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Abstract

This paper proposes a dimension reduction technique for estimation in linear mixed mod-

els. Specifically, we show that in a linear mixed model, the maximum likelihood problem can

be rewritten as a substantially simpler optimization problem which presents at least two main

advantages: the number of variables in the simplified problem is lower; the search domain

of the simplified problem is a compact set. Whereas the former advantage reduces computa-

tional burden, the latter permits the use of stochastic optimization methods well qualified for

closed bounded domains. The developed dimension reduction technique makes computation of

maximum likelihood estimates, for fixed effects and variance components, feasible with large

computational savings. Computational experience is reported here with the results evidencing

an overall good performance of the proposed technique.
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1. INTRODUCTION

Maximum likelihood methods are among the main standard techniques for yielding param-

eter estimates for a statistical model of interest. The large sample characterization of this

M -estimation methodolgy has long been established in the literature (Wald 1949). Despite

the attractive features of maximum likelihood procedures, in a plurality of cases of practical

interest, the proposed estimators are not analytically tractable. In order to overcome the

lack of closed-form analytic solution, global optimization methods are typically employed.

This feature is not peculiar to maximum likelihood estimation, as it is more generally shared

by the broad class of extremum estimators, i.e., estimators which are motivated by an opti-

mization problem of interest (Newey and McFadden 1994; Mexia and Corte-Real 2001). In

this paper, we are concerned with a particular case where such an occurrence takes place,

namely in maximum likelihood estimation of a linear mixed model. As we discuss below, this

model is a popular extension of the linear model that is able to account for more than one

source of error (see §2). A general overview of topics related with estimation and inference

in linear mixed models, can be respectively found in Searle et al. (1992) and Khuri et al.

(1998).

Before conducting estimation and inference, it is advisable to inspect if the problem at

hand can be simplified analytically. Hence, for instance, as noted by Carvalho et al. (2007),

if the linear mixed model has a common orthogonal block structure, then a closed form

solution for the maximum likelihood estimator can in fact be found. Other than in these

very special instances, it is seldom possible to achieve an explicit form for the solution of

this maximum likelihood problem. Notwithstanding, here we show that in a linear mixed

model, the maximum likelihood problem can be rewritten as a much simpler optimization

problem (henceforth the simplified problem), whose size depends only on the number of

variance components. The original maximum likelihood formulation is thus reduced into a

simplified problem which presents at least two main advantages: the number of variables

is considerably lower; the search domain is compact. As it can be readily appreciated,

these features are extremely advantageous from the compuational standpoint. In effect, this
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simplified problem endows us with the means to obtain estimates of variance components

with large computational savings. In addition, given that the search domain of the simplified

problem is compact, we can rely the analysis over stochastic optimization methods well

qualified for closed bounded domains (see, for instance, Spall 2003).

The remainder of this paper is structured as follows. Section 2 introduces the models of

interest. Section 3 introduces the main result and presents simulation studies. Final remarks

are provided in Section 4.

2. MODELS

2.1 The Linear Mixed Model

The simple linear model is at the heart of a broad number of statistical applications. In its

elementary form, the model is commonly stated as

y = Xβ0 + ε, (1)

where y is the (n × 1)-vector of observations, X is the design matrix of size n × k, β0 is

a (k × 1)-vector of unknown regression parameters, and ε is (n × 1)-vector of unobserved

errors. In this paper our interest relies in a well known generalization of the linear model (1)

– namely, the linear mixed model. From the conceptual stance the model can be thought

as an extension of the linear model that is qualified to consider distinct sources of error.

