moreover, by Theorem 4.16 in [36]

QCh(ξ, b) = inf
{∫

D

h(ξ +∇ϕ(x), b+ η(x)) dx : ϕ ∈W 1,∞
0 (D; Rd), η ∈ L∞(D; Rm),

∫
D

η(x)dx = 0
}
.

(2.3)

Remark 2.10 i) It can be easily proved that, if h is quasiconvex-convex, then, both condition (2.2) and
(2.3) hold for any bounded open set D ⊂ RN .

ii) It can be also showed that if h satisfies a growth condition of the type (H2) then in (2.2) and (2.3) the
spaces L∞ and W 1,∞

0 can be replaced by Lq and W 1,p
0 , respectively.

iii) In the remainder of the paper when we will say that a function f , possibly defined in Ω×Rd×N ×Rm,
is quasiconvex-convex, this property has to be understood with respect to the last two variables.

iv) Any function quasiconvex-convex is separately convex.

Next we state and prove the local Lipschitz property inherited by a separately convex function f which
satisfies a p− q growth condition. We follow along the lines the proof of Proposition 2.32 in [21].
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Proposition 2.11 Let f : Rm×Rd×N −→ R be a separately convex function verifying the growth condition

|f(ξ, b)| ≤ c(1 + |b|q + |ξ|p), ∀ (ξ, b) ∈ Rd×N × Rm (2.4)

for some p, q > 1.
Then, denoting by p′ and q′, the conjugate exponent of p and q, respectively, there exists a constant γ > 0

such that

|f (ξ, b)− f (ξ′, b′)| ≤ γ
(

1 + |b|q/p
′
+ |ξ|p−1 + |ξ′|p−1

)
|ξ − ξ′|+ γ

(
1 + |b|q−1 + |b′|q−1 + |ξ′|p/q

′)
|b− b′|

(2.5)
for every b, b′ ∈ Rm and for every ξ, ξ′ ∈ Rd×N .

Remark 2.12 By Remark 2.10 iv) this result applies, in particular, to quasiconvex-convex functions satis-
fying the growth condition (2.4).

Proof. For any (ξ, b), (ξ′, b′) ∈ Rd×N × Rm we have

|f(ξ, b)− f(ξ′, b′)| ≤ |f(ξ, b)− f(ξ′, b)|+ |f(ξ′, b)− f(ξ′, b′)|.

Therefore to achieve the Lipschitz condition stated in the theorem, it is enough to estimate each of the two
terms appearing in the right-hand of the previous inequality.

We recall that given any convex function g : R → R, it results for every λ > µ > 0 and for every t ∈ R,
that

g(t± µ)− g(t)
µ

≤ g(t± λ)− g(t)
λ

.

We will apply these inequalities to f , for a convenient choice of λ and µ, when all but one of the components
of (ξ, b) are fixed. Let ξ̂1 := (ξ2, . . . , ξd×N ) and define for every b ∈ Rm and t ∈ R

g(t) := f((t, ξ̂1), b).

Choose λ := 1 + |ξ|+ |ξ′|+ |b|q/p and µ := ξ′1− ξ1 (where without loss of generality it has been assumed that
ξ′1 > ξ1). In order to evaluate |g(ξ1)− g(ξ′1)| we observe that

g(ξ′1)− g(ξ1) = g(ξ1 + (ξ′1 − ξ1))− g(ξ1) ≤ (ξ′1 − ξ1)
g(ξ1 + λ)− g(ξ1)

λ

≤ |ξ′1 − ξ1|
c(1 + |b|q + |(ξ1 + λ, ξ̂1)|p) + c(1 + |b|q + |ξ|p)

λ

≤ C(1 + |b|q/p
′
+ |ξ|p−1+ |ξ′| p−1)|ξ1 − ξ′1|,

where we have used the p− q growth condition (2.4).
Arguing in the same way, one deduce that

g(ξ1)− g(ξ′1) = g(ξ′1 − (ξ′1 − ξ1))− g(ξ′1) ≤ C(1 + |b|q/p
′
+ |ξ|p−1+ |ξ′|p−1 )|ξ1 − ξ′1|,

hence
|g(ξ1)− g(ξ′1)| ≤ C(1 + |b|q/p

′
+ |ξ|p−1+ |ξ′| p−1)|ξ1 − ξ′1|. (2.6)

Consequently, since

f(ξ, b)− f(ξ′, b)=f((ξ1, ξ̂1), b)− f((ξ′1, ξ̂1), b)+

+
d×N−2∑
i=1

[f(ξ′1, . . . , ξ
′
i, ξi+1, ξi+2, . . . , ξd×N , b)− f(ξ′1, . . . , ξ

′
i, ξ
′
i+1, ξi+2, . . . , ξd×N , b)]+ (2.7)

+f(ξ′1, ξ
′
2, . . . , ξ

′
d×N−1, ξd×N , b)− f(ξ′, b).

Applying to each term, in the sum above, the estimate analogous to (2.6) one obtains

|f(ξ, b)− f (ξ′, b)| ≤ C
(

1 + | b|q/p
′
+|ξ|p−1+ |ξ′|p−1

)
|ξ − ξ′|. (2.8)
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Analogously, let b̂1 := ( b2, . . . , bm) and define the convex function h : R −→ R by h(t) := f(ξ′, (t, b̂1)).
Clearly, choosing λ := 1 + |b|+ | b′|+ |ξ′|p/q and µ := b′1 − b1, (assuming b′1 > b1) and arguing as above it
results that

|h( b1)− h( b′1)| ≤ C(1 + | b|q−1+
∣∣ b′∣∣ q−1+ |ξ| p/q

′
)| b− b′|.

Finally, by splitting the difference f( ξ′, b)− f( ξ′, b′) in m terms as in (2.7) one gets

|f(ξ, b)− f (ξ′, b)| ≤ C
(

1 + |ξ′| q−1+
∣∣ b′∣∣ q−1+ |ξ′| p/q

′
)
| b− b′|. (2.9)

Putting together (2.8) and (2.9) and choosing suitably the constant γ we conclude the proof.

3 General results

In this section we provide sufficient conditions for which a functional defined in W 1,p(Ω; Rd) × Lq(Ω; Rm)
admits an integral representation. Next we apply this result to represent the Γ-limit of certain sequence of
functionals.

3.1 Integral representation theorem

In this subsection we prove an integral representation theorem for local functionals defined on the product of
Sobolev spaces and the space of Lq functions and on open sets, by following the proof of a classical integral
representation result proved by Buttazzo and Dal Maso (see [16] and the monograph of Buttazzo [15]) dealing
with functionals defined on Sobolev spaces and open sets.

Theorem 3.1 Let p ≥ 1, q > 1 and F : W 1,p
(
Ω; Rd

)
× Lq (Ω; Rm)×A (Ω)→ R satisfying

i) F is local on A (Ω) , i.e.
F (u, v,A) = F (u, v,A)

whenever A ∈ A (Ω), and u = u, v = v a.e. on A;

ii) F (u, v, ·) is the restriction to A (Ω) of a Radon measure;

iii) there exists C > 0 such that

|F (u, v,A)| ≤ C
∫
A

(1 + |∇u (x)|p + |v (x)|q) dx

for any u ∈W 1,p
(
Ω; Rd

)
, v ∈ Lq (Ω; Rm) and A ∈ A (Ω) ;

iv) F is translation invariant in u, i.e., for every A ∈ A (Ω) , u ∈W 1,p
(
Ω; Rd

)
, v ∈ Lq (Ω; Rm) , c ∈ Rd,

F (u+ c, v, A) = F (u, v,A) ;

v) for every A ∈ A (Ω) , F (·, ·, A) is sequentially weak lower semicontinuous in W 1,p
(
Ω; Rd

)
×Lq (Ω; Rm) .

Then there exists a Carathéodory function g : Ω× Rd×N × Rm → R such that

a) |g (x, ξ, b)| ≤ C (1 + |ξ|p + |b|q) for a.e. x ∈ Ω, for any (ξ, b) ∈ Rd×N × Rm;

b) for every A ∈ A (Ω) , u ∈W 1,p
(
Ω; Rd

)
and v ∈ Lq (Ω; Rm) the following integral representation holds

F (u, v,A) =
∫
A

g (x,∇u (x) , v (x)) dx.

