
Direct Multisearch for Multiobjective Optimization

A. L. Custódio ∗ J. F. A. Madeira† A. I. F. Vaz‡ L. N. Vicente§¶

June 1, 2010

Abstract

In practical applications of optimization it is common to have several conflicting objective
functions to optimize. Frequently, these functions are subject to noise or can be of black-box
type, preventing the use of derivative-based techniques.

We propose a novel multiobjective derivative-free methodology, calling it direct multi-
search (DMS), which does not aggregate any of the objective functions. Our framework is
inspired by the search/poll paradigm of direct-search methods of directional type and uses
the concept of Pareto dominance to maintain a list of nondominated points (from which the
new iterates or poll centers are chosen). The aim of our method is to generate as many
points in the Pareto front as possible from the polling procedure itself, while keeping the
whole framework general enough to accommodate other disseminating strategies, in partic-
ular when using the (here also) optional search step. DMS generalizes to multiobjective
optimization (MOO) all direct-search methods of directional type.

We prove under the common assumptions used in direct search for single optimization
that at least one limit point of the sequence of iterates generated by DMS lies in (a stationary
form of) the Pareto front. However, extensive computational experience has shown that our
methodology has an impressive capability of generating the whole Pareto front, even without
using a search step.

Two by-products of this paper are (i) the development of a collection of test problems for
MOO and (ii) the extension of performance and data profiles to MOO, allowing a comparison
of several solvers on a large set of test problems, in terms of their efficiency and robustness
to determine Pareto fronts.

Keywords: Multiobjective optimization, derivative-free optimization, direct-search methods, positive
spanning sets, Pareto dominance, nonsmooth calculus, performance profiles, data profiles.

∗Department of Mathematics, FCT-UNL, Quinta da Torre, 2829-516 Caparica, Portugal
(alcustodio@fct.unl.pt). Support for this author was provided by Centro de Matemática e Aplicações
da Universidade Nova de Lisboa and by FCT under the grant PTDC/MAT/098214/2008.
†IDMEC-IST, TU-Lisbon, Av. Rovisco Pais, 1040-001 Lisboa, Portugal and ISEL, Rua Conselheiro Emı́dio

Navarro, 1, 1959-007 Lisboa (jaguilar@dem.ist.utl.pt). Support for this author was provided by ISEL, IDMEC-
IST, and FCT-POCI 2010.
‡Department of Systems and Production, University of Minho, Campus de Gualtar, 4710-057, Portugal

(aivaz@dps.uminho.pt). Support for this author was provided by Algoritmi Research Center and by FCT under
the grant PTDC/MAT/098214/2008.
§CMUC, Department of Mathematics, University of Coimbra, 3001-454 Coimbra, Portugal (lnv@mat.uc.pt).

Support for this author was provided by FCT under the grant PTDC/MAT/098214/2008. Most of this work was
developed while this author was visiting the Courant Institute of Mathematical Sciences of New York University
under a FLAD scholarship.
¶Corresponding author.

1

1 Introduction

Many optimization problems involve the simultaneous optimization of different objectives or
goals, often conflictual. In this paper, we are interested in the development of derivative-free
methods (see [9]) for Multiobjective optimization (MOO). Such methods are appropriated when
computing the derivatives of the functions involved is expensive, unreliable, or even impossible.
Frequently, the term black-box is used to describe objective and/or constraints functions for
which, given a point, the value of the function is (hopefully) returned and no further informa-
tion is provided. The significant increase of computational power and software sophistication
observed in the last decades opened the possibility of simulating large and complex systems,
leading to the optimization of expensive black-box functions. Such type of black-box functions
also appear frequently in MOO problems (see, for instance, [22]).

In the classical literature of MOO, solution techniques are typically classified depending
on the moment where the decision maker is able to establish preferences relating the different
objectives (see [34]). Solution techniques with a prior articulation of preferences require an ag-
gregation criterion before starting the optimization, combining the different objective functions
into a single one. In the context of derivative-free optimization, this approach has been followed
in [3, 32]. Different approaches can be considered when aggregating objectives, among which
min-max formulations, weighted sums and nonlinear approaches (see, for instance, [41]), and
goal programming [28]. In any case, the decision maker must associate weights or/and goals
with each objective function. Since the original MOO problem is then reduced to a single ob-
jective problem, a typical output will consist of a single nondominated point. If the preferences
of the decision maker change, the whole optimization procedure needs to be reapplied.

Posteriori articulation of preferences solution techniques circumvent these difficulties, by
trying to capture the whole Pareto front for the MOO problem. Weighted-sum approaches can
also be part of these techniques, considering the weights as parameters and varying them in
order to capture the whole Pareto front. However, such methods might be time consuming
and might not guarantee an even distribution of points, specially when the Pareto front is
nonconvex (see [13]). The normal boundary intersection method [14] was proposed to address
these difficulties, but it may provide nondominated points as part of the final output. The
class of posteriori articulation of preferences techniques also includes heuristics such as genetic
algorithms [40] and simulated annealing [42].

The herein proposed algorithmic framework is a member of this latter class of techniques,
since it does not aggregate any of the objective functions. Instead, it directly extends, from
single to multiobjective optimization, a popular class of directional derivative-free methods,
called direct search [9, Chapter 7]. Each iteration of these methods can be organized around
a search step and a poll step. Given a current iterate (a poll center), the poll step in single
optimization evaluates the objective function at some neighbor points defined by a positive
spanning set and a step size parameter. We do the same for MOO but change the acceptance
criterion of new iterates using Pareto dominance, which then requires the updating of a list of
(feasible) nondominated points. At each iteration, polling is performed at a point selected from
this list and its success is dictated by changes in the list. Our framework encompasses a search
step too, whose main purpose is to further disseminate the search process of all the Pareto front.

We coined this new methodology direct multisearch (DMS) — as it reduces to direct search
when there is only a single objective function. DMS extends to MOO all types of direct-search
methods of directional type such as pattern search and generalized pattern search (GPS) [1, 30],

2

generating set search (GSS) [30], and mesh adaptive direct search (MADS) [2].
Our paper is divided as follows. In Section 2, we introduce some of the concepts and ter-

minology used in MOO and in nonsmooth calculus, required for what comes next. Section 3
describes the proposed DMS algorithmic framework. (An example illustrating how DMS works
is described in the appendix of the paper.) The convergence analysis can be found in Section 4,
where we prove, using Clarke’s nonsmooth calculus, that at least a limit point of the sequence
of iterates generated by DMS lies in (a stationary form of) the Pareto front.

Section 5 of this paper provides information about how our extensive numerical experiments
were performed, in particular we describe the set of test problems, the solvers selected for
comparison, the metrics used to assess the ability to compute Pareto fronts, and the use of
performance and data profiles in MOO. In Section 6 we report a summary of our computational
findings, showing the effectiveness and robustness of DMS to compute a relatively accurate
approximated Pareto front (even when the initial list of nondominated points is initialized with
a singleton and no search step is used). The paper ends with some final comments and discussion
of future work in Section 7.

2 Concepts and definitions

The main theoretical result of this paper states that a limit point of the sequence of iterates
generated by a DMS method is Pareto-Clarke stationary. The goal of this section is to intro-
duce this definition of stationarity as well as other concepts related to Pareto optimality and
nonsmooth calculus, required for the presentation and analysis of the DMS framework. For a
more complete revision on these subjects, the reader can consult [36] and [7], respectively.

2.1 Multiobjective optimization (MOO)

We pose a constrained nonlinear MOO problem in the form:

min F (x) ≡ (f1(x), f2(x), . . . , fm(x))>

s.t. x ∈ Ω ⊂ Rn,

where we consider m (≥ 1) real-extended value objective functions fi : Rn → R ∪ {+∞}, i =
1, . . . ,m (forming the objective function F (x)), and Ω represents the feasible region.

When several functions are present, given a point, it may be impossible to find another one
which simultaneously improves the value of all the objective function components at the given
one. The concept of Pareto dominance is crucial for comparing any two points, and to describe
it we will make use of the partial order induced by the cone

Rm
+ = {z ∈ Rm : z ≥ 0},

defined by
F (x) ≺F F (y) ⇐⇒ F (y)− F (x) ∈ Rm

+ \ {0}.

Given two points x, y in Ω, we say that x ≺ y (x dominates y) when F (x) ≺F F (y). We will
also say that a set of points in Ω is nondominated (or indifferent) when no point in the set
is dominated by another one in the set. The Pareto front or frontier is the set of points in Ω
nondominated by any other one in Ω (see below).

3

The concept of minimization in single optimization needs to be adapted to MOO. In MOO
problems it is common to have several conflicting objective functions. Finding a point which
corresponds to a minima for all the objectives considered, meaning an ideal point, may be an
unrealistic task. Once again, the concept of Pareto dominance is used to characterize global and
local optimality.

Definition 2.1 A point x∗ ∈ Ω is said to be a global Pareto minimizer of F in Ω if @y ∈ Ω such
that y ≺ x∗. If there exists a neighborhood N (x∗) of x∗ such that the previous property holds in
Ω ∩N (x∗), then x∗ is called a local Pareto minimizer of F .

Rigorously speaking, the Pareto front is the set of global Pareto minimizers. However, our
convergence results have a local nature in the sense that deal with necessary conditions for local
Pareto minimization.

2.2 Tangent cones and generalized derivatives

To establish first-order optimality conditions for constrained optimization one needs to consider
appropriate cones of directions. We start by defining the (Clarke) tangent cone, which we will
use to state Pareto first-order stationarity. The definition and notation are taken from [2].

Definition 2.2 A vector d ∈ Rn is said to be a Clarke tangent vector to the set Ω ⊆ Rn at the
point x in the closure of Ω if for every sequence {yk} of elements of Ω that converges to x and
for every sequence of positive real numbers {tk} converging to zero, there exists a sequence of
vectors {wk} converging to d such that yk + tkwk ∈ Ω.

The set TClΩ (x) of all Clarke tangent vectors to Ω at x is called the Clarke tangent cone to
Ω at x.

We will also need the definition of hypertangent cone since it is strongly related to the type
of iterates generated by a direct-search method of directional type. Again we will follow the
notation in [2].

Definition 2.3 A vector d ∈ Rn is said to be a hypertangent vector to the set Ω ⊆ Rn at the
point x in Ω if there exists a scalar ε > 0 such that

y + tw ∈ Ω, ∀y ∈ Ω ∩B(x; ε), w ∈ B(d; ε), and 0 < t < ε.

The set of all hypertangent vectors to Ω at x is called the hypertangent cone to Ω at x and
is denoted by THΩ (x). Note that the Clarke tangent cone is the closure of the hypertangent one.