Specifically, the linear mixed model takes the following form

y = Xβ0 +
w−1∑
i=1

Xiζi + ε, (2)

where (y,X,β0, ε) are defined as in (1), Xi are design matrices of size n× ki, and where ζi

are (ki × 1)-vectors of unobserved random effects. Following classical assumptions, we take

the random effects ζi to be independent and normally distributed with null mean vectors

and covariance matrix σ2
0iIki , for i = 1, . . . , w−1. Further, we also take the ε to be normally

distributed with null mean vector and covariance matrix σ2
0wIn, independently of the ζi, for
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i = 1, . . . , w − 1. The model has the following mean vector and covariance matrix

E {y|X} = Xβ0

Σσ2
0

=
w−1∑
i=1

σ2
0iXiX

′
i + σ2

0wIn,

where σ2
0 = (σ2

01, · · · , σ2
0w). Given the current framework, we have that

y|X ∼ N

(
Xβ0;

w−1∑
i=1

σ2
0iXiX

′
i + σ2

0wIn

)
,

and thus the density for the model is given by

fy|X(y) =
exp
(
−1

2
(y−Xβ0)′Σ−1

σ2
0
(y−Xβ0)

)√
(2π)n|Σσ2

0
|

.

The estimator objective function assigned to the maximum likelihood estimator is given by

the log-likelihood of the aforementioned linear mixed model, i.e.

Ln(β,σ2) = −n
2

ln(2π)− 1

2
ln |Σσ2| − 1

2
(y −Xβ)′Σ−1

σ2 (y −Xβ).

The maximum likelihood estimators of the true parameter β0, and the model variance com-

ponents σ2, respectively denoted by β̂ and σ̂2, are thus given by β̂

σ̂2

 = arg max
(β,σ2)

′
∈ Rk×Rw

Ln
(
β,σ2|y

)
. (3)

In the following section, we consider a special case, wherein it is possible to obtain a closed

form solution for this maximum likelihood problem. It should be emphasized that cases like

the presented below represent the exception, rather than the rule. Notwithstanding, this

instance is introduced here for serving as benchmark.

2.2 The Benchmark Case

In this subsection, we consider a particular case of model (2) wherein it is possible to get a

closed form solution for the problem of interest. As we shall see below, this is gained at the
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cost of the introduction of some structure in the covariance matrix Σσ2
0
. Specifically, if we

consider the case wherein the covariance matrix can be decomposed as a linear combination

of known orthogonal projection matrices Qj, i.e.

Σσ2
0

=
w∑
j=1

ηjQj.

If the Qj are orthogonal projection matrices such that QjQj′ = 0 for j 6= j′, and if T, the

orthogonal projection matrix on the range space of X, is such that

TQj = QjT, for j = 1, . . . , w,

the model is said to have commutative orthogonal block structure (Fonseca et al. 2006, 2010).

Here, η = (η1, · · · , ηw)′ is the vector of the so-called canonical variance components, and it

is determined by the equation Bη = σ2
0, where B is a known nonsingular matrix. In this

case, we can rewrite the density of the model as

fy|X(y) =
exp

(
−1

2
(y −Xβ0)′

(∑w
j=1 η

−1
j Qj

)
(y −Xβ0)

)
√

(2π)n
∏w

j=1 η
gj
j

.

where gj is the rank of matrix Qj (Fonseca et al. 2006, Theorem 1). In this particular

instance, it can be shown (Carvalho et al. 2007) that the estimators

β̂ = (X′X)−1X′y,

and

η̂j =
y′(I−T)Qj(I−T)y

gj
,

solve the optimization problem (3).

When the above mentioned conditions on the covariance matrix do not hold, a closed-

form analytical expression for producing maximum likelihood estimates is hardly available.
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3. MAIN RESULT AND SIMULATION STUDY

3.1 Main Result

The next result establishes that in a linear mixed model, the maximum likelihood problem

can be rewritten as a simplified problem where the search domain is a compact set whose

dimension depends exclusively on the number of variance components. This result will

be useful in order to compute the estimation of variance components, through maximum

likelihood methods, with the application of random search methods.

