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Abstract

In this paper we will show how, using an expansion of a Logbeta distri-
bution as an infinite mixture of Gamma distributions we are able to obtain
near-exact distributions for the negative logarithm of the likelihood ratio
test statistics used in Multivariate Analysis to test the independence of sev-
eral sets of variables, the equality of several mean vectors, sphericity and the
equality of several variance-covariance matrices as finite mixtures of Gen-
eralized Near-Integer Gamma distributions. These near-exact distributions
will match as many of the exact moments as we wish and we will be able to
have an a priori upper-bound for the difference between their c.d.f. and the
exact c.d.f.. These near-exact distributions also display very good perfor-
mance, with an agreement with the exact distribution which may virtually
be taken as far as we wish and which it is not possible to obtain with the
usual asymptotic distributions.
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Key Words : mixtures of Gamma distributions, independence test, equality
of mean vectors test, sphericity test, test of equality of covariance matrices,
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1. Introduction

Marques et al. (2010) have shown that it is possible to obtain a common
structure for both the exact and the near-exact distributions of the l.r.t.
(likelihood ratio test) statistics used in Multivariate analysis under mul-
tivariate elliptically contoured or left orthogonal-invariant distributions to
test

(i) the independence of several sets of variables
(ii) the equality of several mean vectors
(iii) sphericity
(iv) the equality of several variance-covariance matrices,

as well as for any l.r.t. statistic which may be obtained as the product of
any number of independent such l.r.t. statistics.

In this paper we will first show how, based on the results in Tricomi &

Erdélyi (1951), we may write any Logbeta distribution, that is the distribu-
tion of the negative logarithm of a Beta distributed r.v. (random variable)
as an infinite mixture of Gamma distributions. Then we will show how,
based on this result, we may obtain near-exact distributions for any of the
l.r.t. statistics above, and indeed for any l.r.t. statistic which may be built
as the product of any number of independent such l.r.t. statistics (Coelho &

Marques, 2009), in the form of finite mixtures of GNIG (Generalized Near-
Integer Gamma) distributions (Coelho, 2004), which may, by construction,
match as many of the exact moments as we wish and for which we will be
able to have a priori upper-bounds on the difference between their c.d.f.’s
and the exact c.d.f..

2. The Logbeta distribution as an infinite mixture of Gammas

From the two first expressions in section 5 of Tricomi & Erdélyi (1951)
and also expressions (11) and (14) in the same paper, we may write

Γ(a− it)
Γ(a+ b− it)

=
∞∑
j=0

pj(b)(a− it)−b−j (1)

where

pj(b) =
1

j

j−1∑
m=0

(
Γ(1− b−m)

Γ(−b− j)(j −m+ 1)!
+ (−1)j+mbj−m+1

)
pm(b) ,

j = 1, 2, . . . ,
(2)
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with p0(b) = 1.
Then, since the c.f. (characteristic function) of Y = − log X, where

X ∼ Beta(a, b), is given by

ΦY (t) =
Γ(a+ b)

Γ(a)

Γ(a− it)
(a+ b− it)

, (3)

using (1), we may write

ΦY (t) =
∞∑
j=0

Γ(a+ b)

Γ(a)

pj(b)

ab+j︸ ︷︷ ︸
p∗j (a,b)

ab+j(a− it)−(b+j) , (4)

which is the c.f. of an infinite mixture of Γ(b+j, a) distributions, with weights
p∗j (a, b), with pj(b) given by (2).

3. The exact distribution of the l.r.t. statistics to test indepen-
dence and equality of mean vectors as infinite mixtures of
GNIG distributions

From (3) and (4) above we may write,

Γ
(
n−1

2

)
Γ
(
n−2

2 −
n
2 it
)

Γ
(
n−2

2

)
Γ
(
n−1

2 −
n
2 it
) =

∞∑
`=0

p∗`

(
n−2

2 , 1
2

)(n− 2

n

) 1
2

+` (n− 2

n
− it

)−( 1
2

+`)

with

p∗`

(
n−2

2 , 1
2

)
=

Γ
(
n−1

2

)
p`

(
1
2

)
Γ
(
n−2

2

) (
n−2

2

)1
2

+`
, ` = 0, 1, . . . (5)

where p`

(
1
2

)
(` = 1, 2, . . .) are given by (2) above, with p0

(
1
2

)
= 1.