If we assume that F (x) is Lipschitz continuous near x (meaning that each fi(x), i = 1, . . . ,m,
is Lipschitz continuous in a neighborhood of x), we can define the Clarke-Jahn generalized
derivatives of the individual functions along directions d in the hypertangent cone to Ω at x,

f◦i (x; d) = lim sup
x′ → x, x′ ∈ Ω
t ↓ 0, x′ + td ∈ Ω

fi(x′ + td)− fi(x′)
t

, i = 1, . . . ,m. (1)

4

These derivatives are essentially the Clarke generalized directional derivatives [7], extended
by Jahn [26] to the constrained setting. The Clarke-Jahn generalized derivatives along di-
rections v in the tangent cone to Ω at x, are computed by taking a limit, i.e., f◦i (x; v) =
limd∈TH

Ω (x),d→v f
◦
i (x; d), for i = 1, . . . ,m, see [2].

We are now able to introduce the definition of Pareto-Clarke stationarity which will play a
key role in our paper.

Definition 2.4 Let F be Lipschitz continuous near a point x∗ ∈ Ω. We say that x∗ is a Pareto-
Clarke critical point of F in Ω if, for all directions d ∈ TClΩ (x∗), there exists a j = j(d) ∈
{1, . . . ,m} such that f◦j (x∗; d) ≥ 0.

Definition 2.4 says essentially that there is no direction in the tangent cone that is descent
for all the objective functions. If a point is a Pareto minimizer (local or global), then it is
necessarily a Pareto-Clarke critical point.

By assuming strict differentiability for each component of the objective function at x∗ (mean-
ing that the corresponding Clarke generalized gradient is a singleton), the previous definition of
Pareto-Clarke stationarity can be restated using the gradient vectors.

Definition 2.5 Let F be strictly differentiable at a point x∗ ∈ Ω. We say that x∗ is a Pareto-
Clarke-KKT critical point of F in Ω if, for all directions d ∈ TClΩ (x∗), there exists a j = j(d) ∈
{1, . . . ,m} such that ∇fj(x∗)>d ≥ 0.

3 Direct multisearch for multiobjective optimization

In derivative-free optimization it is common to use an extreme barrier approach to deal with
constraints. We adapt the extreme barrier function to multiobjective optimization (MOO) by
setting

FΩ(x) =
{
F (x) if x ∈ Ω,
(+∞, . . . ,+∞)> otherwise.

(2)

When a point is infeasible, the components of the objective function F are not evaluated, and
the values of FΩ are set to +∞. This approach allows to deal with black-box type constraints,
where only a yes/no type of answer is returned.

We present a general description for direct multisearch (DMS), which encompasses algorithms
using different globalization strategies, like those based on rational lattices and only requiring
simple decrease of the objective function values for accepting new iterates (see, for example,
Generalized Pattern Search [1, 30] and Mesh Adaptive Direct Search [2]), and also algorithms
whose globalization strategy imposes a sufficient decrease condition for accepting new iterates
(like Generating Set Search methods [30]).

Following the MOO terminology, introduced in Section 2, the proposed algorithmic frame-
work keeps a list of previously evaluated feasible nondominated points and corresponding step
size parameters. This list plays an important role since new iterate points (i.e., poll centers) are
chosen from it. Also, as we will see later, success is defined by a change in this list. Thus, we
need to introduce the concept of iterate list in addition to the concept of iterate point (used in
direct-search methods of directional type for single optimization).

As in direct-search methods of directional type for single optimization, each iteration is
organized around a search step and a poll step, and it is the latter the one determinant to

5

obtain the convergence results. In DMS, the search step is also optional and used to possibly
improve algorithmic performance. Each poll step starts by choosing one of the nondominated
points stored in the current iterate list as the iterate point (poll center) and by performing a
local search around it.

In both the search and the poll steps, a temporary list of points is created first, which stores
all the points in the current iterate list and all the points evaluated during the course of the
step. This temporary list will then be filtered, removing all the dominated points and keeping
only the nondominated ones. Note that from (2), as we will later see in the description of the
algorithm, the infeasible points evaluated during the course of the step are trivially removed.

The trial list is then extracted from this filtered list of feasible nondominated points, and
must necessarily include (for the purposes of the convergence theory) all the nondominated
points which belonged to the iterate list considered at the previous iteration. Different criteria
can then be chosen to determine the trial list. A natural possibility is to define the trial list
exactly as the filtered one. We will discuss this issue in more detail after the presentation of the
algorithmic framework. When the trial list Ltrial is different from the current iterate list Lk, the
new iterate list Lk+1 is set to Ltrial (successful search or poll step and iteration). Otherwise,
Lk+1 = Lk (unsuccessful poll step and iteration).

When using sufficient decrease to determine dominancy, one makes use of a forcing function
ρ : (0,+∞) → (0,+∞), i.e., a continuous and nondecreasing function satisfying ρ(t)/t → 0
when t ↓ 0 (see [30]). Typical examples of forcing functions are ρ(t) = t1+a, for a > 0. To
write the algorithm in general terms, we will use ρ̄(·) to either represent an m-uple of forcing
functions (ρ(·), . . . , ρ(·))> or the constant, zero vector of dimension m. For the purposes of
the search step, we say that the point x dominates y (where α is a step size parameter) if
F (x) ≺F F (y)− ρ̄(α). When considering the poll step, the point x+αd dominates y (where d is
a direction used in polling around x) if F (x+αd) ≺F F (y)− ρ̄(α‖d‖). The criterion for testing
dominance can thus be based on simple or sufficient decrease, depending on the algorithmic
variant considered.

As we will see later in the convergence analysis, the set of directions to be used for polling is
not required to positively span Rn (although for coherence with the smooth case we will write
it so in the algorithm below), and it is not necessarily drawn from a finite set of directions.

Algorithm 3.1 (Direct Multisearch for MOO)

Initialization
Choose x0 ∈ Ω with fi(x0) < +∞, ∀i ∈ {1, . . . ,m}, α0 > 0, 0 < β1 ≤ β2 < 1, and
γ ≥ 1. Let D be a (possibly infinite) set of positive spanning sets. Initialize the list of
nondominated points and corresponding step size parameters L0 = {(x0;α0)}.

For k = 0, 1, 2, . . .

1. Selection of an iterate point: Order the list Lk and select a point and the corre-
sponding step size parameter, (x;α) ∈ Lk. Set (xk;αk) = (x;α).

2. Search step: Compute a finite set of points {zs}s∈S (in a mesh if ρ̄(·) = 0, see
Section 4.1) and evaluate FΩ on each element. Set Ladd = {(zs;αk), s ∈ S}.
Call Lfiltered = filter(Lk,Ladd) to eliminate dominated points from Lk∪Ladd. Call
Ltrial = select(Lfiltered) to determine Ltrial ⊆ Lfiltered. If Ltrial 6= Lk declare the
iteration (and the search step) successful, set Lk+1 = Ltrial, and skip the poll step.

6

3. Poll step: Choose a positive spanning set Dk from the set D. Evaluate FΩ at the
set of poll points Pk = {xk + αkd : d ∈ Dk}. Set Ladd = {(xk + αkd;αk), d ∈ Dk}.
Call Lfiltered = filter(Lk,Ladd) to eliminate dominated points from Lk∪Ladd. Call
Ltrial = select(Lfiltered) to determine Ltrial ⊆ Lfiltered. If Ltrial 6= Lk declare the
iteration (and the poll step) as successful and set Lk+1 = Ltrial. Otherwise, declare
the iteration (and the poll step) unsuccessful and set Lk+1 = Lk.

4. Mesh parameter update: If the iteration was successful then maintain or increase
the corresponding step size parameters: αk,new ∈ [αk, γαk] and replace all the new
points (xk + αkd;αk) in Lk+1 by (xk + αkd;αk,new); replace also (xk;αk), if in Lk+1,
by (xk;αk,new).
Otherwise decrease the step size parameter: αk,new ∈ [β1αk, β2αk] and replace the
poll pair (xk;αk) in Lk+1 by (xk;αk,new).

Next we address several issues left open during the discussion and presentation of the DMS
framework.

List initialization. For simplicity, the algorithmic description presented initialized the
list with a single point, but different strategies, considering several feasible previously evaluated
points, can be used in this initialization, with the goal of improving the algorithmic performance.
In Section 6.1, we suggest and numerically test three possible ways of initializing the list. Note
that a list initialization can also be regarded as a search step in iteration 0.

Ordering the iterate list. The number of elements stored in the list can vary from
one to several, depending on the problem characteristics and also on the criteria implemented
to determine the trial list. In a practical implementation, when the iterate list stores several
points, it may be crucial to order it before selecting a point for polling, as a way of diversifying
the search and explore different regions of Ω. A crude order strategy could be, for instance, (i)
to always add points to the end of the list and (ii) to move a point already selected as a poll
center to the end of the list (doing it at the end of an iteration) for a better dissemination of
the search of the Pareto front.

Search step and selection of the iterate point. The search step is optional and, in
the case of DMS (m > 1), it might act on the iterate list Lk rather than around an individual
point. For consistency with single optimization (m = 1), we included the selection of the point
iterate before the search step. If the search step is skipped or if it fails, this iterate point will
then be the poll center. Another reason for this inclusion is to define a step size parameter for
the search step.

Polling. As in single optimization, one can have a complete or an opportunistic poll step.
In the algorithmic framework presented above, we have used complete polling, which can be
a wise choice if the goal is to compute the complete Pareto front. Opportunistic polling may
be more suitable to deal with functions of considerably expensive evaluation. In this latter
case, in order to improve the algorithmic performance, the poll set should be appropriately
ordered before polling [10, 12]. Since the convergence results will rely on the analysis of the
algorithmic behavior at unsuccessful iterations, which is identical independently of the polling
strategy considered (opportunistic or complete), the results hold for both variants without any
further modifications.

Filtering dominated points. Note that the filtering process of the dominated points does
not require comparisons among all the stored points since the current iterate list Lk is already

7

Algorithm 3.2: [L3]=filter(L1, L2)

Set L3 = L1 ∪ L2

for all x ∈ L2

do

for all y ∈ L3, y 6= x

do
{

if y ≺ x
then

{
L3 = L3\{x}

if x ∈ L3

then

for all y ∈ L3, y 6= x

do

if x ≺ y

then

L3 = L3\{y}
if y ∈ L2

then
{
L2 = L2\{y}

Figure 1: Procedure for filtering the dominated points from L1 ∪ L2 (the set union should not
allow element repetition), assuming that L1 is already formed by nondominated points.

formed by nondominated points. Instead, only each added point will be compared to the others,
and, in particular, (i) if any of the points in the list Lk ∪ Ladd dominates a point in Ladd, this
added point will be discarded; (ii) if an added point dominates any of the remaining points in
the list Lk ∪ Ladd, all such dominated points will be discarded. An algorithmic description of
the procedure used for filtering the list can be found in Figure 1.