Theorem 1 The maximum likelihood estimators of the true parameter β0, and the model

variance components σ2
0, respectively denoted by β̂ and σ̂2 β̂

σ̂2

 = arg max
(β,σ2)

′
∈ Rk×Rw

Ln
(
β,σ2|y

)
.

can be alternatively achieved by solving the following optimization problem

min
γ∈[0;π

2 ]
w−1

(fn ◦ p)(γ),

where

fn(α) = ln
(
A(α)n|Σα|

)
(4)

A(α) = y′
(
I−X

(
X′Σ−1

α X
)−1

X′Σ−1
α

)′
Σα
−1
(
I−X

(
X′Σ−1

α X
)−1

X′Σ−1
α

)
y (5)

p(γ) = e1

w−1∏
j=1

cos(γj) +
w−1∑
l=2

el

(
w−l∏
j=1

cos(γj) sin(γw−1)

)
+ ew sin(γw−1), (6)

and {ei}wi=1 denotes the canonical basis of Rw.

As discussed above, we can ascertain at least two major advantages of the simplified

problem, viz.:

• whereas the original maximum likelihood problem has dimension (w+k), the simplified

equivalent problem only has size (w − 1); additionally,
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• the search domain of the simplified problem is
[
0; π

2

]w−1
, and hence is compact (con-

trarily to what is verified in the original problem).

The proof is given in the appendix.

3.2 A First Monte Carlo Simulation Study

In this simulation study, we considered three one-way random models. (This study was

implemented in R. The code is available from the authors.) The first model considered

here is unbalanced with a total of 72 observations and 8 groups. The dissemination of the

observations considered in the first model is described in Table 1. Several possible true

values of the variance components were considered here.

Table 1: Description of the first one-way

model considered (Model i); the model is un-

balanced with 72 observations segregated over

8 groups

Group 1 2 3 4 5 6 7 8

Observations 3 6 7 8 9 10 11 18

We then conducted a Monte Carlo simulation from which we report the averaging of the

1000 results achieved. In every run of the simulation, the optimization problem was solved

by combining a random search technique with the dimension reduction technique introduced

in §3.1. The random search algorithm used as input 10000 evaluations of the objective func-

tion of the simplified problem. Hence, 10000 values of γ ∈
[
0; π

2

]
were randomly selected

and their corresponding images were generated via (fn ◦ p).

Table 2: Estimates of the variance components in Model i

Variance Component 0.00 0.10 0.50 0.70 1.00 1.50 2.00 5.00 10.00

Estimate 0.02 0.07 0.43 0.61 0.87 1.31 1.76 4.66 9.42

7



We now provide some guidelines to the interpretation of Table 2. In the first line we

present the true values of the variance components σ2
01. The second line includes the solu-

tion provided by the recurrent application of random search methods to the optimization

problem (3). Thus, for instance, when the “true” variance component was 0.5, the result

yield through the application of stochastic optimization methods and the dimension reduc-

tion method is 0.425. Further, observe that except when the true value of the variance

component is null, the true values always dominate the estimated values. Next, we consid-

ered a quasi-balanced model with 66 observations. The disposal of the observations was now

given according to Table 3.

Table 3: Description of the second

one-way model considered (Model

ii); the model is quasi-balanced with

66 observations segregated over 11

groups

Group 1 2 3 4 5 6 7 8 9 10 11

Observations 6 6 6 6 6 6 6 6 6 5 7

A Monte Carlo simulation was once more conducted. No changes were made to the true

values of the variance components considered. The same applies to the methods used to

perform the optimization step. The produced results are reported in Table 4.

Table 4: Estimates of the variance components in Model ii

Variance Component 0.00 0.10 0.50 0.70 1.00 1.50 2.00 5.00 10.00

Estimate 0.02 0.09 0.45 0.63 0.89 1.34 1.85 4.61 9.09

Thus, for instance, when the true value of the variance component was 0.5, the estimate

obtained was now 0.448. Again, it should be emphasized that, with the exception of the
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case in which the true value of the variance component was 0, in all the remainder the true

value was above the corresponding estimate.

A final model was then considered. The number of observations considered was now 72.

Observations were grouped as described in Table 5.

Table 5: Description of the third one-way

model considered (Model iii); the model is

unbalanced with 72 observations segregated

over 9 groups

Group 1 2 3 4 5 6 7 8 9

Observations 2 2 3 3 4 4 15 15 24

The results are now summarized in Table 6.