Moreover, if
F (uξ, vb, Bρ (y)) = F (uξ, vb, Bρ (z)) (3.1)

for every y, z ∈ Ω, for ρ > 0 such that Bρ (y) ∪ Bρ (z) ⊂ Ω, and for every (ξ, b) ∈ Rd×N × Rm where
uξ (x) := ξx and vb ≡ b, then g is independent of x and it is quasiconvex-convex.
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Proof. The proof follows the same argument as Theorem 4.3.2 in [15]. We start by proving the integral
representation for piecewise affine functions u in W 1,p

(
Ω; Rd

)
and piecewise constant functions v. Then we

will use a density argument to get the full result.
By hypothesis iii), we can assume, without loss of generality, that F ≥ 0. Using hypothesis ii) and iii),

for every (ξ, b) ∈ Rd×N ×Rm we have that F (uξ, vb, ·) is absolutely continuous with respect to the Lebesgue
measure.

For every x ∈ Ω, (ξ, b) ∈ Rd×N × Rm set

g (x, ξ, b) := lim sup
ρ→0+

F (uξ, vb, Bρ (x))
|Bρ (x)|

. (3.2)

By Besicovitch derivation theorem g (·, ξ, b) ∈ L1 (Ω) and

F (uξ, vb, A) =
∫
A

g (x, ξ, b) dx. (3.3)

Moreover, from hypothesis iii) it follows that g satisfies the growth condition a).
Let u ∈ W 1,p

(
Ω; Rd

)
be a piecewise affine function and v a piecewise constant function. Precisely, let

{Ωi}i∈I be a finite family of open pairwise disjoint subsets of Ω such that

u|Ωi is affine, v = bi on Ωi, (3.4)

and
∣∣Ω\⋃i∈I Ωi

∣∣ = 0, for each i ∈ I where bi ∈ Rm.
From (3.3) and hypotheses i)− iii) it follows that

F (u, v,A) =
∫
A

g (x,∇u (x) , v (x)) dx

for every u and v like in (3.4) .
We claim that g (x, ·, ·) is separately convex for every x ∈ Ω, i.e.,

ξi 7−→ g (x, ξ1, . . . , ξi−1, ξi, ξi+1, . . . ξd×N , b) (3.5)

is convex for every i ∈ {1, . . . , d×N} and
b 7−→ g (x, ξ, ·) (3.6)

is convex.
We leave the proof of the claim to the end and proceed with the rest of the argument.
By Proposition 2.11, g satisfies the Lipschitz condition (2.5) which ensures g is a Carathéodory function.
By Lebesgue dominated convergence theorem

(u, v) 7→
∫
A

g (x,∇u (x) , v (x)) dx (3.7)

is strongly continuous in W 1,p
(
Ω; Rd

)
× Lq (Ω; Rm) .

We will now prove the integral representation for general functions u ∈W 1,p
(
Ω; Rd

)
and v ∈ Lq (Ω; Rm).

Let u ∈W 1,p
(
Ω; Rd

)
, A ∈ A (Ω) with A ⊂⊂ Ω and û ∈W 1,p

(
Ω; Rd

)
be with compact support in Ω and

such that u = û on A. We may find a sequence {un} of piecewise affine functions converging to û strongly
in W 1,p

(
Ω; Rd

)
.

Let v ∈ Lq (Ω; Rm). By density, for every n ∈ N there exists v̂n ∈ C∞c (Ω; Rm) such that ‖v̂n − v‖Lq <
1
n .

Denote
Kn := supp v̂n ⊂ An ⊂ Ω,

with An open. Fix η > 0. For δ > 0 let
{
Qδi
}

be a family of pairwise disjoint open cubes with side less than
δ and such that Kn ⊂ ∪Mδ

i=1Q
δ
i ⊂ An. Let

mδ,n
i := inf

Qδi

v̂n = min
Qδi

v̂n, sδn :=
Mδ∑
i=1

mδ,n
i χQδi .
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For sufficiently small δ, it is possible to get ∥∥sδn − v̂n∥∥L∞ < η. (3.8)

In fact, since v̂n is uniformly continuous in Ω then

∀ n ∈ N, ∀ η > 0, ∃ δn > 0 : |x− x′| < δn =⇒ |v̂n (x)− v̂n (x′)| < η.

In particular, in each cube Qδi ∥∥sδn − v̂n∥∥L∞ =

∥∥∥∥∥inf
Qδi

v̂n − v̂n

∥∥∥∥∥
L∞

< η.

On the other hand, if x /∈ ∪Mδ
i=1Q

δ
i then x /∈ Kn thus v̂n = sδn = 0. Hence it follows (3.8) . Observe that

∥∥v − sδn∥∥Lq ≤ ‖v − v̂n‖Lq +
∥∥v̂n − sδn∥∥Lq < 1

n
+
(∫

Ω

∣∣v̂n (x)− sδn (x)
∣∣q dx) 1

q

<
1
n

+ |Ω|
1
q η.

Choosing η < 1
n and letting n→∞ we conclude that sδn → v in Lq (Ω; Rm) .

Hence

F (u, v,A) = F (û, v, A) ≤ lim inf
n→∞

F
(
un, s

δ
n, A

)
= lim inf

n→∞

∫
A

g
(
x,∇un (x) , sδn (x)

)
dx

=
∫
A

g (x,∇û (x) , v (x)) dx =
∫
A

g (x,∇u (x) , v (x)) dx

where we have used the fact that F (·, ·, A) is sequentially weak lower semicontinuous and the strong continuity
of (3.7) in W 1,p

(
Ω; Rd

)
× Lq (Ω; Rm) . Hence

F (u, v,A) ≤
∫
A

g (x,∇u (x) , v (x)) dx

for every u ∈W 1,p
(
Ω; Rd

)
and v ∈ Lq (Ω; Rm) .

To prove the reverse inequality, let us fix u ∈W 1,p
(
Ω; Rd

)
, v ∈ Lq (Ω; Rm) and denote by

H : W 1,p
(
Ω; Rd

)
× Lq (Ω; Rm)→ R the functional

H (u, v,A) := F (u+ u, v + v,A) , ∀ (u, v) ∈W 1,p
(
Ω; Rd

)
× Lq (Ω; Rm) .

Since H satisfies the conditions of the theorem then there exists a Carathéodory function h satisfying the
p− q growth condition a) and such that

H (u, v,A) =
∫
A

h (x,∇u (x) , v (x)) dx

for every u ∈W 1,p
(
Ω; Rd

)
piecewise affine and v piecewise constant.

Moreover, we have proved that

H (u, v,A) ≤
∫
A

h (x,∇u (x) , v (x)) dx

for u ∈W 1,p
(
Ω; Rd

)
, v ∈ Lq (Ω; Rm) and A ⊂⊂ Ω.

Fix A ∈ A (Ω) such that A ⊂⊂ Ω and let, as before, û ∈W 1,p
(
Ω; Rd

)
be with compact support in Ω and

such that u = û on A, {un} a sequence of piecewise affine functions converging to û strongly in W 1,p
(
Ω; Rd

)
,

and vn ∈ C∞c (Ω; Rm) converging strongly to v in Lq (Ω; Rm) .
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We obtain ∫
A

h (x, 0, 0) dx = H (0, 0, A) = F (u, v,A) ≤
∫
A

g (x,∇u (x) , v (x)) dx

=
∫
A

g (x,∇û (x) , v (x)) dx = lim
n→∞

∫
A

g (x,∇un (x) , vn (x)) dx

= lim
n→∞

F (un, vn, A) = lim
n→∞

H (un − u, vn − v,A)

≤ lim
n→∞

∫
A

h (x,∇un (x)−∇u (x) , vn (x)− v (x)) dx

= lim
n→∞

∫
A

h (x,∇un (x)−∇û (x) , vn (x)− v (x)) dx

=
∫
A

h (x, 0, 0) dx.