Selecting the trial list. As we have pointed out before, a natural candidate for the new
iterate list is Ltrial = Lfiltered, in particular if our goal is to determine as many points in the
Pareto front as possible. However, other choices Ltrial ⊂ Lfiltered can be considered. A more
restrictive strategy, for instance, is to always consider an iterate list formed by a single point.
In such a case, success is achieved if the new iterate point dominates the current one. This type
of algorithm fits in our framework since it suffices to initialize the list as a singleton and to only
consider in Ltrial the point that dominates the one in Lk when it exists, or the point already in
Lk, otherwise. An algorithmic description of these two procedures can be found in Figure 2.

In the appendix of this paper we describe an example illustrating how DMS (Algorithm 3.1)
works.

4 Convergence analysis

One of the key ingredients to state global convergence properties for direct-search methods of
directional type is to establish the existence of a subsequence of step size parameters converging
to zero. There are two main strategies which can be used to enforce this property in this class of
methods: (i) to ensure that all new iterates lie in a rational lattice or (ii) to impose a sufficient
decrease condition in the objective function values when accepting new iterates. To derive this
result for direct multisearch (DMS), we need the iterates to lie in a compact set in the former
case, and the objective functions must be bounded below in the latter situation.

8

Algorithm 3.3: [Ltrial]=select(Lfiltered)

Set Ltrial = Lfiltered

Algorithm 3.4: [Ltrial]=select(Lfiltered)

if Lk = {xk} * Lfiltered

then
{

Choose x ∈ Lfiltered
Set Ltrial = {x}

else
{

Set Ltrial = Lk

Figure 2: Two procedures for selecting the trial list Ltrial from the list of filtered nondominated
points Lfiltered. The list Lk represents the iterate list considered at the current iteration. Note
that in both algorithms all the nondominated points in Lk are included in Ltrial, as required for
the convergence theory.

Assumption 4.1 The level set L(x0) =
⋃m
i=1 Li(x0) is compact, where Li(x0) = {x ∈ Ω :

fi(x) ≤ fi(x0)}, i = 1, . . . ,m. The objective function components of F are bounded below
in L(x0).

4.1 Globalization using rational lattices

When considering continuously differentiable functions, a finite set of directions which satisfies
appropriate integrality requirements is enough to ensure convergence in single optimization.
Generalized Pattern Search (GPS) [1, 30] makes use of such a set of directions by setting D = D.

Assumption 4.2 The set D of positive spanning sets is finite and the elements of D are of the
form Gz̄j, j = 1, . . . , |D|, where G ∈ Rn×n is a nonsingular matrix and each z̄j is a vector in
Zn.

To deal with the presence of nondifferentiability, it is desirable to consider an infinite set
of directions D, which should be dense (after normalization) in the unit sphere. However, if
globalization is to be ensured by rational lattices, then some care must be taken when generating
the set D, as it is the case in Mesh Adaptive Direct Search (MADS) [2], where generating iterates
in integer lattices is guaranteed by the first requirement of the next assumption.

Assumption 4.3 Let D represent a finite set of positive spanning sets satisfying Assump-
tion 4.2.

The set D is so that the elements dk ∈ Dk ⊆ D satisfy the following conditions:

1. dk is a nonnegative integer combination of the columns of D.

2. The distance between xk and the point xk + αkdk tends to zero if and only if αk does:

lim
k∈K

αk‖dk‖ = 0 ⇐⇒ lim
k∈K

αk = 0,

for any infinite subsequence K.

9

3. The limits of all convergent subsequences of D̄k = {dk/‖dk‖ : dk ∈ Dk} are positive
spanning sets for Rn.

The third requirement above is not used in the convergence theory when applied to nons-
mooth objective functions, but is included for consistency with the smooth case and because it
is part of the MADS original presentation [2].

Also, the strategy for updating the step size parameter must conform to some form of
rationality.

Assumption 4.4 The step size parameter is updated as follows: Choose a rational number
τ > 1, a nonnegative integer mmax ≥ 0, and a negative integer mmin ≤ −1. If the iteration is
successful, the step size parameter is maintained or increased by taking αk,new = τm

+
αk, with

m+ ∈ {0, . . . ,mmax}. Otherwise, the step size parameter is decreased by setting αk,new = τm
−
αk,

with m− ∈ {mmin, . . . ,−1}.

By setting β1 = τm
−

, β2 = τ−1, and γ = τm
+

, the updating strategy described in Assump-
tion 4.4 conforms with those of Algorithm 3.1.

An additional condition imposes that the search step will be conducted in a previously
(implicitly defined) mesh or grid (see Assumption 4.5 below). We point out that poll points
must also lie on the mesh (i.e., Pk ⊂Mk), but such a requirement is trivially satisfied from the
definition of the mesh Mk given below.

Assumption 4.5 The search step in Algorithm 3.1 only evaluates points in

Mk =
⋃
x∈Ek

{x+ αkDz : z ∈ N|D|0 },

where Ek is the set of all the points evaluated by the algorithm previously to iteration k.

As a result of the previous assumptions, we can state the desired convergence result for the
sequence of step size parameters, which was originally established by Torczon [43] in the context
of pattern search and generalized by Audet and Dennis to GPS [1] and MADS [2] for single
optimization.

Theorem 4.1 Let Assumption 4.1 hold. Algorithm 3.1 under one of the Assumptions 4.2 or 4.3
combined with Assumptions 4.4–4.5 and ρ̄(·) = 0 generates a sequence of iterates satisfying

lim inf
k→+∞

αk = 0.

Proof. In order to arrive to a contradiction, let us assume that there is a strictly positive lower
bound for the step size parameter. Classical arguments, similar to the ones used by Torczon [43]
and Audet and Dennis [1] for single optimization, allow us to conclude that all the iterates and
poll points (i.e., points of the form xk +αkd, for d ∈ Dk) generated by DMS (Algorithm 3.1) lie
in a rational lattice. The intersection of a compact set with a rational lattice is finite and thus
the number of points which can be added to the iterate list is finite. It remains to show that
the algorithm cannot cycle among this finite set of points.

If a point is removed from the iterate list, then it is because it is dominated by another point
in the new iterate list. Thus, by transitivity, it can never be added again to the iterate list. At

10

each successful iteration, at least one new point is added to the iterate list. Since the number
of points which can be added is finite, the number of successful iterations must also be finite,
which, according to the step size updating rules, contradicts the fact that there is a lower bound
on the step size parameter.

4.2 Globalization by imposing sufficient decrease

A different globalization strategy consists in using a forcing function, by considering ρ̄(·) = ρ(·) in
Algorithm 3.1, imposing sufficient rather than simple decrease when accepting new iterates. The
following result is relatively classic in nonlinear (single objective) optimization. Kolda, Lewis
and Torczon [30] (see also [9, Section 7.7]) derive it in the context of direct-search methods
of directional type, when applied to single objective optimization. We will need the following
assumption (which, note, was already part of Assumption 4.3).

Assumption 4.6 The distance between xk and the point xk + αkdk tends to zero if and only if
αk does:

lim
k∈K

αk‖dk‖ = 0 ⇐⇒ lim
k∈K

αk = 0,

for all dk ∈ Dk and for any infinite subsequence K.

Note that Assumption 4.6 is a weak condition on the set of directions D. A normalized set
of directions D dense in the unit sphere meets such a requirement.

Theorem 4.2 Let Assumption 4.1 hold. Algorithm 3.1, when ρ̄(·) is a forcing function and
Assumption 4.6 holds, generates a sequence of iterates satisfying

lim inf
k→+∞

αk = 0.

Proof. Let us assume that lim infk→+∞ αk 6= 0, meaning that there is α∗ > 0 such that
αk > α∗, for all k. From Assumption 4.6, we then know that there is αd∗ > 0 such that
αk‖dk‖ > αd∗, for all k and dk ∈ Dk. At each unsuccessful iteration k, the corresponding step
size parameter is reduced by at least β2 ∈ (0, 1), and thus the number of successful iterations
must be infinite. Since ρ(·) is a non decreasing function, which satisfies ρ(t) > 0, for t > 0, there
exists ρ∗ > 0 such that ρ(αk) ≥ ρ(α∗) ≥ ρ∗ and ρ(αk‖dk‖) ≥ ρ(αd∗) ≥ ρ∗, for all k and dk ∈ Dk,
with ρ∗ = min(ρ(α∗), ρ(αd∗)), taking into account what can happen in both the search and the
poll steps.

At each successful iteration, at least one point is added to the iterate list. Let {lk} denote
the set of indices of successful iterations and consider the sequence {wlk}, where each wlk is
chosen as one of the points which was added to the iterate list at iteration lk. For any of these
points, at least one of the components of the objective function F decreased, which then implies

∀k, ∃ilk+1
∈ {1, . . . ,m}, filk+1

(wlk+1
)− filk+1

(wlk) < −ρ∗.

Since the number of components of the objective function is finite, there exists an i ∈
{1, . . . ,m} such that, passing to a subsequence {l′k} ⊂ {lk} if necessary,

∀k, fi(wl′k+1
)− fi(wl′k) < −ρ∗.

Thus, lim inf
k→+∞

fi(wl′k) = −∞, which contradicts Assumption 4.1.

11

4.3 Refining subsequences and directions

The convergence analysis of direct-search methods of directional type for single optimization
relies on the analysis of the behavior of the algorithm at limit points of sequences of unsuccessful
iterates, denoted by refining subsequences (a concept formalized in [1]). The same will happen
with DMS.

Definition 4.1 A subsequence {xk}k∈K of iterates corresponding to unsuccessful poll steps is
said to be a refining subsequence if {αk}k∈K converges to zero.

Assumption 4.1, Theorems 4.1 or 4.2, and the updating strategy of the step size parameter
allow us to establish the existence of at least a convergent refining subsequence (see, e.g., [9,
Section 7.3]).

Theorem 4.3 Let Assumption 4.1 hold. Consider a sequence of iterates generated by Algo-
rithm 3.1 under the scenarios of either Subsection 4.1 (rational lattices) or Subsection 4.2 (suf-
ficient decrease). Then there is at least one convergent refining subsequence {xk}k∈K .

The first stationarity result in our paper will establish appropriate nonnegativity of gener-
alized directional derivatives (see Definition 2.4) computed along certain limit directions, desig-
nated as refining directions (a notion formalized in [2]).

Definition 4.2 Let x∗ be the limit point of a convergent refining subsequence. If the limit
limk∈K′ dk/‖dk‖ exists, where K ′ ⊆ K and dk ∈ Dk, and if xk + αkdk ∈ Ω, for sufficiently large
k ∈ K ′, then this limit is said to be a refining direction for x∗.

Note that refining directions exist trivially in the unconstrained case Ω = Rn.

4.4 Convergence results

We are now in a position to state the main convergence result of our paper.

Theorem 4.4 Consider a refining subsequence {xk}k∈K converging to x∗ ∈ Ω and a refining
direction d for x∗ in THΩ (x∗). Assume that F is Lipschitz continuous near x∗. Then, there exists
a j = j(d) ∈ {1, . . . ,m} such that f◦j (x∗; d) ≥ 0.