Table 6: Estimates of the variance components in Model iii

Variance Component 0.00 0.10 0.50 0.70 1.00 1.50 2.00 5.00 10.00

Estimate 0.01 0.07 0.43 0.60 0.85 1.36 1.78 4.71 9.93

As it can be readily noted, from the inspection of Tables 1, 2 and 3, there is a slight bias

present in the estimates. This conforms with existing literature. In effect, there are some

methods, such as Restricted Maximum Likelihood (REML), that can be used to compensate

for such bias (see Harville 1974; Searle et al. 1992).

3.3 A Second Monte Carlo Simulation Study

In this section we report the results of a second Monte Carlo experiment. Here, a linear

mixed model was considered with the following features: the fixed effects design matrix is of

size (n = 60× k = 9); the random effects design matrix is of size (n = 60× k1 = 12); both

the fixed effects and the random effects matrices were randomly generated from a standard

normal distribution. (This simulation study was implemented in Matlab. The routines
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are available from the authors upon request.) This study provides a supplement for the

application of the method based on Theorem 1.

In a similar way to the previous simulation study, the application of random search

entailed the collection of 10000 sample points from the domain of the objective function

(fn ◦ p). Given the obvious increase in the burden of computation, here we considered 100

runs in this subsection. The true values of the variance components considered here were as

follows: 0.1; 0.5; 0.75; 1; 2; 5. The results are summarized in Table 7. Here we also include

the root mean square error (RMSE), the average absolute error (AAE) and the mean average

percentage error (MAPE) of the estimates obtained in the several runs.

Table 7: Results from the second Monte Carlo simulation study

Variance Component 0.10 0.50 0.75 1.00 2.00 5.00

Estimate 0.10 0.51 0.77 0.98 1.93 4.84

RMSE 0.06 0.25 0.39 0.46 0.80 2.10

AAE 0.05 0.19 0.31 0.36 0.62 1.69

4. SUMMARY

A dimension reduction technique was proposed and applied in order to achieve, maximum

likelihood estimates for the mixed model parameters and the variance components with

large computational savings. The original maximum likelihood problem is thus reduced into

a simplified problem which presents considerable computational advantages. In order to

illustrate the mechanics of the proposed method two Monte Carlo simulations studies were

here conducted.
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APPENDIX

Proof of Theorem 1

Consider the log-likelihood of the aforementioned linear mixed model,

Ln(β,σ2|y) = −n
2

ln(2π)− 1
2

ln |Σσ2 | − 1
2

(y −Xβ)′Σ−1
σ2 (y −Xβ).

Observe that maximizing Ln(β,σ2|y) is equivalent to minimizing

L∗(β,σ2|y) = ln |Σσ2 |+ (y −Xβ)′Σ−1
σ2 (y −Xβ). (7)

Now define σ2 = cα, with c > 0 and ‖α‖ = 1. Making use of the first-order conditions of the ML problem

we get

β̂ =
(
X′Σ−1

σ2 X
)−1

X′Σ−1
σ2 y.

Hence, we can rewrite (7), evaluated at β̂, as

L∗ = n ln(c) + ln |Σα|+ c−1A(α),

where A is defined in (5). Now, observe that

∂L∗
∂c

= nc−1 − c−2A(α) = 0⇔ c =
A(α)
n

,

and
∂2L∗
∂c2

= 2c−3A(α)− nc−2,

so that
∂2L∗
∂c2

∣∣∣∣
c=

A(α)
n

=
n3

A(α)
> 0,

whence

ĉ =
A(α)
n

,

is in fact an absolute minimum. Hence (7) simplifies into n ln
(
A(α)

)
+ ln |Σα|, which we define as fn(α)

(see above in (4)). Next, we transform α through the pseudo-polar coordinate transformation p(γ), as

defined in (6); further details about this mapping can be found in Kendall (1961). This entails writing the

w components of α, through (w − 1) components in γ, as follows

α1 = cos(γ1) · · · cos(γw−2) cos(γw−1)

α2 = cos(γ1) · · · cos(γw−2) sin(γw−1)

...

αw = sin(γw−1).
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