Hence
F (u, v,A) =

∫
A

g (x,∇u (x) , v (x)) dx (3.9)

for every u ∈ W 1,p
(
Ω; Rd

)
, v ∈ Lq (Ω; Rm) and A ∈ A (Ω) with A ⊂⊂ Ω. By virtue of (3.9) on open sets

A well contained in Ω and by the inner regularity of the integral and of F (recall that F is a measure as
assumed in ii)), the equality F (u, v,A) =

∫
A
g(c,∇u (x) , v (x))dx holds for every A ∈ A(Ω) and for every

u ∈W 1,p(Ω; Rd) and v ∈ Lq(Ω; Rm).
To finish the proof it remains to prove that g (x, ·, ·) is separately convex.
The convexity described in (3.5) follows from Zig-Zag Lemma 4.3.5 in [15] (see also Lemma 20.2 in [22]).

To prove (3.6), we argue as in [3], Theorem 5.1. Let ξ ∈ RN and define

vb := tb1 + (1− t) b2

for t ∈ (0, 1) and b1, b2 ∈ Rm. To prove the convexity of g it suffices to prove

F (uξ, vb, Bρ (x)) ≤ tF (uξ, b1, Bρ (x)) + (1− t)F (uξ, b2, Bρ (x))

for every ρ > 0.
Let A := Q

(
x0,

N
√
tρ
)

and define vn(x) := b1χ(nx) + b2(1 − χ(nx)), where χ denotes the characteristic
function of A defined in the cube Q (x0, ρ) and extended by periodicity to RN .

By Riemann-Lebesgue lemma it follows that vn ⇀ tb1 +(1−t)b2 in the weak topology of Lq(Bρ(x0); Rm).
Let us consider the open set An := {x ∈ Bρ(x0) : χ(nx) = 1}. Since vn are piecewise constant and

F (·, ·, Bρ (x)) is sequentially weak lower semicontinuous in W 1,p
(
Ω; Rd

)
× Lq (Ω; Rm) we obtain

F (uξ, vb, Bρ (x)) ≤ lim inf
n→∞

F (uξ, vn, Bρ (x))

= lim inf
n→∞

(∫
Bρ(x)∩An

g (y, ξ, b1) dy +
∫
Bρ(x)\An

g (y, ξ, b2) dy

)

= t

∫
Bρ(x)

g (y, ξ, b1) dy + (1− t)
∫
Bρ(x)

g (y, ξ, b2) dy

= t F (uξ, b1, Bρ (x)) + (1− t)F (uξ, b2, Bρ (x)) .

So we conclude that g is separately convex.
By (3.1) and (3.2) one has

g (y, ξ, b) = lim sup
ρ→0+

F (uξ, vb, Bρ (y))
ρN

= lim sup
ρ→0+

F (uξ, vb, Bρ (z))
ρN

= g (z, ξ, b) ..

Thus given (ξ, b) ∈ Rd×N × Rm we have that g (y, ξ, b) = g (z, ξ, b) for any y, z ∈ Ω. Hence g is independent
of x. By Theorem 4.4 in [28] we conclude that g is quasiconvex-convex.
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3.2 Compactness

This subsection is devoted to prove that general families of integral functionals, essentially under hypotheses
(H1) and (H2) (for p, q > 1) admit a subsequence Γ(Lp × Lqw)-converging to a functional which is still a
measure and that can admit an integral formulation.

In this subsection p, q > 1.
First we will establish a compactness result for general families of functionals

Hε : Lp(Ω; Rd)× Lq(Ω; Rm)×A(Ω)→ [0,∞] of the form

Hε(u, v,A) :=


∫
A

fε(x,∇u (x) , v (x)) dx if (u, v) ∈W 1,p(A; Rd)× Lq(A; Rd),

+∞ otherwise,
(3.10)

where fε : Ω× Rd×N × Rm → R is a family of Carathéodory functions satisfying uniform p− q growth and
p− q coercivity conditions as in (H2) , namely

1
C

(|ξ|p + |b|q)− C ≤ fε(x, ξ, b) ≤ C(1 + |ξ|p + |b|q) (3.11)

for some C > 0, for a.e. x ∈ Ω and for every (ξ, b) ∈ Rd×N × Rm.
This compactness result will ensure the existence of Γ−convergent subsequences of Hε, whose Γ−limit

admits an integral representation in W 1,p
(
Ω; Rd

)
× Lq (Ω; Rm).

Let H−{εj} and H+
{εj} be defined in Lp

(
Ω; Rd

)
× Lq (Ω; Rm)×A (Ω) by

H−{εj} (u, v,A) := inf
{

lim inf
j→∞

Hεj (uj , vj , A) : uj → u in Lp(A; Rd), vj ⇀ v in Lq(A; Rm)
}
,

H+
{εj} (u, v,A) := inf

{
lim sup
j→∞

Hεj (uj , vj , A) : uj → u in Lp(A; Rd), vj ⇀ v in Lq(A; Rm)
}
.

If H+
{εj} (u, v,A) = H−{εj} (u, v,A) for each A ∈ A (Ω), for every u ∈ W 1,p

(
Ω; Rd

)
and v ∈ Lq (Ω; Rm) then

we denote H{εj} (u, v,A) := Γ− lim
j→∞

Hεj (u, v,A) .

Theorem 3.2 Let fε : Ω × Rd×N × Rm → R be a family of Carathéodory functions satisfying (3.11). Let
Hε be the functional defined in (3.10) . For every sequence {εn} converging to zero there exists a subsequence{
εnj
}
≡ {εj} such that H{εj} exists for all u ∈W 1,p

(
Ω; Rd

)
, v ∈ Lq (Ω; Rm) and A ∈ A (Ω) .

Moreover, there exists a Carathéodory function g{εj} : Ω× Rd×N × Rm → R such that

H{εj} (u, v,A) =
∫
A

g{εj} (x,∇u (x) , v (x)) dx

for every u ∈W 1,p
(
Ω; Rd

)
, v ∈ Lq (Ω; Rm) , A ∈ A (Ω) and∣∣∣g{εj} (x, ξ, b)

∣∣∣ ≤ C (1 + |ξ|p + |b|q)

for a.e. x ∈ Ω, and for every (ξ, b) ∈ Rd×N × Rm.

Let C be a countable collection of open subsets of Ω such that for any δ > 0 and any A ∈ A (Ω) there
exists a finite union CA of disjoint elements of C satisfying{

CA ⊂ A,
LN (A) ≤ LN (CA) + δ.

We may take C as the set of open cubes with faces parallel to the axes, centered at x ∈ Ω ∩ QN and with
rational edge length. We denote by R the countable collection of all finite unions of elements of C, i.e.,

R :=

{
k⋃
i=1

Ci : k ∈ N, Ci ∈ C

}
.

We start by proving that the Γ−limit exists for any element C ∈ R.
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Lemma 3.3 For every sequence {εn} converging to zero there exists a subsequence
{
εnj
}
≡ {εj}

(depending on R) such that
H{εj} (u, v, C) (3.12)

exists for all u ∈ Lp
(
Ω; Rd

)
, v ∈ Lq (Ω; Rm) and C ∈ R∪{Ω} .

Proof. Observing that the dual of Lp(Ω; Rd) × Lq(Ω; Rm) is a separable metric space, by virtue of Ku-
ratowski’s Compactness Theorem (see Theorem 8.5 and Corollary 8.12 in [22]) and via a diagonal argu-
ment, we may say that there exists a subsequence {εj}, depending on R such that the Γ-limit of Hεj

exists for every C ∈ R∪{Ω}, and (u, v) ∈ Lp(Ω; Rd) × Lq(Ω; Rm), and moreover this Γ-limit is +∞ in
(Lp(Ω; Rd) \W 1,p(Ω; Rd))× Lq(Ω; Rm).

In order to conclude the proof of Theorem 3.2, we prove that the Γ-liminf is the trace of a Radon measure.
To this end we will invoke the following result (see [32]) which is based on De Giorgi-Letta’s criterion (see
[26]).

Lemma 3.4 (Fonseca-Malý) Let X be a locally compact Hausdorff space, let Π : A (X)→ [0,∞] be a set
function and µ be a finite Radon measure on X satisfying

i) Π (A) ≤ Π (B) + Π
(
A\C

)
for all A, B, C ∈ A (X) such that C ⊂⊂ B ⊂⊂ A;

ii) given A ∈ A (X) , for all ε > 0 there exists Aε ∈ A (X) such that Aε ⊂⊂ A and Π
(
A\Aε

)
≤ ε;

iii) Π (X) ≥ µ (X) ;

iv) Π (A) ≤ µ
(
A
)

for all A ∈ A (X) .