Proof. Let {xk}k∈K be a refining subsequence converging to x∗ ∈ Ω and d = limk∈K′′ dk/‖dk‖
∈ THΩ (x∗) a refining direction for x∗, with dk ∈ Dk and xk + αkdk ∈ Ω for all k ∈ K ′′ ⊆ K.

For j ∈ {1, . . . ,m} we have

f◦j (x∗; d) = lim sup
x′ → x∗, x

′ ∈ Ω
t ↓ 0, x′ + td ∈ Ω

fj(x′ + td)− fj(x′)
t

≥ lim sup
k∈K′′

fj(xk + αk‖dk‖(dk/‖dk‖))− fj(xk)
αk‖dk‖

− rk

= lim sup
k∈K′′

fj(xk + αkdk)− fj(xk) + ρ̄(αk‖dk‖)
αk‖dk‖

− ρ̄(αk‖dk‖)
αk‖dk‖

− rk

≥ lim sup
k∈K′′

fj(xk + αkdk)− fj(xk) + ρ̄(αk‖dk‖)
αk‖dk‖

.

12

The first inequality follows from {xk}k∈K′′ being a feasible refining subsequence and the fact
that xk + αkdk is feasible for k ∈ K ′′. The term rk is bounded above by ν||d− dk/‖dk‖‖, where
ν is the Lipschitz constant of F near x∗. Note, also, that the limit limk∈K′′ ρ̄(αk‖dk‖)/(αk‖dk‖)
is 0 for both globalization strategies (Subsections 4.1 and 4.2). In the case of using rational
lattices (Subsection 4.1), one uses ρ̄(·) = 0. When imposing sufficient decrease (Subsection 4.2),
this limit follows from the properties of the forcing function and Assumption 4.6.

Since {xk}k∈K is a refining subsequence, for each k ∈ K ′′, xk + αkdk does not dominate
xk. Thus, for each k ∈ K ′′ it is possible to find j(k) ∈ {1, . . . ,m} such that fj(k)(xk + αkdk)−
fj(k)(xk) + ρ̄(αk‖dk‖) > 0. Since the number of objective functions components is finite, there
must exists one, say j = j(d), for which there is an infinite set of indices K ′′′ ⊆ K ′′ such that

f◦j(d)(x∗; d) ≥ lim sup
k∈K′′′

fj(d)(xk + αkdk)− fj(d)(xk) + ρ̄(αk‖dk‖)
αk‖dk‖

≥ 0.

If we assume strict differentiability of F at the point x∗, the conclusion of the above result
will be ∇fj(x∗)>d ≥ 0.

Convergence for a Pareto-Clarke critical point (see Definition 2.4) or a Pareto-Clarke-KKT
critical point (see Definition 2.5) can be established by imposing density in the unit sphere of
the set of refining directions associated with x∗. We note that this assumption is stronger than
just considering that the normalized set of directions D is dense in the unit sphere.

Theorem 4.5 Consider a refining subsequence {xk}k∈K converging to x∗ ∈ Ω. Assume that F
is Lipschitz continuous near x∗. If the set of refining directions for x∗ is dense in TClΩ (x∗), then
x∗ is a Pareto-Clarke critical point.

If, in addition, F is strictly differentiable at x∗, then this point is a Pareto-Clarke-KKT
critical point.

Proof. Given any direction v in the Clarke tangent cone, one has that

f◦j (x∗; v) = lim
d→ v

d ∈ THΩ (x∗)

f◦j (x∗; d),

for all j ∈ {1, . . . ,m} (see [2]).
Since the number of objective functions is finite, and from the previous theorem, there must

exist a sequence of directions {dw}w∈W in THΩ (x∗), converging to v such that f◦j (x∗; dw) ≥ 0 for
all directions dw in that sequence and for some j = j(v) ∈ {1, . . . ,m}. The first statement of
the theorem follows by taking limits of the Clarke generalized derivatives in this sequence (and
the second one results trivially).

Note that the assumption of density of the set of refining directions in the unit sphere is not
required only because of the presence of constraints. In fact, it is also necessary even without
constraints because one can easily present examples where the cone of directions simultaneously
descent for all objective functions can be as narrow as one would like.

In the following corollary, we state the previous results for the particular case of single
objective optimization, where the number of the objective function components equals one.

13

Corollary 4.1 Let m = 1 and F = (f1) = f .
Under the conditions of Theorem 4.4, if d ∈ THΩ (x∗) is a refining direction for x∗, then

f◦(x∗; d) ≥ 0.
Under the conditions of Theorem 4.5, the point x∗ is a Clarke critical point, i.e., f◦(x∗; v) ≥

0,∀v ∈ TClΩ (x∗).

If, additionally, we require the inclusion of all the nondominated points in the iterate list,
and if it is finite the number of iterations for which the cardinality of the iterate list exceeds
one, we can establish first-order convergence for an ideal point.

Corollary 4.2 Consider the algorithmic variant where Ltrial = Lfiltered in all iterations (Algo-
rithm 3.3). Assume that is finite the number of iterations for which the cardinality of {Lk}k∈K
exceeds one.

Under the conditions of Theorem 4.4, if d ∈ THΩ (x∗) is a refining direction for x∗, we have,
for all j ∈ {1, . . . ,m}, f◦j (x∗; d) ≥ 0.

Under the conditions of Theorem 4.5, the point x∗ is an ideal point, i.e.,

f◦j (x∗; v) ≥ 0, ∀j ∈ {1, . . . ,m}, ∀v ∈ TClΩ (x∗).

Proof. Let us recall the proof of Theorem 4.4 until its last paragraph. Now, by assumption,
it is possible to consider an infinite subset of indices K ′′′ ⊆ K ′′ such that |Lk| = 1, for each
k ∈ K ′′′. The selection criterion for the iterate list ensures that for each k ∈ K ′′′, xk + αkdk is
dominated by xk and it follows trivially that f◦j (x∗; d) ≥ 0 for all j ∈ {1, . . . ,m}. The proof of
the second assertion follows the same type of arguments of the proof of Theorem 4.5.

5 Test problems, solvers, metrics, and profiles

5.1 Test problems

We have collected 100 multiobjective optimization (MOO) problems reported in the literature
involving only simple bounds constraints, i.e., problems for which Ω = [`, u] with `, u ∈ Rn and
` < u. All test problems were modeled by us in AMPL [21] and are available for public testing
at http://www.mat.uc.pt/dms.

The problems and their dimensions are given in Table 1. To avoid a long presentation we
do not describe their mathematical formulations, which can be found in the AMPL model files.
We also provide in Table 1 the original references for these problems — noting, however, that in
some cases the formulation coded differed from the literature due to errors, mismatches or lack
of information found in the corresponding papers.

5.2 Solvers tested

We have considered in our numerical studies the following publicly available solvers for MOO
without derivatives:

• AMOSA (Archived MultiObjective Simulated Annealing) [5] — www.isical.ac.in/

~sriparna_r/software.html;

14

Problem n m Problem n m Problem n m

BK1 [24] 2 2 I5 [23] 8 3 MOP3 [24] 2 2
CL1 [6] 4 2 IKK1 [24] 2 3 MOP4 [24] 3 2
Deb41 [15] 2 2 IM1 [24] 2 2 MOP5 [24] 2 3
Deb512a [15] 2 2 Jin1 [27] 2 2 MOP6 [24] 2 2
Deb512b [15] 2 2 Jin2 [27] 2 2 MOP7 [24] 2 3
Deb512c [15] 2 2 Jin3 [27] 2 2 OKA1 [38] 2 2
Deb513 [15] 2 2 Jin4 [27] 2 2 OKA2 [38] 3 2
Deb521a [15] 2 2 Kursawe [31] 3 2 QV1 [24] 10 2
Deb521b [15] 2 2 L1ZDT4 [18] 10 2 Sch1 [24] 1 2
Deb53 [15] 2 2 L2ZDT1 [18] 30 2 SK1 [24] 1 2
DG01 [24] 1 2 L2ZDT2 [18] 30 2 SK2 [24] 4 2
DPAM1 [24] 10 2 L2ZDT3 [18] 30 2 SP1 [24] 2 2
DTLZ1 [17] 7 3 L2ZDT4 [18] 30 2 SSFYY1 [24] 2 2
DTLZ1n2 [17] 2 2 L2ZDT6 [18] 10 2 SSFYY2 [24] 1 2
DTLZ2 [17] 12 3 L3ZDT1 [18] 30 2 TKLY1 [24] 4 2
DTLZ2n2 [17] 2 2 L3ZDT2 [18] 30 2 VFM1 [24] 2 3
DTLZ3 [17] 12 3 L3ZDT3 [18] 30 2 VU1 [24] 2 2
DTLZ3n2 [17] 2 2 L3ZDT4 [18] 30 2 VU2 [24] 2 2
DTLZ4 [17] 12 3 L3ZDT6 [18] 10 2 WFG1 [24] 8 3
DTLZ4n2 [17] 2 2 LE1 [24] 2 2 WFG2 [24] 8 3
DTLZ5 [17] 12 3 lovison1 [33] 2 2 WFG3 [24] 8 3
DTLZ5n2 [17] 2 2 lovison2 [33] 2 2 WFG4 [24] 8 3
DTLZ6 [17] 22 3 lovison3 [33] 2 2 WFG5 [24] 8 3
DTLZ6n2 [17] 2 2 lovison4 [33] 2 2 WFG6 [24] 8 3
ex005 [25] 2 2 lovison5 [33] 3 3 WFG7 [24] 8 3
Far1 [24] 2 2 lovison6 [33] 3 3 WFG8 [24] 8 3
FES1 [24] 10 2 LRS1 [24] 2 2 WFG9 [24] 8 3
FES2 [24] 10 3 MHHM1 [24] 1 3 ZDT1 [47] 30 2
FES3 [24] 10 4 MHHM2 [24] 2 3 ZDT2 [47] 30 2
Fonseca [20] 2 2 MLF1 [24] 1 2 ZDT3 [47] 30 2
I1 [23] 8 3 MLF2 [24] 2 2 ZDT4 [47] 10 2
I2 [23] 8 3 MOP1 [24] 1 2 ZDT6 [47] 10 2
I3 [23] 8 3 MOP2 [24] 4 2 ZLT1 [24] 10 3
I4 [23] 8 3

Table 1: A description of our test set. Recall that n is the number of variables and m is the
number of objective functions.

15

• BIMADS (BI-Objective Mesh Adaptive Direct Search) [3] tested only for problems with
two objective functions
— www.gerad.ca/nomad/Project/Home.html;

• Epsilon-MOEA (Epsilon MultiObjective Evolutionary Algorithm) [16] — www.iitk.ac.
in/kangal/codes.shtml;

• GAMULTI (Genetic Algorithms for Multiobjective, MATLAB toolbox) — www.mathworks.
com;

• MOPSO (MultiObjective Particle Swarm Optimization) [8] — delta.cs.cinvestav.mx/

~ccoello/EMOO/EMOOsoftware.html;

• NSGA-II (Nondominated Sorting Genetic Algorithm II, C version) [17] — www.iitk.ac.
in/kangal/codes.shtml;

• NSGA-II (MATLAB implementation by A. Seshadri) — www.mathworks.com/
matlabcentral/fileexchange/10429-nsga-ii-a-multi-objective-optimization-
algorithm;

• PAES (Pareto Archived Evolution Strategy) [29] — dbkgroup.org/knowles/multi.