But then, for any k∗∈IN , we may writeΓ
(
n−1

2

)
Γ
(
n−2

2 −
n
2 it
)

Γ
(
n−2

2

)
Γ
(
n−1

2 −
n
2 it
)
k
∗

=

( ∞∑
`=0

p∗`

(
n−2

2 , 1
2

)(n−2

n

)̀+ 1
2
(
n−2

n
− it

)−(`+ 1
2)
)k∗

=
∞∑
`=0

π`

(
n− 2

n

)`+ k∗
2
(
n− 2

n
− it

)−(`+ k∗
2

)

with
π` =

∑
allL`

∏
`∗∈L`

p∗`∗
(
n−2

2 , 1
2

)
, (6)
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where L` is a set of k∗ values `∗∈IN0 such that their sum is equal to `.
But then, from expression (A.1) in Marques et al. (2010), we may write

the c.f. of W1, the negative logarithm of the l.r.t. statistic to test the indepen-
dence of m sets of variables with an elliptically contoured or left orthogonal-
invariant distribution, under the null hypothesis of independence of the m
sets of variables, for a sample of size n, and where m∗(≤ m) of the sets have
an odd number of variables, as

ΦW1
(t) =


p∏

j=2

(
n− j
n

)rj (n− j
n
− it

)−rj
Γ

(
n−1

2

)
Γ
(
n−2

2 −
n
2 it
)

Γ
(
n−2

2

)
Γ
(
n−1

2 −
n
2 it
)
k∗

=


p∏

j=2

(
n− j
n

)rj (n− j
n
− it

)−rj
×


∞∑
`=0

π`

(
n− 2

n

) k∗
2

+` (n− 2

n
− it

)−( k∗
2

+`
)

=
∞∑
`=0

π`


p∏

j=2

(
n− j
n

)r∗j
(
n− j
n
− it

)−r∗j ,

where k∗ =
⌊
m∗

2

⌋
, p =

∑m
k=1 pk, where pk is the number of variables in the

k-th set (k = 1, . . . ,m), and

r∗j =

{
k∗

2 + ` j = 2
rj j = 3, . . . , p

(7)

where the rj are given by (A.2) and (A.3) in Marques et al. (2010). This
expression for the c.f. of W1 shows that the exact distribution of W1 is
an infinite mixture of GNIG distributions of depth p − 1, with weights π`
(` = 0, 1, . . .), each GNIG distribution having shape parameters r∗j and rate

parameters n−j
n (j = 2, . . . , p) (see Marques et al. (2010) and Coelho (2004)

for further details on the GNIG distribution, its p.d.f. and c.d.f.).
Using the notation in Appendix B in Marques et al. (2010), the exact

p.d.f. and c.d.f. of W1 and of Λ1 = e−W1 , when there are two or more sets
with an odd number of variables, that is, when k∗ ≥ 1, are thus given by
the following Theorem.

Theorem 3.1 The exact p.d.f. and c.d.f. of W1 = − log Λ1, where Λ1 is
the l.r.t. statistic to test the independence of m sets of variables with a joint
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elliptically contoured or left orthogonal-invariant distribution, based on a
sample of size n, under the null hypothesis of independence, are respectively

fW1
(w) =

∞∑
`=0

π` f
GNIG

(
w | r∗3, . . . , r∗p, r∗2;

n− 3

n
, . . . ,

n− p
n

,
n− 2

n
; p− 1

)
,

w > 0

and

FW1
(w) =

∞∑
`=0

π` F
GNIG

(
w | r∗3, . . . , r∗p, r∗2;

n− 3

n
, . . . ,

n− p
n

,
n− 2

n
; p− 1

)
,

w > 0 ,

while the exact p.d.f. and c.d.f. of Λ1 are given by

fΛ1
(z) =

∞∑
`=0

π` f
GNIG

(
− log z | r∗3, . . . , r∗p, r∗2;

n− 3

n
, . . . ,

n− p
n

,
n− 2

n
; p− 1

)
1

z
,

0 < z < 1

and

FΛ1
(w) =

∞∑
`=0

π`

(
1− FGNIG

(
− log z | r∗3, . . . , r∗p, r∗2;

n− 3

n
, . . . ,

n− p
n

,
n− 2

n
; p− 1

))
,

0 < z < 1 ,

where the π` are given by (6) and the r∗j by (7).

When at most one of the sets of variables has an odd number of variables,
the exact distribution of W1 is just a GIG (Generalized Integer Gamma)
distribution (Coelho, 1998). See Marques et al. (2010) for details.