Then, Π = µbA(X).

Lemma 3.5 For each u ∈ W 1,p
(
Ω; Rd

)
and v ∈ Lq (Ω; Rm), for every A ∈ A(Ω), let {εj} be the sequence

given by Lemma 3.3. Then there exists a further subsequence {εjk} ≡ {εk} such that H−{εk}(u, v, ·) is the
restriction to A (Ω) of a finite Radon measure.

Proof. The proof develops following by now standard techniques (see for instance [8]). We will see that we
are in conditions to apply Lemma 3.4 with Π (·) := H−{εk} (u, v, ·) for some sequence {εk} to be chosen.

Let A, B, C ∈ A (X) such that C ⊂⊂ B ⊂⊂ A, fix η > 0 and find {uj} ⊂ Lp(Ω; Rd) and {vj} ⊂
Lq(Ω; Rm) such that uj → u in Lp(A \ C; Rd), vj ⇀ v in Lq(A \ C; Rm) and

lim inf
j→∞

∫
A\C

fεj (x,∇uj (x) , vj (x)) dx ≤ H−{εj}(u, v,A \ C) + η. (3.13)

Moreover, up to a subsequence (not relabeled), we may assume that

lim
j→∞

∫
A\C

fεj (x,∇uj (x) , vj (x)) dx = lim inf
j→∞

∫
A\C

fεj (x,∇uj (x) , vj (x)) dx. (3.14)

Let B0 ∈ R be such that C ⊂⊂ B0 ⊂⊂ B, in particular LN (∂B0) = 0. Then, by Lemma 3.3, H−{εj}(u, v,B0)
is a Γ-limit, and thus there exists a sequence {u′j} ⊂ W 1,p(Ω; Rd) and {v′j} ⊂ Lq(Ω; Rm) such that u′j → u

in Lp(B0,Rd), v′j ⇀ v in Lq(B0; Rm) and

lim
j→∞

∫
B0

fεj (x,∇u′j (x) , v′j (x)) dx = H−{εj}(u, v,B0). (3.15)

For every u ∈ Lp
(
Ω; Rd

)
and v ∈ Lq (Ω; Rm) consider the functional

G(u, v,A) :=
∫
A

(1 + |∇u (x)|p + |v (x)|q) dx.
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By virtue of the coercivity condition (3.11), up to a subsequence, there exists a nonnegative Radon measure
ν such that νjk := G(ujk , vjk , ·) + G(u′jk , v

′
jk
, ·) restricted to B0\C converges weakly star in the sense of

measures to ν.
We claim that

H−{εk} (u, v,A) ≤ H−{εk} (u, v,B) +H−{εk}
(
u, v,A\C

)
for all A,B,C ∈ A (Ω) such that C ⊂⊂ B ⊂⊂ A, for every u ∈W 1,p(Ω; Rd) and for every v ∈ Lq(Ω; Rm).

For every t > 0, let Bt := {x ∈ B0 : dist(x, ∂B0) > t}. For 0 < δ < η′ < η such that ν (∂Bη′) = 0, define
Lδ := Bη′−2δ \ Bη+δ and take a smooth cut-off function ϕδ ∈ C∞0 (Bη−δ; [0, 1]) such that ϕδ(x) = 1 on Bη.
As the thickness of the strip is of order δ, we have an upper bound of the type ‖∇ϕδ‖L∞(Bη−δ) ≤ C

δ .
Define

uk := u′kϕδ + (1− ϕδ)uk, vk := v′kϕδ + (1− ϕδ)vk.

Clearly {uk} and {vk} converge strongly to u in Lp(A; Rd) and weakly to v in Lq(A; Rm), respectively.
By (3.11) it follows that∫

A

fεk(x,∇uk (x) , vk (x)) dx ≤
∫
Bη

fεk(x,∇u′k (x) , v′k (x)) dx+
∫
A\Bη−δ

fεk(x,∇uk (x) , vk (x)) dx

+ C(G(u′k, v
′
k, Lδ) +G(uk, vk, Lδ)) +

C

δp

∫
Lδ

|u′k (x)− uk (x) |pdx

≤
∫
B0

fεk(x,∇u′k (x) , v′k (x)) dx+
∫
A\C

fεk(x,∇uk (x) , vk (x)) dx

+ C(G(u′k, v
′
k, Lδ) +G(uk, vk, Lδ)) +

C

δp

∫
Lδ

|u′k (x)− uk (x) |pdx.

Passing to the limit on k and using (3.13), (3.14) and (3.15), we have

H−{εk}(u, v,A) ≤ H−{εk}(u, v,B0) +H−{εk}(u, v,A \ C) + η + Cν(Lδ)

≤ H−{εk}(u, v,B) +H−{εk}(u, v,A \ C) + η + Cν(Lδ),

where it has been used the fact the the Γ-liminf of a sequence is below the lim inf on any subsequence.
Letting δ → 0+ we obtain

H−{εk}(u, v,A) ≤ H−{εk}(u, v,B) +H−{εk}(u, v,A \ C) + η + ν(Bη′\Bη).

Letting η → 0+ and since ν(∂Bη′) = 0 we have proven the subadditivity of H−{εk} (u, v, ·).
To establish condition ii) in Lemma 3.4 let A ∈ A (Ω) , ε > 0 and consider Aε ∈ A (Ω) such that Aε ⊂ A

and ∫
A\Aε

(1 + |∇u (x)|p + |v (x)|q) dx < ε

C
, (3.16)

where C is the constant given by condition (3.11) .
Due to the growth conditions (3.11) and (3.16)

H−{εk}
(
u, v;A\Aε

)
≤ lim inf

k→∞

∫
A\Aε

fεk (x,∇u (x) , v (x)) dx

≤ C
∫
A\Aε

(1 + |∇u (x)|p + |v (x)|q) dx < ε.

Hence condition ii) holds.
Up to a subsequence, there exists {εk} such that uk ⇀ u in W 1,p(Ω; Rd), vk ⇀ v in Lq(Ω; Rm) and

H−{εk}(u, v,Ω) = limk→∞
∫

Ω
fεk(x,∇uk (x) , vk (x)) dx. Let µk := fεk(x,∇uk, vk)LNbΩ and let µ be defined,

up to a subsequence, as the limit of {µk} in the sense of measures.
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By definition, it follows that

H−{εk}(u, v,A) ≤ lim inf
k→∞

∫
A

fεk(x,∇uk (x) , vk (x)) dx ≤ µ(A)

and we attained iv).
Finally, to establish iii), take Ω′ ⊂⊂ Ω. Since {µk} converges weakly star in the sense of measures to µ

then
µ (Ω′) ≤ lim

k→∞

∫
Ω

fεk (x,∇uk (x) , vk (x)) dx = H−{εk} (u, v; Ω) .

Therefore
µ (Ω′) ≤ H−{εk} (u, v; Ω)

for all Ω′ ⊂⊂ Ω. Hence
µ (Ω) ≤ H−{εk} (u, v; Ω) .

As a consequence of Lemma 3.4 we conclude that

H−{εk} (u, v;A) = µ (A)

for all A ∈ A (Ω) .