However, in order to keep the paper to a reasonable size and not to confuse the reader with
excessive information, we are only reporting later (see Section 6.2) a part of the numerical tests
that were performed. Besides four versions of our DMS, the selected solvers were AMOSA, BI-
MADS, and NSGA-II (C version), since these were the ones who exhibited the best performance
in the above mentioned test set. The numerical results regarding the remaining codes can be
found in http://www.mat.uc.pt/dms.

5.3 Metrics and profiles used for solver comparison

In the multiobjective case, one is interested in assessing the ability of a solver to obtain points
which are Pareto optimal and to compute a highly diversified subset of the whole Pareto front.
With these two goals in mind, we present in the next subsections the metrics used to assess
the performance of the tested solvers. While there are other metrics in the literature, we have
selected the ones presented herein due to its applicability to a large set of test problems. In
particular, using a metric that considers the distance from the obtained Pareto front to the
true Pareto one implies the knowledge of the latter for all the problems in the test set. In
addition, presenting results for a metric that only considers a small number of test problems
is meaningless. Despite not including a metric that requires the true Pareto front, we present
later, and for illustrative purposes, a few plots depicting the computed Pareto front for some
selected solvers on a small subset of problems where such information is available.

5.3.1 Performance profiles

In order to present values of the different metrics for all problems and all solvers considered,
we have used the so-called performance profiles, as suggested in [19] (see also [44] and the
references therein for the use of performance profiles in global derivative-free optimization).

16

Performance profiles are depicted by the plot of a cumulative distribution function ρ(τ) rep-
resenting a performance ratio for the different solvers. Let S be the set of solvers and P
be the set of problems. Let tp,s denote the performance of the solver s ∈ S on the prob-
lem p ∈ P — lower values of tp,s indicate better performance. This performance ratio is de-
fined by first setting rp,s = tp,s/min{tp,s : s ∈ S}, for p ∈ P and s ∈ S. Then, one defines
ρs(τ) = (1/np)|{p ∈ P : rp,s ≤ τ}|, where np is the number of test problems. Thus, the value of
ρs(1) is the probability of the solver s winning over the remaining ones. If we are only interested
in determining which solver is the best (in the sense of winning the most), we compare the
values of ρs(1) for all the solvers. At the other end, solvers with the largest probabilities ρs(τ)
for large values of τ are the most robust ones (meaning the ones who solved the largest number
of problems in P).

5.3.2 Purity metric

The first metric considered by us is called Purity [4] and is used to compare the Pareto fronts
obtained by different solvers. Again, let S be the set of solvers and P be the set of problems.
Let Fp,s denote the approximated Pareto front determined by the solver s ∈ S for problem
p ∈ P. Let also Fp denote an approximation to the true Pareto front of problem p, calculated
by first forming ∪s∈SFp,s and then removing from this set any dominated points. The Purity
metric consists then in computing, for solver s ∈ S and problem p ∈ P, the ratio cFp

p,s/cp,s, where
c
Fp
p,s = |Fp,s ∩ Fp| and cp,s = |Fp,s|. This metric is thus represented by a number t̄p,s = c

Fp
p,s/cp,s

between zero and one. Higher values for t̄p,s indicate a better Pareto front in terms of the
percentage of nondominated points.

When using performance profiles to analyze the performance of the solvers measured by
the Purity metric, we need to set tp,s = 1/t̄p,s (then, again, lower values of tp,s indicate better
performance). Note that when a solver s is not able to obtain a single nondominated point in Fp,
we obtain t̄p,s = 0, and thus tp,s = +∞, meaning that solver s was ‘unable’ to solve problem p.

The Purity metric has shown to be sensitive to the number and type of solvers considered in
a comparison. In fact, when two ‘similar’ solvers produce similar approximated Pareto fronts,
their performance under the Purity metric deteriorates significantly since many of these points
will dominate each other. This effect will then let a third solver easily win among the three.
Thus, we decided to only compare solvers in pairs when using the Purity metric. Still, since
we have two solvers and a large number of problems, we present the results using performance
profiles.

An additional difficulty is the inclusion of stochastic solvers in numerical comparisons. Since
two different runs of such solvers may produce different solutions, we decided to make 10 runs
for each stochastic solver on each single problem. From these 10 runs, we then selected the best
and the worst run. The best run simply consists of the run that has the higher percentage of
nondominated solutions when compared to the remaining ones. In a similar way, the worst run
is selected as the one with the lowest percentage of nondominated points.

5.3.3 Spread metric

The second type of metric used by us tries to measure the extent of the spread achieved in the
obtained Pareto front. Since we are interested in obtaining a set of solutions that spans the entire
Pareto front, the proposed metric has to consider ‘extreme’ solutions. However, the true Pareto

17

front is not known for the majority of the problems in the test set, and such extreme points
must be determined from the obtained Pareto fronts. For the computation of these extreme
points, in an attempt to have information as good as possible, we considered all runs of all
solvers (including the ones for which the results are not reported in this paper).

We considered essentially two formulae for the spread metric, and let us start by the case
m = 2. The first one consists of taking the maximum distance between points

Γ = Γp,s = max
i∈{0,...,N}

{di}, (3)

where di, for i = 1, . . . , N − 1, is the Euclidian distance between two consecutive points in the
approximated Pareto front (of cardinal N). The quantities d0 and dN are the distances to the
extreme points (see Figure 3 for an illustration). The second spread metric is the one proposed
in [17], defined as

∆ = ∆p,s =
d0 + dN +

∑N−1
i=1 |di − d̄|

d0 + dN + (N − 1)d̄
, (4)

where d̄ is the average of the distances di, i = 1, . . . , N − 1.
The metric Γ measures the maximum distance between points in the approximated Pareto

fronts, while the metric ∆ indicates how well the points are distributed in the fronts. The value
of Γ is positive. The value of ∆ is nonnegative and may be zero when all the distances are equal
to the average of the distances and the extreme points are included in the obtained Pareto front
(i.e., when we have d0 = dN = 0).

We also need to use performance profiles when analyzing the results measured in terms of
the Γ and ∆ metrics since, again, one has the issue of having several solvers on many problems.
In these cases, we have set tp,s = Γp,s or tp,s = ∆p,s depending on the metric considered.

f
1

f 2

d
N

Computed extreme points

d
0

d
1

d
2

d
N−2 d

N−1

Obtained points

Figure 3: Distances between points in an approximated Pareto front, for m = 2, to be used by
the metrics Γ and ∆.

The major drawback of the measures described in equations (3) and (4) is that they cannot
be easily extended to problems with more than two objective functions. In fact, it is not possible
to define without ambiguity what are two neighbor points in the approximated Pareto front when

18

m > 2, which then poses difficulties to the computation of the distances di, i = 0, . . . , N . The
following formulae extend the concepts of (3) and (4) for higher dimensional objective spaces
(m > 2)

Ξ = Ξp,s = max
j∈{1,...,m}

(
max

i∈{0,...,N}
{δi,j}

)
, (5)

where δi,j = (fi+1,j − fi,j) (and we assume that the objective function values have been sorted
by increasing order for each j), and

Θ = Θp,s = max
j∈{1,...,m}

(
δ0,j + δN,j +

∑N−1
i=1 |δi,j − δ̄j |

δ0,j + δN,j + (N − 1)δ̄j

)
, (6)

where δ̄j , for j = 1, . . . ,m, is the average of the distances δi,j , i = 1, . . . , N − 1. The quantities
δi,j , i = 0, . . . , N , j = 1, . . . ,m, are depicted in Figure 4 for m = 2. Note that the metrics Ξ and
Θ reduce, respectively, to Γ and ∆ when m = 2 and one uses the infinity norm in these latter
ones.

f
1

f 2

Computed extreme points

Obtained points

δ
N,1

δ
0,1

δ
0,2

δ
N−1,1

δ
N,2

δ
N−1,2

Figure 4: Distances between points in an approximated Pareto front to be used by the metrics
Ξ and Θ when m > 2. For simplicity, we depict the case for m = 2.

5.3.4 Data profiles

One possible way of assessing how well derivative-free solvers perform in terms of the number
of evaluations is given by the so-called data profiles proposed in [37] for single optimization.
Suppose there is only one objective function f(x). For each solver, a data profile consists of a
plot of the percentage of problems that are solved for a given budget of function evaluations.
Let hp,s be the number of function evaluations required for solver s ∈ S to solve problem p ∈ P
(up to a certain accuracy). The data profile cumulative function is then defined by

ds(σ) =
1
|P|
|{p ∈ P : hp,s ≤ σ}|. (7)

19

A critical issue related to data profiles is when a problem is considered as being solved. The
authors in [37] suggested that a problem is solved (up to some level ε of accuracy) when

f(x0)− f(x) ≥ (1− ε)(f(x0)− fL), (8)

where x0 is the initial guess and fL is the best obtained objective function value among all
solvers.

In the multiobjective case we need to consider instead a reference Pareto front Fp in order
to determine whether a problem p ∈ P has been solved or not. Then, a solver s is said to solve
problem p, up to an accuracy of ε, if the percentage of points obtained in the reference Pareto
front Fp is equal to or greater than 1− ε, i.e., if

|Fp,s ∩ Fp|
|Fp|/|S|

≥ 1− ε, (9)

where Fp,s is the approximated Pareto front obtained by solver s on problem p. Note that in (9)
the number of points in Fp is divided by the number of solvers in S in an attempt to consider
that all solvers are expected to contribute equally to the reference Pareto front.

The reference Pareto front can be computed in a number of possible ways depending on the
choice of solvers (and on how long we let them run). To have meaningful results for our data
profiles (in other words, a significant number of points in the numerator of (9)), we considered
only the solvers in the set S chosen for comparison and a maximum number of 5000 function
evaluations. The reference Pareto front is then computed by forming the union of the output
fronts of the solvers and eliminating from there all the dominated points.

Following [37], we also divided σ in (7) by n + 1 (the number of points needed to build a
simplex gradient). Finally, note also that we did not consider any spread metric for data profiles
since such metrics might not increase monotonically with the budget σ of function evaluations
(a consequence of this fact would be that a problem could be considered unsolved after had been
considered solved earlier in the running sequence).