But then, since the distribution of the l.r.t. statistic to test the equal-
ity of q mean vectors from q p-multivariate elliptically contoured or left
orthogonal-invariant distributions, based on q independent random samples,
the k-th of which has size nk (k = 1, . . . , q), is only a particular case of the
distribution of Λ1 above, for m = 2, p1 = p, p2 = q− 1 and n =

∑q
k=1 nk. If

we call this statistic Λ2 and take W2 = − log Λ2, the exact c.f. of W2 may
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be written as (see Marques et al. (2010) for details),

ΦW2
(t) =


p+q−1∏
j=2

(
n− j
n

)rj (n− j
n

)−rj
Γ

(
n−1

2

)
Γ
(
n−2

2 −
n
2 it
)

Γ
(
n−2

2

)
Γ
(
n−1

2 −
n
2 it
)
k∗

=


p+q−1∏
j=2

(
n− j
n

)rj (n− j
n

)−rj
×
( ∞∑
`=0

p∗`

(
n−2

2 , 1
2

)(n− 2

n

)`+ 1
2
(
n− 2

n
− it

)−(`+ 1
2)
)k∗

where the p∗`

(
n−2

2 , 1
2

)
are given by (5),

rj =


0 j = 2, 3
h2 + k∗ j = 4
rj−2 + hj−2 j = 5, . . . , p+ q − 1

(8)

with

hj = (# of elements of {p, q − 1} ≥ j)− 1, j = 1, . . . , p+ q − 3 , (9)

and

k∗ =

{
1 if p is odd and q is even

0 all other cases

so that if p is even or q is odd, the exact distribution of W2 is a GIG
distribution (see Marques et al. (2010) for details), while if p is odd and q
is even, the exact c.f. of W2 may be written as

ΦW2
(t) =

∞∑
`=0

p∗`

(
n−2

2 , 1
2

) p+q−1∏
j=2

(
n− j
j

)r∗j
(
n− j
n
− it

)−r∗j
,

where

r∗j =

{
1
2 + ` j = 2
rj j = 3, . . . , p+ q − 1

for rj given by (8) – (9) above.
We have thus the following Theorem.

Theorem 3.2 The exact p.d.f. and c.d.f. of W2 = − log Λ2 and Λ2,
where Λ2 is the l.r.t. statistic to test the equality of q p-multivariate mean
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vectors from q p-multivariate elliptically contoured or left-orthogonal invari-
ant distributions, based on q independent samples, the k-th of which with size
nk (k = 1, . . . , q), when p is odd and q is even, under the null hypothesis of
equality of the mean vectors, are, for n =

∑q
k=1 nk, respectively given by

fW2
(w) =

∞∑
`=0

p∗`
(
n−2

2
, 1

2

)
fGNIG

(
w|r∗3 , . . . , r∗p+q−1, r

∗
2 ;

n− 3

n
, . . . ,

n− (p + q − 1)

n
,
n− 2

n
; p + q − 2

)
,

w > 0 ,

FW2
(w) =

∞∑
`=0

p∗`
(
n−2

2
, 1

2

)
FGNIG

(
w|r∗3 , . . . , r∗p+q−1, r

∗
2 ;

n− 3

n
, . . . ,

n− (p + q − 1)

n
,
n− 2

n
; p + q − 2

)
,

w > 0 ,

fΛ2
(z) =

∞∑
`=0

p∗`
(
n−2

2
, 1

2

)
fGNIG

(
− log z|r∗3 , . . . , r∗p+q−1, r

∗
2 ;

n− 3

n
, . . . ,

n− (p + q − 1)

n
,
n− 2

n
; p + q − 2

)
1

z
,

0 < z < 1

and

FΛ2
(w) =

∞∑
`=0

p∗`
(
n−2

2
, 1

2

)
(

1− FGNIG

(
− log z|r∗3 , . . . , r∗p+q−1, r

∗
2 ;

n− 3

n
, . . . ,

n− (p + q − 1)

n
,
n− 2

n
; p + q − 2

))
,

0 < z < 1 ,

where the p∗`

(
n−2

2 , 1
2

)
are given by (5) and the r∗j by (8) – (9).

4. On the exact distributions of the l.r.t. statistics to test spheric-
ity and equality of covariance matrices

We may try to deal with the exact distributions of the l.r.t. statistics to
test sphericity and equality of covariance matrices using a similar approach
to the one used in the previous section.
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4.1. On the exact distribution of the l.r.t. statistic to test sphericity

From expression (A.6) in Appendix A of Marques et al. (2010) we see
that the part of the c.f. of W3 = − log Λ3, where Λ3 is the l.r.t. statistic to
test sphericity in a set of p variates with a joint elliptically contoured or left-
orthogonal invariant distribution, denoted by Φ2,W3