Remark 3.6 Following the argument of Proposition 12.2 in [12] and assuming (3.11) we may conclude that
Hε satisfies the Lp × Lq− fundamental estimate. Precisely, for every U, U ′, V ∈ A (Ω) with U ′ ⊂⊂ U and
σ > 0 there exist Mσ > 0 and εσ > 0 such that for all u, u ∈ Lp

(
Ω; Rd

)
, v, v ∈ Lq (Ω; Rm) and ε < εσ

there exists a cut-off function ϕ ∈ C∞0 (U ; [0, 1]) such that ϕ ≡ 1 on U ′ and there exists r > 0 such that
U ′r := {x ∈ U : dist (x, U ′) < r} and

Hε

(
ϕu+ (1− ϕ)u, χU ′rv +

(
1− χU ′r

)
v, U ′ ∪ V

)
≤ (1 + σ) (Hε (u, v, U) +Hε (u, v, V ))

+Mσ

∫
(U∩V )\U ′

|u (x)− u (x)|p dx+ σ

where χU ′r stands for the characteristic function of U ′r. By Proposition 18.3 in [22] we conclude that for every
A,B,C ∈ A(Ω) such that C ⊂⊂ B ⊂⊂ A

H+
{ε}(u, v,A) ≤ H+

{ε}(u, v,B) +H+
{ε}(u, v,A \ C). (3.17)

Proof of Theorem 3.2. Since the dual of W 1,p(Ω; Rd)×Lq(Ω; Rm) is separable, by virtue of the coercivity
condition (3.11), we may apply Theorem 16.9 in [22], which ensures that every sequence of increasing
functionals {Hεn} admits a subsequence

{
εnj
}
≡ {εj}, Γ-converging to a functional H, namely the inner

regular envelope of H−{εj} and H+
{εj} coincide with H for every A ∈ A(Ω). On the other hand, by virtue of

Lemma 3.5, we have that H−{εj} is a measure hence coinciding with its inner regular envelope. Moreover,
arguing as in the proof of Proposition 18.6 in [22], by virtue of (3.17) and the growth condition (3.11) we
may conclude that H coincides also with H+

{εj}, thus concluding the existence of the Γ−limit.
To prove that H{εj} admits an integral representation we will verify that the hypotheses of Theorem 3.1

hold.
Hypotheses i) and v) are consequence of the definition of the Γ−limit. Hypothesis iii) comes from (3.11)

and iv) is easily attained. Condition ii) follows from Lemma 3.5.

Next we prove, using the same techiniques as in [8], that H−{ε} is independent of the boundary data for
v constant. This result will be useful in order to achieve Theorem 1.1.

Lemma 3.7 Let H∗ε : W 1,p
(
Ω; Rd

)
× Lq (Ω; Rm)×A (Ω)→ [0,∞) be defined by

H∗{ε} (u, v,A) := inf
{

lim inf
ε→0+

Hε (uε, vε, A) : uε → u in Lp
(
A; Rd

)
, vε ⇀ v in Lq (A; Rm)

uε = u on a neighborhood of ∂A,
∫
A

vε (x) dx =
∫
A

v (x) dx
}
.
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Then, under the growth condition (3.11) ,

H−{ε} (u, vb, A) = H∗{ε} (u, vb, A)

for every A ∈ A (Ω), u ∈W 1,p
(
Ω; Rd

)
, b ∈ Rm where vb ≡ b.

Proof. Clearly H−{ε} (u, v,A) ≤ H∗{ε} (u, v,A) for every u ∈ W 1,p
(
A; Rd

)
, v ∈ Lq (A; Rm) and A ∈ A (Ω) .

To prove the reverse inequality, let

Gp,q (u, |v| , A) :=
∫
A

(1 + |∇u (x)|p + |v (x)|q) dx

be defined for every u ∈ W 1,p
(
A; Rd

)
, v ∈ Lq (A; Rm) and A ∈ A (Ω) . Given ρ > 0 consider uε ∈

W 1,p
(
A; Rd

)
, vε ∈ Lq (A; Rm) such that uε → u in Lp

(
A; Rd

)
, vε ⇀ v in Lq (A; Rm) and

H−{ε} (u, vb, A) + ρ > lim inf
ε→0+

Hε (uε, vε, A) .

Due to the coercivity of Hε, we may extract subsequences {uεk} and {vεk} such that

lim inf
ε→0+

Hε (uε, vε, A) = lim
k→∞

Hεk (uεk , vεk , A)

and the sequence of measures νk := Gp,q (uεk , |vεk | , ·) +Gp,q (u, |vb|+ 1, ·) converges weakly star in the sense
of measures to some Radon measure ν.

For every t > 0, let At := {x ∈ A : dist (x, ∂A) > t} , fix η > 0 and for every 0 < 2δ < η′ < η such that
ν (∂Aη′) = 0 we define Lδ := Aη−2δ\Aη+δ. Consider a smooth cut-off function ϕδ ∈ C∞0 (Aη−δ; [0, 1]) such
that ϕδ ≡ 1 on Aη and ‖∇ϕδ‖L∞(A) ≤

C
δ .

Define
uεk := uεkϕδ + u (1− ϕδ) , vεk := vεkχAη + cεk

(
1− χAη

)
where

cεk :=

∫
A

(
vb (x)− vεk (x)χAη (x)

)
dx∫

A

(
1− χAη (x)

)
dx

.

Clearly, uεk → u in Lp
(
A; Rd

)
and uεk = u on a neighborhood of ∂A. Moreover cεk → b, vεk ⇀ vb in

Lq (A; Rm) and ∫
A

vεk (x) dx =
∫
A

vb(x) dx.

Thus

Hεk (uεk , vεk , A) ≤ Hεk (uεk , vεk , Aη) +Hεk

(
uεk , vεk , A\Aη−δ

)
+Hεk (uεk , vεk , Lδ)

≤ Hεk (uεk , vεk , Aη) +Hεk

(
u, cεk , A\Aη−δ

)
+ C

∫
Lδ

(1 + |∇uεk(x)|p + |vεk(x)|q) dx

≤ Hεk (uεk , vεk , Aη) + C

∫
A\Aη−δ

(1 + |∇u(x)|p + (|vb(x)|+ 1)q) dx

+ C

∫
Lδ

(1 + |∇uεk (x)|p + |vεk (x)|q) dx.

Since ∫
Lδ

|∇uεk (x)|p dx ≤ C
∫
Lδ

|∇u (x)|p + |∇uεk (x)|p + |∇ϕδ (x)⊗ (uεk (x)− u (x))|p dx

≤ C
∫
Lδ

|∇u (x)|p + |∇uεk (x)|p +
1
δp
|uεk (x)− u (x)|p dx
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and ∫
Lδ

|vεk (x)|q dx =
∫
Lδ∩Aη

|vεk (x)|q dx+
∫
Lδ\Aη

|cεk |
q
dx ≤

∫
Lδ

|vεk (x)|q dx+
∫
Lδ

(|vb(x)|+ 1)q dx

we have

Hεk (uεk , vεk , A) ≤ Hεk (uεk , vεk , Aη) + Cνk
(
A\Aη−δ

)
+ Cνk (Lδ) +

C

δp

∫
Lδ

|uεk (x)− u (x)|p dx.

Letting k →∞ and δ → 0+ in this order one obtains

lim inf
k→∞

Hεk (uεk , vεk , A) ≤ H−{ε} (u, vb, A) + ρ+ Cν
(
A\Aη

)
+ Cν (∂Aη′) .

Since ν (∂Aη′) = 0 letting η → 0+ one obtains

H∗{ε} (u, vb, A) ≤ lim inf
k→∞

Hεk (uεk , vεk , A) ≤ H−{ε} (u, vb, A) + ρ.

Letting ρ go to zero we attain the claim.

4 Applications

In this section we apply the integral representation results and the compactness theorem for the Γ-convergence
of a family of general integral functionals obtained in the previous section to provide an explicit integral
representation result for the Γ-limit of (1.2).

4.1 Relaxation in W 1,p × Lq
w

Let f be a Carathéodory function as in the statement of Theorem 1.2 and define F : W 1,p
(
Ω; Rd

)
×

Lq (Ω; Rm)×A (Ω)→ R by

F (u, v,A) :=
∫
A

f (x,∇u (x) , v (x)) dx.

Considering the relaxed functional defined as in (1.4), our goal is to find an integral representation for
F . The proof is based on blow-up techniques developed in [33]. We refer also to [31]. We also emphasize
that the Relaxation Theorem below holds for p ≥ 1 and q > 1.

Proof of Theorem 1.2. We start showing that, for every u ∈W 1,p
(
A; Rd

)
, v ∈ Lq (A; Rm) and A ∈ A (Ω)

we have
F (u, v,A) ≥

∫
A

QCf (x,∇u (x) , v (x)) dx.

Let un ⇀ u in W 1,p(A; Rd), vn ⇀ v in Lq(A; Rm), and assume, without loss of generality, that

lim inf
n→∞

∫
A

f (x,∇un (x) , vn (x)) dx = lim
n→∞

∫
A

f (x,∇un (x) , vn (x)) dx <∞.