6 Numerical experience

6.1 Comparing different DMS variants

The simplest possible version of direct multisearch (DMS), Algorithm 3.1, initializes the list of
nondominated points with a singleton (L0 = {(x0;α0)}) and considers an empty search step in
all iterations. This version is referred to as DMS(1). Since no initial guess has been provided
along with the majority of the problems in our test set, it was our responsibility to define a
default value for the initial point x0 to be used in DMS(1). A reasonable (perhaps the most
neutral) choice is x0 = (u+ `)/2.

Since DMS is competing against population based algorithms, it is desirable to equip it
with the possibility of starting from an initial list different from a singleton. Such a list can be
computed by first generating a set S0 of points and then eliminating from those the dominated
ones. Let Snd0 denote the resulting set. The initial list is then given by L0 = {(x;α0), x ∈ Snd0 }.
We considered the three following ways of generating S0 (taking |S0| = n and S0 ⊆ Ω = [`, u] in
all of them):

20

• DMS(n,line), where S0 is formed by equally spaced points on the line connecting ` and u,
i.e., S0 = {`+ i/(n− 1)(u− `), i = 0, . . . , n− 1};

• DMS(n,lhs), where S0 is generated using the Latin Hypercube Sampling strategy (see [35]).
In this strategy, a multi-interval in Rn is partitioned into n multi-subintervals of equal di-
mension and points are uniformly randomly generated in each one of these multi-subintervals.
The Latin Hypercube Sampling strategy generates random points by randomly permuting
these points among the multi-subintervals. Our numerical implementation uses the MAT-
LAB function lhsdesign from the Statistics Toolbox, followed by a shifting and scaling
of the generated points in [0, 1]n to the multi-interval [`, u];

• DMS(n,rand), where the n elements of S0 are uniformly randomly generated in the multi-
interval [`, u] (see, for instance, [39]). In this case, our numerical implementation uses
the MATLAB function rand, followed by a shifting and scaling of the generated points in
[0, 1]n to the multi-interval [`, u].

Algorithm 3.1 allows for a variety of ways of selecting the trial list from the filtered list.
We chose to work with Algorithm 3.3, meaning that Ltrial = Lfiltered. The strategy chosen to
manage the list consisted of always add points to the end of the list and move a point already
selected as a poll center to the end of the list (at the end of an iteration).

For all the variants tested (DMS(1), DMS(n,line), DMS(n,lhs), and DMS(n,rand)), we chose1

Dk = [In − In], where In is the identity matrix of order n. Also, for all variants, we picked
α0 = 1 and adopted a stopping criterion consisting of the step size αk being lower than a pre-
defined threshold αε = 10−3 for all points in the list or a maximum of 20000 objective functions
evaluations. The step size parameter was halved in unsuccessful iterations and maintained in
successful ones.

Figures 5–7 depict performance profiles of the Purity metric for the four above mentioned
variants of DMS. When a stochastic variant is involved (DMS(n,lhs) or DMS(n,rand)), the
figures show the best and worst run comparisons as explained in Subsection 5.3.2. We can easily
see that DMS(n,line) is the best variant, either in terms of efficiency or robustness, although
the gains when comparing to DMS(1) are not overwhelming. In fact, reading the values of the
curves of Figure 5 for τ = 1, we can observe that both DMS(n,line) and DMS(1) are able to
attain the best metric value for close to 70% of the problems. In terms of robustness, and
reading the same curves but now for large values of τ , we observe that both DMS(n,line) and
DMS(1) are able to provide at least one nondominated point for slightly more than 90% of the
problems. However, DMS(n,line) is significantly better than DMS(n,lhs) (see Figure 6) and
DMS(n,rand) (see Figure 7), in terms of both efficiency and robustness, even when considering
the best Pareto front obtained for 10 runs. For the sake of brevity, we do not provide pairwise
comparisons among DMS(1), DMS(n,lhs), and DMS(n,rand).

The performance profiles of the spread metrics Ξ and Θ are given in Figure 8 for average
values of the stochastic variants (the minimum and maximum values were also analyzed and do
not change the conclusions stated next). In general, we can say that DMS(1) and DMS(n,line)

1It is important to note that the result of Theorem 4.5 was derived under the assumption that the set of
refining directions was dense in the unit sphere. We also tried in our numerical setting to use a poll set Dk equal
to [Qk − Qk] (where Qk is an orthogonal matrix computed by randomly generating the first column) but the
results were worse.

21

0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Purity performance profile

τ

ρ

DMS(1)
DMS(n,line)

5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ

Figure 5: Comparing DMS(n,line) and DMS(1) based on performance profiles of the Purity
metric.

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Purity performance profile with the best of 10 runs

τ

ρ

DMS(n,line)
DMS(n,lhs)

50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ

10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Purity performance profile with the worst of 10 runs

τ

ρ

DMS(n,line)
DMS(n,lhs)

100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ

Figure 6: Comparing DMS(n,line) and DMS(n,lhs) based on performance profiles of the Purity
metric.

10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Purity performance profile with the best of 10 runs

τ

ρ

DMS(n,line)
DMS(n,rand)

100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ

10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Purity performance profile with the worst of 10 runs

τ

ρ

DMS(n,line)
DMS(n,rand)

100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ

Figure 7: Comparing DMS(n,line) and DMS(n,rand) based on performance profiles of the Purity
metric.

22

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Average Ξ performance profile for 10 runs

τ

ρ

DMS(1)
DMS(n,line)
DMS(n,lhs)
DMS(n,rand)

50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ

1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Average Θ performance profile for 10 runs

τ

ρ

DMS(1)
DMS(n,line)
DMS(n,lhs)
DMS(n,rand)

10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ

Figure 8: Comparing DMS(1), DMS(n,line), DMS(n,lhs), and DMS(n,rand) based on perfor-
mance profiles of the Ξ (left) and Θ (right) metrics (taking average values for stochastic variants).

exhibit a similar performance in terms of both metrics, better than the remaining ones regarding
efficiency.

6.2 Comparing DMS to other solvers

In this section we present a comparison of the DMS(n,line) variant against the selected solvers
AMOSA, BIMADS, and NSGA-II (C version). Because BIMADS can only deal with MOO
problems with two objectives (m = 2), we will report results using the metrics Γ and ∆.

The selected solvers have been tested using their default parameters values except for the
population size and number of iterations (generations). For AMOSA, we considered an initial
temperature of 100, a final temperature of 2.5 × 10−6, and a cooling factor of 0.6, yielding a
total of 20650 objective functions evaluations. For NSGA-II (C version), we set a population
of 100 points for 200 generations, yielding a total of 20000 objective functions evaluations. As
mentioned before, for the DMS(n,line) solver, we imposed a stopping criterion consisting of
αk < αε = 10−3 for all points in the list or a maximum of 20000 objective functions evaluations.
While AMOSA and NSGA-II (C version) always use the objective functions evaluations budget,
the DMS(n,line) may stop earlier due to the convergence of all the points in the list to the
requested step size accuracy. For BIMADS, a limit of 20000 objective function evaluations
is also imposed. The BIMADS delta criteria was set to true meaning that the runs are also
stopped when the step or mesh size parameter falls below a threshold (which is set in some
problem dependent way).

From the performance profile of Figure 9, we can observe that, when using the Purity metric
as a comparison measure, DMS(n,line) performs better than BIMADS in terms of efficiency,
being about the same with respect to robustness. Figure 10 compares DMS(n,line) to AMOSA,
also in terms of the Purity metric, being the former better for both the best and worst Pareto
fronts obtained by AMOSA. Considering the performance profiles plotted in Figure 11 for the
Purity metric as well, we can conclude that DMS(n,line) performs better than NSGA-II (C
version) in terms of efficiency. Regarding robustness, DMS(n,line) slightly outperforms NSGA-
II (C version) when considering its worst Pareto front, and slightly looses compared to its best
Pareto front.

Figure 12 depicts the performance profiles using the spread metrics Γ and ∆ (see (3) and (4))

23

0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Purity performance profile

τ

ρ

DMS(n,line)
BIMADS

3.5 4 4.5 5 5.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ

Figure 9: Comparing DMS(n,line) and BIMADS based on performance profiles of the Purity
metric (only problems with two objective functions were considered).

10 20 30 40 50 60 70 80 90 100 110
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Purity performance profile with the best of 10 runs

τ

ρ

DMS(n,line)
AMOSA

200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ

10 20 30 40 50 60 70 80 90 100 110
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Purity performance profile with the worst of 10 runs

τ

ρ

DMS(n,line)
AMOSA

200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ

Figure 10: Comparing DMS(n,line) and AMOSA based on performance profiles of the Purity
metric.

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Purity performance profile with the best of 10 runs

τ

ρ

DMS(n,line)
NSGA-II (C ve rs ion)

20 40 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ

0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Purity performance profile with the worst of 10 runs

τ

ρ

DMS(n,line)
NSGA-II (C ve rs ion)

5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ

Figure 11: Comparing DMS(n,line) and NSGA-II (C version) based on performance profiles of
the Purity metric.

24

20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Average Γ performance profile for 10 runs

τ

ρ

DMS(n,line)
BIMADS
NSGA-II (C ve rs ion)
AMOSA

500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Average Δ performance profile for 10 runs

τ

ρ

DMS(n,line)
BIMADS
NSGA-II (C ve rs ion)
AMOSA

200 400 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ

Figure 12: Comparing AMOSA, BIMADS, DMS(n,line), and NSGA-II (C version) based on
performance profiles of the Γ (left) and ∆ (right) metrics (taking average values for stochastic
variants); only problems with two objective functions were considered.

50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Average Ξ performance profile for 10 runs

τ

ρ

DMS(n,line)
NSGA-II (C ve rs ion)
AMOSA

500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Average Θ performance profile for 10 runs

τ

ρ

DMS(n,line)
NSGA-II (C ve rs ion)
AMOSA

200 400 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ

Figure 13: Comparing AMOSA, DMS(n,line), and NSGA-II (C version) based on performance
profiles of the Ξ (left) and Θ (right) metrics (taking average values for stochastic variants).

for problems where m = 2 (again we only show the results for average values of the stochastic
variants as the ones for minimum and maximum values do not affect our conclusions). One can
observe that DMS(n,line) exhibits the best overall performance, although NSGA-II (C version)
is slightly more efficient in terms of the ∆ metric. Such conclusions are true mainly in terms of
efficiency, since the four solvers seem to be equally robust under both metrics. These conclusions
are also supported from the performance profiles of Figure 13 using the spread metrics Ξ and Θ
(see (5) and (6)) and all problems (m ≥ 2).

As previously mentioned, we did not use any metric which requires the knowledge of the
true Pareto front. This set is known, however, for some of the problems, such as Problems
ZDT1–ZDT4 and ZDT6. In Figures 14–16, we present plots depicting the approximated Pareto
fronts for the selected solvers as well as the true ones, for Problems ZDT1, ZDT3, and ZDT6
(we omit here the cases of ZDT2 and ZDT4 since the corresponding plots are little informative).