(t) is, for k∗ = bp/2c, the

c.f. of the sum of p−k∗−1 independent Logbeta
(
n−1

2 , j−1
p

)
(j = 2, . . . , p−k∗)

r.v.’s, multiplied by n/2, with other k∗ independent Logbeta
(
n
2 ,

j−1
p −

1
2

)
(j = p − k∗ + 1, . . . , p) r.v.’s, multiplied by n/2, which, from (3) and (4)

is the sum of p − k∗ − 1 independent infinite mixtures of Γ
(
j−1
p + `, n−1

n

)
(j = 2, . . . , p − k∗; ` = 0, 1, . . .) distributions, with other k∗ independent

infinite mixtures of Γ
(
j−1
p −

1
2 + `, nn

)
(j = p − k∗ + 1, . . . , p; ` = 0, 1, . . .)

distributions. In the case in which all the rate parameters are the same, say
equal to λ, this sum of mixtures would simplify to only one infinite mixture

of Γ
(
p−2

4 + `, λ
)

(` = 0, 1, . . .) distributions for even p or one infinite mixture

of Γ
(
p−1

4 + `, λ
)

(` = 0, 1, . . .) distributions for odd p, since for even p we

have

p−k∗∑
j=1

j − 1

p
+

p∑
j=p−k∗+1

(
j − 1

p
− 1

2

)
=


p∑

j=1

j − 1

p

− 1

2

p

2
=
p− 1

2
− p

4

=
p− 2

4

while for odd p we have

p−k∗∑
j=1

j − 1

p
+

p∑
j=p−k∗+1

(
j − 1

p
− 1

2

)
=


p∑

j=1

j − 1

p

− 1

2

p− 1

2

=
p− 1

2
− 1

2

p− 1

2
=
p− 1

4
.

But then in order to approximate this sum of independent infinite mix-
tures of Gamma distributions by a single infinite mixture of Gamma distri-
butions, we propose an infinite mixture of Gamma distributions with shape
parameters r + ` (` = 0, 1, . . .), with

r =

{
p−2

4 for even p
p−1

4 for odd p

and all with rate parameter λ with the same value obtained for λ in (3.3)
in Marques et al. (2010), in which we equate 4 or 6 exact moments, since in
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that paper analogous near-exact distributions were obtained for mixtures of
Gamma distributions with the same rate parameter.

4.2. On the exact distribution of the l.r.t. statistic to test equality of
covariance matrices

By using a similar procedure and similar arguments to the ones used
in the previous subsection, we may approximate the exact distribution of
W4 = − log Λ4, where Λ4 is the l.r.t. statistic to test the equality of q co-
variance matrices from p-variate elliptically contoured or left orthogonal-
invariant distributions, based on q independent samples of size n, by replac-
ing the part of the c.f. of W4 denoted in expression (A.9) in
Marques et al. (2010) by Φ2,W4

(t), which, using (3) and (4), may be seen as
the c.f. of the sum of q×bp/2c independent infinite mixtures of

Γ
(
k−2j
q −

⌊
k−2j
q

⌋
+ `, n−1

n −
1
n

⌊
k−2j
q

⌋)
(k = 1, . . . , q; j = 1, . . . , bp/2c; ` =

0, 1, . . .) distributions, plus, for odd p, the sum of q independent infinite

mixtures of Γ
(

2k−p−1
2q −

⌊
2k−p−1

2q

⌋
+ `, n−1

n −
2
n

⌊
2k−p−1

2q

⌋)
(k = 1, . . . , q; ` =

0, 1, . . .) distributions, by the c.f. of an infinite mixture of Γ (r + `, λ)
(` = 0, 1, . . .) distributions, where

r =


bp/2c∑
j=1

q∑
k=1

k − 2j

q
−
⌊
k − 2j

q

⌋+

(
2k − p− 1

2q
−
⌊

2k − p− 1

2q

⌋)Mod[p,2]

=

⌊
p+ 1

2

⌋
q − 1

2
,

and λ is once again defined as in the previous subsection.

5. Near-exact distributions

Although the approximations proposed in the previous section for the l.r.t.
statistics to test sphericity and equality of covariance matrices provide crude
approximations to the exact distributions of those statistics and their loga-
rithms, such approximations are in fact not as accurate as one would wish.
Anyway, even if they were judged to be sufficiently accurate, for practical
applications we would still have to face the problem of the truncation of the
series corresponding to their p.d.f.’s and c.d.f.’s as also happens with the ex-
act distributions obtained for the l.r.t. statistics to test the independence of
several sets of variables or the equality of several mean vectors in section 3.

The development of near-exact distributions, based on such exact dis-
tributions or approximations, which will take the form of finite mixtures of
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GNIG distributions for the negative logarithm of such l.r.t. statistics, will
solve such a problem and provide us with very accurate approximations to
the exact distributions.