By the growth condition on f , up to a subsequence, there exists a nonnegative Radon measure µ such that

f (x,∇un (x) , vn (x))LNbA ?
⇀ µ

as n→∞, weakly star in the sense of measures.
We claim that

dµ

dLN
(x0) ≥ QCf (x0,∇u (x0) , v (x0)) (4.1)

for a.e. x0 ∈ A.
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If (4.1) holds then the desired inequality follows immediately. Indeed, by Proposition 1.203 i) in [30] we
have

lim inf
n→∞

∫
A

f (x,∇un (x) , vn (x)) dx ≥ µ (A) ≥
∫
A

dµ

dLN
(x) dx ≥

∫
A

QCf (x,∇u (x) , v (x)) dx.

To show (4.1) we apply Lusin’s Theorem (see Theorem 1.94 in [30]) to obtain a compact set Kj ⊂ A
with |A\Kj | ≤ 1

j such that f |Kj : Kj × Rd×N × Rm → R is continuous. Let K∗j ⊂ A be the set of Lebesgue
points of χKj and set ω :=

⋃∞
j=1

(
Kj ∩K∗j

)
. Then

|A\ω| ≤ |A\Kj | ≤
1
j
→ 0 as j →∞.

Fix x0 ∈ ω a Lebesgue point of u such that

dµ

dLN
(x0) = lim

ε→0+

µ (Q (x0, ε))
εN

<∞,

lim
ε→0+

1
εN+1

∫
Q(x0,ε)

|u (x)− u (x0)−∇u (x0) (x− x0)| dx = 0, (4.2)

lim
ε→0+

1
εN

∫
Q(x0,ε)

|v (x)− v (x0)|q dx = 0.

Choosing εk → 0+ such that µ (∂Q (x0, εk)) = 0 and applying Proposition 1.203 iii) in [30] one has

dµ

dLN
(x0) = lim

k→∞

µ (Q (x0, εk))
εNk

= lim
k→∞

lim
n→∞

1
εNk

∫
Q(x0,εk)

f (x,∇un (x) , vn (x)) dx

= lim
k→∞

lim
n→∞

∫
Q

f (x0 + εky,∇wn,k (y) , vn,k (y)) dy

where

wn,k (y) :=
un (x0 + εky)− u (x0)

εk
, vn,k (y) := vn (x0 + εky) .

Clearly wn,k ∈ W 1,p
(
Q; Rd

)
and, by (4.2) , limk→∞ limn→∞ ‖wn,k − w0‖L1(Q;Rd) = 0 where w0 (y) :=

∇u (x0) y. Let {ϕR} be a countable dense set of functions in Lq′ (Q; Rm) . Then by (4.2)3

lim
k→∞

lim
n→∞

∫
Q

(vn,k (y)− v (x0))ϕR (y) dy = 0.

By a standard diagonalization argument, we may extract subsequences wk := wnk,k and ṽk := vnk,k
such that {wk} converges to w0 in L1

(
Q; Rd

)
, sup
k∈N

∫
Q
|∇wk (y)|p dy <∞, {ṽk} converges weakly to v (x0) in

Lq (Q; Rm) and
dµ

dLN
(x0) ≥ lim

k→∞

∫
Q

f (x0 + εky,∇wk (y) , ṽk (y)) dy.

Notice that if p = 1 the sequence {∇wk} is already p−equi-integrable. If p > 1 by the decomposition Lemma
(see Lemma 1.2 in [34]), and up to a subsequence, we may find {wk} ⊂W 1,p

(
Q; Rd

)
such that {|∇wk|p} is

equi-integrable, wk = w0 on ∂Q, wk ⇀ w0 in W 1,p
(
Q; Rd

)
and

|{y ∈ Q : wk (y) 6= wk (y) or ∇wk (y) 6= ∇wk (y)}| → 0.

Then, applying the decomposition Lemma to {ṽk} in Lp (see Proposition 2.3 in [13]) we may find, up to a
subsequence, {vk} ⊂ Lq (Q; Rm) q−equi-integrable in Q such that

|{y ∈ Q : ṽk (y) 6= vk (y)}| → 0 as k →∞,
∫
Q

vk (y) dy = v (x0) , for every k ∈ N
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and vk ⇀ v (x0) in Lq (Q; Rm) .
Hence

dµ

dLN
(x0) ≥ lim inf

k→∞

∫
{vk=vk and wk=wk}

f (x0 + εky,∇wk (y) , vk (y)) dy

where we have used the fact that f ≥ 0. Since x0 ∈ ω there exists j0 ∈ N such that x0 ∈ Kj0 ∩K∗j0 and using
the continuity of f there exists 0 < ρj < 1 such that

f (x0, ξ, b) ≤ f (x, ξ, b) +
1
j

for all (x, ξ, b) ∈ Kj0 ×Bd×Nj (0)×Bmj (0) with |x− x0| , |u (x)− u (x0)| ≤ ρj .
Set

Ek,j := {y ∈ Q : wk (y) = wk (y) , |εkwk (y)| ≤ ρj , |∇wk (y)| ≤ j, ṽk (y) = vk (y) , |vk (y)| ≤ j} .

The sequence {wk} is bounded inW 1,p
(
Q; Rd

)
, {vk} is bounded in Lq (Q; Rm) and limj→∞ limk→∞ |Q\Ek,j | =

0.
Thus

dµ

dLN
(x0) ≥ lim inf

j→∞
lim inf
k→∞

∫
Ek,j

f (x0 + εky,∇wk (y) , vk (y)) dy

= lim inf
j→∞

lim inf
k→∞

1
εNk

∫
Dk,j

f

(
x,∇wk

(
x− x0

εk

)
, vk

(
x− x0

εk

))
dx

where Dk,j := x0 + εkEk,j .
Hence

dµ

dLN
(x0) ≥ lim inf

j→∞
lim inf
k→∞

1
εNk

∫
Dk,j∩Kj0

f

(
x,∇wk

(
x− x0

εk

)
, vk

(
x− x0

εk

))
dx

≥ lim inf
j→∞

lim inf
k→∞

1
εNk

∫
Dk,j∩Kj0

f

(
x0,∇wk

(
x− x0

εk

)
, vk

(
x− x0

εk

))
− 1
j
dx.

Using the fact that |∇wk| ≤ j and |vk| ≤ j in Ek,j and, by the growth conditions on f , we have that

1
εNk

∫
Dk,j\Kj0

f

(
x0,∇wk

(
x− x0

εk

)
, vk

(
x− x0

εk

))
dx

≤ Ca (x0, u (x0)) (1 + jp + jq)
|Q (x0, εk) \Kj0 |

εNk
→ 0

as k →∞, because x0 is a Lebesgue point of χKj0 .
Consequently

dµ

dLN
(x0) ≥ lim inf

j→∞
lim inf
k→∞

1
εNk

∫
Dk,j

f

(
x0,∇wk

(
x− x0

εk

)
, vk

(
x− x0

εk

))
dx

= lim inf
j→∞

lim inf
k→∞

∫
Ek,j

f (x0,∇wk (y) , vk (y)) dy

= lim inf
k→∞

∫
Q

f (x0,∇wk (y) , vk (y)) dy,

where we have used the growth conditions on f , the equi-integrability of {|∇wk|p} and {|vk|q} and the fact
that |Q\Ek,j | → 0.

Since wk = w0 on ∂Q,
∫
Q

vk (x) dx = v (x0) and using (2.3) it follows that

dµ

dLN
(x0) ≥ QCf (x0,∇u (x0) , v (x0)) .
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To prove the reverse inequality, that is

F (u, v,A) ≤
∫
A

QCf (x,∇u (x) , v (x)) dx,

we assume without loss of generality that f ≥ 0. Arguing as in the proof of Theorem 3.2 it is easily seen
that (1.4) fullfills all the assumptions of Theorem 3.1 thus

F (u, v,A) =
∫
A

g (x,∇u (x) , v (x)) dx

for some Carathéodory function g, for every u ∈W 1,p
(
Ω; Rd

)
and every v ∈ Lq (Ω; Rm) and A ∈ A (Ω) .

By Scorza-Dragoni Theorem (see Theorem 6.35 in [30]) since f is Carathéodory, for each j ∈ N, there
exists a compact set Kj ⊂ A, with |A\Kj | < 1

j such that the restriction of f to Kj×Rd×N×Rm is continuous.
Let K∗j ⊂ A be the set of Lebesgue points of χKj and set ω := ∪∞j=1

(
Kj ∩K∗j

)
. Then

|A\ω| ≤ |A\Kj | <
1
j
→ 0 as j →∞.