When the true Pareto front is known, which is the case for these five problems (see http:
//www.tik.ee.ethz.ch/sop/download/supplementary/testproblems), one can also use the
Purity metric to compare the approximated Pareto fronts to the true one. Table 2 presents

25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Pareto fronts for problem ZDT1 (best of 10 runs)

True Pare to front
DMS(n,line)
BIMADS
NSGA-II (C ve rs ion)
AMOSA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Pareto fronts for problem ZDT1 (worst of 10 runs)

True Pare to front
DMS(n,line)
BIMADS
NSGA-II (C ve rs ion)
AMOSA

Figure 14: True and approximated Pareto fronts for ZDT1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Pareto fronts for problem ZDT3 (best of 10 runs)

True Pare to front
DMS(n,line)
BIMADS
NSGA-II (C ve rs ion)
AMOSA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Pareto fronts for problem ZDT3 (worst of 10 runs)

True Pare to front
DMS(n,line)
BIMADS
NSGA-II (C ve rs ion)
AMOSA

Figure 15: True and approximated Pareto fronts for ZDT3.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Pareto fronts for problem ZDT6 (best of 10 runs)

True Pare to front
DMS(n,line)
BIMADS
NSGA-II (C ve rs ion)
AMOSA

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Pareto fronts for problem ZDT6 (worst of 10 runs)

True Pare to front
DMS(n,line)
BIMADS
NSGA-II (C ve rs ion)
AMOSA

Figure 16: True and approximated Pareto fronts for ZDT6.

26

Problem ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
DMS(n,line) 0.974 0.950 0.804 0.029 0.992
BIMADS 0.126 0.176 0.083 0.915 0.682
NSGA-II (C version, best) 0.000 0.000 0.000 0.000 0.000
NSGA-II (C version, worst) 0.000 0.000 0.000 0.000 0.000
AMOSA (best) 0.000 0.000 0.000 0.000 0.000
AMOSA (worst) 0.000 0.000 0.000 0.000 0.000

Table 2: The Purity metric values (t̄p,s, see Section 5.3.2) for true Pareto front versus selected
solvers.

Problem ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
Γ

DMS(n,line) 0.044 0.013 0.537 0.143 3.808
BIMADS 0.043 0.035 0.262 0.151 1.791
NSGA-II (C version) 0.106 0.162 0.176 11.807 3.123
AMOSA 0.365 0.146 0.216 0.094 1.652

∆
DMS(n,line) 0.337 0.277 0.864 0.645 1.027
BIMADS 1.205 1.209 1.128 1.917 1.122
NSGA-II (C version) 0.454 0.590 0.631 0.785 0.963
AMOSA 0.762 0.666 0.843 0.859 1.558

Table 3: The Γ and ∆ metrics values for the selected solvers. (Only average values are provided
for stochastic solvers.)

such results for the 5 problems under consideration. The true Pareto front was computed using
analytical formulas for f2(f1) and an equally spaced grid of step 10−5 for f1. One can see,
for problems ZDT1 and ZDT2, that at least 95% of the points in the approximated Pareto
front computed by DMS(n,line) are not dominated by the true ones (up to a certain precision).
BIMADS performed clearly the best for ZDT4. NSGA-II (C version) and AMOSA, on the other
hand, are unable to obtain a single nondominated point for all problems. Finally, in Table 3 we
provide the values of the spread metrics for the selected 4 solvers on these 5 problems.

So far we have only reported numerical results about the quality of the approximated Pareto
fronts, giving no indication on the number of evaluations of the objective functions made by the
different solvers. While NSGA-II (C version) and AMOSA took all the available budget (20000
overall evaluations) for all the problems in the test set, BIMADS and the different versions of
DMS managed to solve a number of problems without exhausting the budget. In Figures 17
and 18 we provide data profiles for the four solvers under consideration, AMOSA, BIMADS,
DMS(n,line), and NSGA-II (C version), on the biobjective subset of our test set, corresponding
to four values of accuracy ε = 0.5, 0.25, 0.1, 0.05. We chose to report only results for the best
versions of the stochastic solvers AMOSA and NSGA-II (C version). So, for instance, in Figure 17

27

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Data profile with the best of 10 runs (ε=0.5)

σ

d s(σ
)

DMS(n,line)
BIMADS
NSGA-II (C ve rs ion)
AMOSA

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Data profile with the best of 10 runs (ε=0.25)

σ

d s(σ
)

DMS(n,line)
BIMADS
NSGA-II (C ve rs ion)
AMOSA

Figure 17: Data profiles for AMOSA, BIMADS, DMS(n,line), and the NSGA-II (C version)
solvers (ε = 0.5 on the left and ε = 0.25 on the right).

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Data profile with the best of 10 runs (ε=0.1)

σ

d s(σ
)

DMS(n,line)
BIMADS
NSGA-II (C ve rs ion)
AMOSA

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Data profile with the best of 10 runs (ε=0.05)

σ

d s(σ
)

DMS(n,line)
BIMADS
NSGA-II (C ve rs ion)
AMOSA

Figure 18: Data profiles for AMOSA, BIMADS, DMS(n,line), and the NSGA-II (C version)
solvers (ε = 0.1 on the left and ε = 0.05 on the right).

(left), we can conclude that if a budget of 1000 objective functions evaluations is imposed, then
both BIMADS and DMS(n,line) were able to solve around 54% of the problems in the sense
of (9). These two solvers seem clearly the most efficient ones for budgets up to 2500 evaluations,
being BIMADS better for more accurate solutions and DMS(n,line) better for less accurate ones.

7 Conclusions

In this paper we introduced, analyzed, and tested a new algorithmic approach for multiobjec-
tive optimization (MOO) without derivatives. This approach has been called direct multisearch
(DMS) since it naturally generalizes direct search (of directional type) from single to multiob-
jective optimization. The principles of DMS are extremely simple. Instead of updating a single
point per iteration, it updates an iterate list of nondominated points. Iteration success is mea-
sured by changes in the iterate list. Each iteration of DMS includes provision for an optional
search step. Polling is also applied, as in single optimization, at a selected point of the iterate
list. Both steps can add points to the iterate list, forming a filtered intermediate list, and there
is significant flexibility in the way a trial list is formed from this filtered list.

28

The goal of DMS is to approximate the true (global, if possible) Pareto front, although
theoretically one is only able to prove that there is a limit point in a stationary form of this
front, as no aggregation or scalarization technique is incorporated in DMS. For this purpose,
and to be able to state results for nonsmooth objective functions, we introduced in this paper
the notion of a Clarke-Pareto stationary or critical point. Our results can be further generalized
for discontinuous objective functions following the steps in [46].

Our numerical experience has shown that DMS is a highly competitive technique for derivative-
free MOO. Although we tested a few variants of DMS, in particular in what the initial list of
nondominated points is concerned, there are a number of possible strategies which can be in-
corporated in the DMS framework and lead to further possible improvements. In fact, the
performance of DMS is already remarkably good for the simple implementations tested which
do not incorporate any dissemination or spreading techniques particularly designed for the de-
termination of the Pareto front. Such techniques could be easily fitted into DMS by means of
an appropriate search step (such as a swarm search step; see [44, 45] for m = 1).

In addition, one could also study the introduction of quadratic polynomial interpolation
models in DMS to possibly improve the efficiency of DMS in what concerns the search step
(see [11] for what has been done in this respect in single optimization). One could also think
of incorporating linear polynomial interpolation models (i.e., simplex gradients) to possibly
improve the efficiency of an opportunistic DMS poll step (see [10, 12] for the single objective
case).

DMS could be parallelized in many different ways, one obvious one being the parallelization
of polling. In fact, complete polling for MOO requires a total of m|Dk| function evaluations,
which could be distributed among the available processors. A search step could also lead to
various parallelization schemes.

Finally, if the user of our methodology has some type of preference for an objective function
(or for some of them), there are several places where such intention can be specified. In fact,
there is flexibility to show preference (for some of the objective functions) in the initialization of
the iterate list, in the search step, in the reordering of the list and selection of the iterate point
(poll center), in the form of polling, and, finally, in the way the trial list is selected from the
filtered list.

A Appendix

To illustrate how Algorithm 3.1 works, we will now describe in detail its application to problem
SP1 [24], defined by:

min F (x) ≡
(
(x1 − 1)2 + (x1 − x2)2, (x1 − x2)2 + (x2 − 3)2

)
s.t. − 1 ≤ x1 ≤ 5,

− 1 ≤ x2 ≤ 5.

The ways used to select the trial list from the filtered one and to order the iterate list will be
the ones described in Section 6.1. No search step will be performed.

Initialization. Let us set the initial point x0 = (1.5, 1.5), corresponding to (f1(x0), f2(x0)) =
(0.25, 2.25), and initialize the step size parameter as α0 = 1. The step size will be maintained
at successful iterations and halved at unsuccessful ones, which corresponds to setting γ = 1 and

29

β1 = β2 = 1
2 . Set D = D = [I2 − I2], where I2 stands for the identity matrix of dimension 2.

Initialize the iterate list of nondominated points as L0 = {(x0; 1)}.

Iteration 0. The algorithm starts by selecting a point from L0, in this case the only available,
(x0;α0). Since no search step is performed, the feasible points in the poll set P0 = {(1.5, 1.5) +
(1, 0), (1.5, 1.5) +(0, 1), (1.5, 1.5) +(−1, 0), (1.5, 1.5) +(0,−1)} are evaluated (the pink diamonds
plotted in Iteration 0 of Figure 19 represent the corresponding function values). In this case, all
the poll points were feasible, thus

Ladd = {((2.5, 1.5); 1), ((1.5, 2.5); 1), ((0.5, 1.5); 1), ((1.5, 0.5); 1)}.

The nondominated points are filtered from L0 ∪ Ladd, resulting in Lfiltered = {((1.5, 1.5); 1),
((1.5, 2.5); 1)}. Only one of the evaluated poll points remained unfiltered (the green circle
in Iteration 0 of Figure 19 represents its corresponding function value). According to Algo-
rithm 3.3, Ltrial will coincide with Lfiltered. Since there were changes in L0, the iteration is
declared successful, and L1 = Ltrial = Lfiltered, being the step size maintained. The function
values corresponding to the points in L1 are represented by yellow squares in Iteration 0 of
Figure 19. Note that we move the poll point to the end of the list, yielding the new order
L1 = {((1.5, 2.5); 1), ((1.5, 1.5); 1)}.

Figure 19: First three iterations of one instance of Algorithm 3.1, when applied to the MOO
problem SP1. The blue diamonds represent the function values corresponding to all the evaluated
points since the beginning of the optimization process. The pink diamonds represent the function
values corresponding to the poll points evaluated at the current iteration. In green circles are
represented the nondominated points which were evaluated at the current iteration, and in yellow
squares the current iterate list of nondominated points.

Iteration 1. At the beginning of the new iteration, the algorithm selects a point from the two

30

stored in L1. Suppose the point (x1;α1) = ((1.5, 2.5); 1) was selected. In this case, the poll set
P1 = {(2.5, 2.5), (1.5, 3.5), (0.5, 2.5), (1.5, 1.5)} is evaluated (again, the corresponding function
values are represented by the pink diamonds in Iteration 1 of Figure 19). Note that two of the
poll points correspond to the same function values. The list

Ladd = {((2.5, 2.5); 1), ((1.5, 3.5); 1), ((0.5, 2.5); 1), ((1.5, 1.5); 1)}

is formed and L1 ∪ Ladd is filtered. Again, only one of the poll points was nondominated (the
corresponding function values are represented in green in Iteration 1 of Figure 19). Thus, the
iteration was successful, the step size was maintained, and the new list is

L2 = Ltrial = Lfiltered = {((1.5, 2.5); 1), ((1.5, 1.5); 1), ((2.5, 2.5); 1)}

(the corresponding function values are represented by the yellow squares in Iteration 1 of Fig-
ure 19). Again, we move the poll point (in this case, ((1.5, 2.5); 1)) to the end of the list.

Iteration 2. The next iteration begins by selecting (x2;α2) = ((1.5, 1.5); 1) from the list L2 (a
previous poll center). After evaluating the corresponding poll points, all of them are dominated,
thus Ltrial = L2, the iteration is declared as unsuccessful, the corresponding step size is halved,
and L3 = {((1.5, 1.5); 0.5), ((2.5, 2.5); 1), ((1.5, 2.5); 1)} (the corresponding function values are
represented by the yellow squares in Iteration 2 of Figure 19).

In Figure 20 we can observe the evolution of the optimization process after 10, 20, and
100 iterations. The number of points in the Pareto front is steadily increasing and, after 100
iterations, the corresponding curve is well defined.

Figure 20: Iterations 10, 20, and 100 of one instance of Algorithm 3.1, when applied to the
MOO problem SP1. See the caption of Figure 19 for details.

31

Acknowledgments

The authors would like to thank John Dennis (Rice University) and Jörg Fliege (University of
Southampton) for interesting discussions on derivative-free multiobjective optimization.

References

[1] C. Audet and J. E. Dennis Jr. Analysis of generalized pattern searches. SIAM J. Optim., 13:889–903,
2002.

[2] C. Audet and J. E. Dennis Jr. Mesh adaptive direct search algorithms for constrained optimization.
SIAM J. Optim., 17:188–217, 2006.

[3] C. Audet, G. Savard, and W. Zghal. Multiobjective optimization through a series of single-objective
formulations. SIAM J. Optim., 19:188–210, 2008.

[4] S. Bandyopadhyay, S. K. Pal, and B. Aruna. Multiobjective GAs, quantative indices, and pattern
classification. IEEE Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics, 34:2088–
2099, 2004.

[5] S. Bandyopadhyay, S. Saha, U. Maulik, and K. Deb. A simulated anneling-based multiobjective
optimization algorithm: AMOSA. IEEE Transactions on Evolutionary Computation, 12:269–283,
2008.

[6] F. Y. Cheng and X. S. Li. Generalized center method for multiobjective engineering optimization.
Engineering Optimization, 31:641–661, 1999.

[7] F. H. Clarke. Optimization and Nonsmooth Analysis. John Wiley & Sons, New York, 1983. Reissued
by SIAM, Philadelphia, 1990.

[8] C. A. Coello Coello and M. S. Lechuga. Mopso: A proposal for multiple objective particle swarm
optimization. In Congress on Evolutionary Computation (CEC’2002), volume 2, pages 1051–1056,
Los Alamitos,USA, 2002. IEEE Computer Society.

[9] A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to Derivative-Free Optimization. MPS-
SIAM Series on Optimization. SIAM, Philadelphia, 2009.

[10] A. L. Custódio, J. E. Dennis Jr., and L. N. Vicente. Using simplex gradients of nonsmooth functions
in direct search methods. IMA J. Numer. Anal., 28:770–784, 2008.

[11] A. L. Custódio, H. Rocha, and L. N. Vicente. Incorporating minimum Frobenius norm models in
direct search. Comput. Optim. Appl., 46:265–278, 2010.

[12] A. L. Custódio and L. N. Vicente. Using sampling and simplex derivatives in pattern search methods.
SIAM J. Optim., 18:537–555, 2007.

[13] I. Das and J. E. Dennis Jr. A closer look at drawbacks of minimizing weighted sums of objectives
for pareto set generation in multicriteria optimization problems. Structural Optimization, 14:63–69,
1997.

[14] I. Das and J. E. Dennis Jr. Normal-boundary intersection: a new method for generating the pareto
surface in nonlinear multicriteria optimization problems. SIAM J. Optim., 8:631–657, 1998.

[15] K. Deb. Multi-objective genetic algorithms: Problem difficulties and construction of test problems.
Evolutionary Computation, 7:205–230, 1999.

[16] K. Deb, M. Mohan, and S. Mishra. Towards a quick computation of well-spread pareto-optimal
solutions. In Evolutionary Multi-Criterion Optimization (EMO 2003), volume 2632 of Lecture Notes
in Computer Science, pages 222–236. 2003.

32

[17] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE Transactions on Evolutionary Computation, 6:182–197, 2002.

[18] K. Deb, A. Sinha, and S. Kukkonen. Multi-objective test problems, linkages, and evolutionary
methodologies. In Proceedings of the Genetic and Evolutionary Computation GECCO’06, pages
1141–1148, New York, USA, 2006. ACM.

[19] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance profiles. Math.
Program., 91:201–213, 2002.

[20] C. M. Fonseca and P. J. Fleming. Multiobjective optimization and multiple constraint handling with
evolutionary algorithms – Part I: A unified formulation. IEEE Transactions on Systems, Man, and
Cybernetics – Part A: Systems and Humans, 28:26–37, 1998.

[21] R. Fourer, D. M. Gay, and B. W. Kernighan. A modeling language for mathematical programming.
Management Sci., 36:519–554, 1990.

[22] A. L. Hoffmann, A. Y. D. Siem, D. den Hertog, J. H. A. M. Kaanders, and H. Huizenga. Derivative-
free generation and interpolation of convex pareto optimal IMRT plans. Phys. Med. Biol., 51:6349–
6369, 2006.

[23] S. Huband, L. Barone, L. While, and P. Hingston. A scalable multi-objective test problem toolkit. In
C. A. Coello Coello et al., editor, Evolutionary Multi-Criterion Optimization (EMO 2005), volume
3410 of Lecture Notes in Computer Science, pages 280–295. Springer-Verlag, Berlin, Germany, 2005.

[24] S. Huband, P. Hingston, L. Barone, and L. While. A review of multiobjective test problems and a
scalable test problem toolkit. IEEE Transactions on Evolutionary Computation, 10:477–506, 2006.

[25] C.-L. Hwang and A. S. Md. Masud. Multiple objective decision making, methods and applications: a
state-of-the-art survey. Lecture Notes in Economics and Mathematical Systems, page 281. Springer-
Verlag, Berlin, Germany, 1979.

[26] J. Jahn. Introduction to the Theory of Nonlinear Optimization. Springer-Verlag, Berlin, 1996.

[27] Y. Jin, M. Olhofer, and B. Sendhoff. Dynamic weighted aggregation for evolutionary multi-objective
optimization: Why does it work and how? In L. Spector, E. D. Goodman, A. Wu, W. B. Langdon,
H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, and E. Burke, editors, Proceedings
of Genetic and Evolutionary Computation Conference GECCO’01, pages 1042–1049, San Francisco,
USA, 2001. Morgan Kaufmann.

[28] D. Jones and T. Merhdad. Practical Goal Programming. Springer, 2010.

[29] J. D. Knowles and D. W. Corne. Approximating the nondominated front using the pareto archived
evolution strategy. Evolutionary Computation, 8:149–172, 2000.

[30] T. G. Kolda, R. M. Lewis, and V. Torczon. Optimization by direct search: New perspectives on
some classical and modern methods. SIAM Rev., 45:385–482, 2003.

[31] F. Kursawe. A variant of evolution strategies for vector optimization. In H. P. Schwefel and
R. Männer, editors, Parallel Problem Solving from Nature – PPSN I, volume 496 of Lecture Notes
in Computer Science, pages 193–197. Springer-Verlag, Berlin, Germany, 1990.

[32] G. Liuzzi, S. Lucidi, F. Parasiliti, and M. Villani. Multiobjective optimization techniques for the
design of induction motors. IEEE Transactions on Magnetics, 39:1261–1264, 2003.

[33] A. Lovison. A synthetic approach to multiobjective optimization. arxiv: http://arxiv.org/abs/
1002.0093, 2010.

[34] R. T. Marler and J. S. Arora. Survey of multi-objective optimization methods for engineering.
Structural Multidisciplinary Optimization, 26:369–395, 2004.

33

[35] M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of three methods for selecting
values of input variables in the analysis of output from a computer code. Technometrics, 42:55–61,
2000.

[36] K. Miettinen. Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, New York, 1999.

[37] J. J. Moré and S. M. Wild. Benchmarking derivative-free optimization algorithms. SIAM J. Optim.,
20:172–191, http://www.mcs.anl.gov/~more/dfo, 2009.

[38] T. Okabe, Y. Jin, M. Olhofer, and B. Sendhoff. On test functions for evolutionary multi-objective
optimization. In Parallel Problem Solving from Nature – PPSN VIII, volume 3242 of Lecture Notes
in Computer Science, pages 792–802. Springer-Verlag, Berlin, Germany, 2004.

[39] T. J. Santner, B. J. Williams, and W. I. Notz. The Design and Analysis of Computer Experiments.
Springer-Verlag, New York, 2003.

[40] J. D. Schaffer. Multiple objective optimization with vector evaluated genetic algorithms. In Pro-
ceedings of the First International Conference on Genetic Algorithms and their Applications, pages
93–100, Hillsdale, USA, 1985. Lawrence Erlbaum Associates.

[41] R. Steuer. Multiple criteria optimization: theory, computation and application. John Wiley & Sons,
New York, 1986.

[42] A. Suppapitnarm, K. A. Seffen, G. T. Parks, and P. Clarkson. A simulated annealing algorithm for
multiobjective optimization. Engineering Optimization, 33:59–85, 2000.

[43] V. Torczon. On the convergence of pattern search algorithms. SIAM J. Optim., 7:1–25, 1997.

[44] A. I. F. Vaz and L. N. Vicente. A particle swarm pattern search method for bound constrained
global optimization. J. Global Optim., 39:197–219, 2007.

[45] A. I. F. Vaz and L. N. Vicente. PSwarm: A hybrid solver for linearly constrained global derivative-
free optimization. Optim. Methods Softw., 24:669–685, 2009.

[46] L. N. Vicente and A. L. Custódio. Analysis of direct searches for discontinuous functions. Technical
Report 09-38, Department of Mathematics, University of Coimbra, 2009.

[47] E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolutionary algorithms: Empirical
results. Evolutionary Computation, 8:173–195, 2000.

34