Moreover, since for a.e. x0 ∈ A

g (x0, ξ0, b0) = lim
ε→0+

F (uξ0 , vb0 , Q (x0, ε))
εN

(4.3)

where uξ0 (x) := ξ0x and v0 ≡ b0, it is enough to prove that

g (x0, ξ0, b0) 6 QCf (x0, ξ0, b0)

for any x0 ∈ ω satisfying (4.3) , any ξ0 ∈ Rd×N and any b0 ∈ Rm.
Let (x0, ξ0, b0) be such triple. Fix δ > 0 and let w ∈W 1,∞

0

(
Q; Rd

)
and η ∈ L∞ (Q; Rm) with

∫
Q
η (x) dx =

0 be such that ∫
Q

f (x0, ξ0 +∇w (x) , b0 + η (x)) dx 6 QCf (x0, ξ0, b0) + δ.

Still denoting by w and η the extension of these functions to RN by Q−periodicity, let

wn,ε (x) :=
ε

n
w

(
n
x− x0

ε

)
and ηn,ε (x) := η

(
n
x− x0

ε

)
.

Clearly, up to a subsequence, wn,ε ⇀ 0 in W 1,p
(
Q (x0, ε) ; Rd

)
as n → ∞ and by Riemann-Lebesgue

Lemma (see Lemma 2.85 in [30]) ηn,ε ⇀ 0 in Lq (Q (x0, ε) ; Rm) as n→∞.
Therefore, by (4.3) and the definition of F ,

g (x0, ξ0, b0) 6 lim inf
ε→0+

lim inf
n→∞

1
εN

∫
Q(x0,ε)

f (x, ξ0 +∇wn,ε (x) , b0 + ηn,ε (x)) dx.

Let L := 1 + |ξ0| + ‖∇w‖L∞ + |b0| + ‖η‖L∞ . Since x0 ∈ ω, there exists j0 ∈ N such that x0 ∈ Kj0 ∩
K∗j0 and by the uniform continuity of f on Kj0 × Bd×NL (0) × BmL (0), one has the existence of ρ > 0
such that if (x, ξ, b) ,

(
x, ξ, b

)
∈ Kj0 × Bd×NL (0) × BmL (0) such that if

∣∣(x, ξ, b)− (x, ξ, b)∣∣ < ρ then∣∣f (x, ξ, b)− f
(
x, ξ, b

)∣∣ < δ. Therefore for ε sufficiently small (ε < ρ), and applying the growth condition
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assumed on f,

g (x0, ξ0, b0) 6 lim inf
ε→0+

lim inf
n→∞

(
1
εN

∫
Q(x0,ε)∩Kj0

f (x, ξ0 +∇wn,ε (x) , b0 + ηn,ε (x)) dx

+
C

εN

∫
Q(x0,ε)\Kj0

1 + (|ξ0|+ ‖∇w‖L∞)p + (|b0|+ ‖η‖L∞)q dx

)

6 lim inf
ε→0+

lim inf
n→∞

(
1
εN

∫
Q(x0,ε)∩Kj0

f (x0, ξ0 +∇wn,ε (x) , b0 + ηn,ε (x)) dx+ δ

+C
|Q (x0, ε) \Kj0 |

εN

)
6 lim inf

ε→0+
lim inf
n→∞

(
1
εN

∫
Q(x0,ε)

f (x0, ξ0 +∇wn,ε (x) , b0 + ηn,ε (x)) dx+ δ

+C
|Q (x0, ε) \Kj0 |

εN

)
=
∫
Q

f (x0, ξ0 +∇w (z) , b0 + η (z)) dz + δ + lim
ε→0+

C
|Q (x0, ε) \Kj0 |

εN

6 QCf (x0, ξ0, b0) + 2δ,

where we have used the periodicity of f and the fact that x0 is a Lebesgue point of χKj0 to get |Q(x0,ε)\Kj0 |
εN

→
0 as ε→ 0+.

Letting δ → 0+ we obtain the desired inequality.

4.2 Homogenization

In this section we prove Theorem 1.1.
Let Fε : Lp

(
Ω; Rd

)
× Lq (Ω; Rm)×A (Ω)→ R be given by

Fε (u, v,A) :=


∫
A

f
(
x
ε ,∇u (x) , v (x)

)
dx if (u, v) ∈W 1,p

(
A; Rd

)
× Lq (A; Rm) ,

+∞ otherwise.
(4.4)

Our goal is to show that the Γ−limit of {Fε} admits an integral representation. Precisely,

F{ε} (u, v,A) =
∫
A

fhom (∇u (x) , v (x)) dx (4.5)

for all u ∈ W 1,p
(
A; Rd

)
, v ∈ Lq (A; Rm) and A ∈ A (Ω) , where F{ε} is the Γ−limit of {Fε} and fhom is

given by (1.3) .
We start by showing that the limit in (1.3) is well defined. The proof is an adaptation of Proposition

14.4 in [12] and we present it here for convenience of the reader.

Proposition 4.1 Let f : RN × Rd×N × Rm → R be a Borel function satisfying (H1) and (H2) such that
sup
x∈RN

f (x, ξ, b) <∞ for every (ξ, b) ∈ Rd×N × Rm. Then fhom is well defined and satisfies (H2) .

Proof. Let (ξ, b) ∈ Rd×N × Rm be fixed and for t > 0 define

gt := 1
tN

inf

{∫
(0,t)N

f(x, ξ +∇ϕ (x) , b+ η (x)) dx :

ϕ ∈W 1,p
0 ((0, t)N ; Rd), η ∈ Lq((0, t)N ; Rm),

∫
(0,t)N

η (x) dx = 0

}
.
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Let ϕt ∈W 1,p
0

(
(0, t)N ; Rd

)
, ηt ∈ Lq

(
(0, t)N ; Rm

)
be such that

gt +
1
t
≥ 1
tN

∫
(0,t)N

f (x, ξ +∇ϕt (x) , b+ ηt (x)) dx.

Let s > t and I :=
{
i = (i1, . . . , iN ) ∈ NN0 : 0 < ([t] + 1) (ij + 1) ≤ s

}
where we denote by [t] the integer part

of t.
Let Qs := ∪i∈I i ([t] + 1) + (0, [t] + 1]N and define on Qs the maps ϕs and ηs as the extension by

([t] + 1)−periodicity of ϕt and ηt, respectively. Then extend by zero these functions to (0, s)N still denoting
them by ϕs and ηs, respectively. More precisely, on (0, s)N define

ϕs (x) :=
{
ϕt (x− i ([t] + 1)) if x− i ([t] + 1) ∈ (0, [t] + 1]N , i ∈ I,
0 elsewhere,

ηs (x) :=
{
ηt (x− i ([t] + 1)) if x− i ([t] + 1) ∈ (0, [t] + 1]N , i ∈ I,
0 elsewhere.

Notice that ϕs ∈W 1,p
0 ((0, s)N ; Rd), ηs ∈ Lq((0, s)N ; Rm) and

∫
(0,s)N

ηs(x) dx = 0.

Let Rs := (0, s)N \Qs, then

|Rs| ≤ sN −
(

s

t+ 1
− 1
)N

tN .

Moreover

]I =
[

s

[t] + 1

]N
≤
(

s

[t] + 1
+ 1
)N
≤
(s
t

+ 1
)N

. (4.6)

Using the periodicity of f, (4.6) and the growth conditions (H2) we have

gs ≤
1
sN

∫
(0,s)N

f (x, ξ +∇ϕs (x) , b+ ηs (x)) dx

=
1
sN

(∑
i∈I

∫
i([t]+1)+(0,[t]+1]N

f (x, ξ +∇ϕs (x) , b+ ηs (x)) dx+
∫
Rs

f (x, ξ, b) dx

)

≤ 1
sN

((s
t

+ 1
)N ∫

(0,t)N
f (x, ξ +∇ϕt (x) , b+ ηt (x)) dx+

(s
t

+ 1
)N ∫

(t,[t]+1]N
f (x, ξ, b) dx+ C |Rs|

)

≤ tN

sN

(s
t

+ 1
)N (

gt +
1
t

)
+ C

(
1
t

+
1
s

)N
+ C

(
1−

(
t

t+ 1
− t

s

)N)
.

Taking the upper limit on s and then the lower limit on t we get

lim sup
s→∞

gs ≤ lim sup
t→∞

gt

and thus the desired result.
It is easy to see that fhom satisfies (H2) . Indeed, by taking ϕ ≡ 0 and η ≡ 0 one has

fhom (ξ, b) ≤ lim sup
T→∞

1
TN

∫
(0,T )N

f (x, ξ, b) dx ≤ C (1 + |ξ|p + |b|q) . (4.7)

On the other hand, since |·|p, |·|q are convex and using Jensen’s inequality

1
TN

∫
(0,T )N

f (x, ξ +∇ϕ (x) , b+ η (x)) dx ≥ 1
TN

∫
(0,T )N

(
1
C

(|ξ +∇ϕ (x)|p + |b+ η (x)|q)− C
)
dx

≥ 1
C

∣∣∣∣∣ 1
TN

∫
(0,T )N

(ξ +∇ϕ (x)) dx

∣∣∣∣∣
p

+
1
C

∣∣∣∣∣ 1
TN

∫
(0,T )N

(b+ η (x)) dx

∣∣∣∣∣
q

− C,

21



where we have used the coercivity of f. By taking the infimum over all ϕ ∈W 1,p
0

(
(0, T )N ; Rd

)
and over all

η ∈ Lq
(

(0, T )N ; Rm
)

such that
∫

(0,T )N
η (x) dx = 0, one obtains

fhom (ξ, b) ≥ 1
C

(|ξ|p + |b|q)− C. (4.8)

From (4.7) and (4.8) one concludes that fhom satisfies (H2) .

Lemma 4.2 Let y, z ∈ Ω, and ρ > 0 such that Bρ (y) ∪ Bρ (z) ⊂ Ω. Then, for any sequence {ε} there is a
subsequence {εj} such that, under assumptions (H1) and (H2),

F−{εj} (uξ, vb, Bρ (y)) = F−{εj} (uξ, vb, Bρ (z)) (4.9)

holds, where uξ (x) := ξx and vb ≡ b with (ξ, b) ∈ Rd×N × Rm.

Proof. Fix ρ > 0, (ξ, b) ∈ Rd×N × Rm. By Proposition 11.7 in [12] there exist {uk} ⊂ W 1,p
0

(
Bρ (y) ; Rd

)
,

{vk} ⊂ Lq (Bρ (y) ; Rm) such that uk → 0 in Lp
(
Bρ (y) ; Rd

)
and vk ⇀ 0 in Lq (Bρ (y) ; Rm) and

lim
k→∞

Fεjk (uξ + uk, vb + vk, Bρ (y)) = F−{εj} (uξ, vb, Bρ (y)) .

Following the argument of Proposition 14.3 in [12], we extend uk and vk by 0 outside Bρ (y) . Let r > 1, let
τk ∈ RN be given by

(τk)i := εjk

[
zi − yi
εjk

]
and let

uk (x) := uk (x− τk) , vk (x) := vk (x− τk) .

Note that τk → z − y and τk is a period for x 7−→ f
(

x
εjk
, ξ, b

)
for all (ξ, b) ∈ Rd×N × Rm. Thus

Fεjk (uξ + uk, vb + vk, τk +Bρ (y)) =
∫
τk+Bρ(y)

f

(
x

εjk
, ξ +∇uk (x) , b+ vk (x)

)
dx

=
∫
τk+Bρ(y)

f

(
x

εjk
, ξ +∇uk (x− τk) , b+ vk (x− τk)

)
dx

=
∫
Bρ(y)

f

(
t+ τk
εjk

, ξ +∇uk (t) , b+ vk (t)
)
dt

=
∫
Bρ(y)

f

(
t

εjk
, ξ +∇uk (t) , b+ vk (t)

)
dt

= Fεjk (uξ + uk, vb + vk, Bρ (y))

where we have used the fact that t+τk
εjk

= t
εjk

+
[
zi−yi
εjk

]
and the periodicity of f (·, ξ, b) .

Moreover, uk → 0 in Lp
(
Bρr (z) ,Rd

)
and vk ⇀ 0 in Lq (Bρr (z) ; Rm) . In fact,∫

Bρr(z)

|uk (x)|p dx =
∫
Bρr(z)

|uk (x− τk)|p dx =
∫
Bρ(z)+τk

|uk (t)|p dt ≤
∫
Bρ(y)

|uk (t)|p dt→ 0.

And, for any measurable set E ⊂ Bρr (z) ,∫
Bρr(z)

vk (x)χE (x) dx =
∫

RN
vk (x)χE (x) dx =

∫
RN

vk (x− τk)χE (x) dx

=
∫

RN
vk (t)χτk+E (t) dt→

∫
RN

0χz−y+E (t) dt = 0.
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Since χE are dense in Lq
′

we obtain the weak convergence in Lq. Hence, assuming that without loss of
generality f ≥ 0 and using the growth condition (H2) .

F−{εjk}
(ξx, b, Bρ (z)) ≤ F−{εjk}

(uξ, vb, Bρr (z))

≤ lim inf
k→∞

Fεjk (uξ + uk, vb + vk, Bρr (z))

≤ lim inf
k→∞

Fεjk (uξ + uk, vb + vk, Bρ (y))

+ C |Bρr (y) \Bρ (y)| (1 + |ξ|p + |b|q)
= F−{εjk}

(uξ, vb, Bρ (y)) + C |Bρr (y) \Bρ (y)| (1 + |ξ|p + |b|q) .

Letting r → 1 then |Bρr (y) \Bρ (y)| → 0. Thus we obtain (4.9) .

Proof of Theorem 1.1. To prove that the Γ−limit expressed in the theorem exists, we will prove that for
any sequence {εn} ↘ 0 there is a subsequence

{
εnj
}
≡ {εj} for which the Γ−limit is the functional Fhom.

Therefore, since the Γ−limit for the subsequence {εj} is characterized, we get the existence of the Γ−limit
for the sequence {εn} and we achieve the result. Let then εn ↘ 0 and apply Theorem 3.2 to get, for some
subsequence

{
εnj
}
≡ {εj},

F{εj} (u, v,A) =
∫
A

g{εj} (x,∇u (x) , v (x)) dx

for some Carathéodory function g{εj} : Ω × Rd×N × Rm → R and for every u ∈ W 1,p
(
Ω; Rd

)
and v ∈

Lq (Ω; Rm) . Moreover, by Lemma 3.5, Lemma 4.2 and by Theorem 3.1, g{εj} is independent of x and it is
quasiconvex-convex.

We claim that
g{εj} = fhom.

By (2.3) and Remark 2.10 ii)

g{εj} (ξ, b) = min
{∫

Q

g{εj} (ξ +∇ϕ (x) , b+ η (x)) dx : ϕ ∈W 1,p
0

(
Q; Rd

)
, η ∈ Lq (Q; Rm) ,

∫
Q

η (x) dx = 0
}

= min
{
F{εj} (u, v,Q) : u = uξ + ϕ, v = vb + η, ϕ ∈W 1,p

0

(
Q; Rd

)
, η ∈ Lq (Q; Rm) ,∫

Q

η (x) dx = 0
}
,

where uξ (x) := ξx and vb ≡ b, for every (ξ, b) ∈ Rd×N × Rm.
Thus by the Fundamental Theorem of Γ−convergence (see Theorem 2.7) we have

g{εj} (ξ, b) = lim
j→∞

inf
{
Fεj (u, v,Q) : u = uξ + ϕ, v = vb + η, ϕ ∈W 1,p

0

(
Q; Rd

)
, η ∈ Lq (Q; Rm) ,∫

Q

η (x) dx = 0
}

= lim
j→∞

inf
{∫

Q

f

(
y

εj
,∇u (y) , v (y)

)
dy : u = uξ + ϕ, v = vb + η, ϕ ∈W 1,p

0

(
Q; Rd

)
,

η ∈ Lq (Q; Rm) ,
∫
Q

η (x) dx = 0
}
,

where we have used Lemma 3.7.
Changing variables one obtains the desired identity.
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