The near-exact distributions proposed for the four basic l.r.t. statistics
addressed in this paper, which are: (i) the l.r.t. statistic to test the indepen-
dence of several sets of variables; (ii) the l.r.t. statistic to test the equality
of several mean vectors; (iii) the l.r.t. statistic to test for sphericity; and (iv)
the l.r.t. statistic to test the equality of several covariance matrices, have
c.f.’s which may be written, for the negative logarithm of those statistics
(generally denoted here by W ), as

Φ∗W (t) =
m∗∑
k=0

pk

λb+j(λ− it)−(b+j)
p∏

j=2

(
n− j
n

)rj (n− 1

n
− it

)−rj (10)

which yields as near-exact distributions for W , the generic negative loga-
rithm of the l.r.t. statistic and for Λ, the l.r.t. statistic itself, distributions
with p.d.f.’s and c.d.f.’s respectively given by

fW (w) =
m∗∑
k=0

pk f
GNIG

(
w | r2, . . . , rp, r

+
k ;
n− 2

n
, . . . ,

n− p
n

, λ; p

)

FW (w) =
m∗∑
k=0

pk F
GNIG

(
w | r2, . . . , rp, r

+
k ;
n− 2

n
, . . . ,

n− p
n

, λ; p

)

fΛ(z) =
m∗∑
k=0

pk f
GNIG

(
− log z | r2, . . . , rp, r

+
k ;
n− 2

n
, . . . ,

n− p
n

, λ; p

)
1

z
,

0 < z < 1

FΛ(z)=
m∗∑
k=0

pk

(
1− FGNIG

(
− log z | r2, . . . , rp, r

+
k ;
n− 2

n
, . . . ,

n− p
n

, λ; p

))
,

0 < z < 1 ,

where p is to be taken as p+q−1 for the test of equality of q p-variate mean
vectors, the rj are given by:

(i) expressions (A.3) and (A.4) in Marques et al. (2010) for the l.r.t. statis-
tic to test the independence of m sets of elliptically contoured or left-
orthogonal invariant distributed r.v.’s,

(ii) expressions (8) and (9) for the l.r.t. statistic to test the equality of
mean vectors of q populations with elliptically or left-orthogonal in-
variant distributions,
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(iii) expression (A.8) in Marques et al. (2010) for the l.r.t. statistic to test
sphericity in a set of elliptically contoured or left-orthogonal invariant
r.v.’s,

(iv) expressions (A.14) – (A.18) in Marques et al. (2010) for the l.r.t. statis-
tic to test the equality of covariance matrices of q elliptically contoured
or left-orthogonal invariant sets of r.v.’s,

r+
k is given by

(i) k∗

2 +k for the l.r.t. statistic to test independence of m sets of variables,

(ii) 1
2 + k for the l.r.t. statistic to test the equality of q p-variate mean
vectors,

(iii) p−2
4 for even p or p−1

4 for odd p, for the l.r.t. statistic to test sphericity,

(iv)
⌊
p+1

2

⌋
q−1

2 for the l.r.t. statistic to test the equality of q covariance
matrices,

and λ assumes the value

(i),(ii) n−2
n for the l.r.t. statistics to test independence of several sets of vari-

ables and the equality of several mean vectors,

(iii),(iv) of λ in (3.3) of Marques et al. (2010) when we match 4 or 6 exact mo-
ments, for the l.r.t. statistics to test sphericity and to test the equality
of several covariance matrices,

and where the depth of the GNIG distributions is indeed p− 1 for the l.r.t.
of independence, where r2 = 0 and p+ q − 3 for the l.r.t. of equality of mean
vectors, where r2 = r3 = 0.

In the above expressions, m∗ represents the number of exact moments
equated to obtain the near-exact distribution, and the weights pk, for
k = 0, . . . ,m∗ − 1, being determined by equating the first m∗ moments from
(10) and the first exact moments of W , that is, in such a way that

∂h

∂th
ΦW (t)

∣∣∣∣∣
t=0

=
∂h

∂th
Φ∗W (t)

∣∣∣∣∣
t=0

, h = 1, . . . ,m∗ ,

where ΦW (t) represents the exact c.f. of W and Φ∗W (t) the near-exact c.f. of
W in (10). The weight pm∗ is obtained through the relation

pm∗ = 1−
m∗−1∑
k=0

pk .
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These near-exact distributions are thus, ifm∗ exact moments are matched,
mixtures of m∗+ 1 GNIG distributions with shape parameters r2, . . . , rp, r

+
k

and rate parameters n−2
n , . . . , n−pn , λ.

The number of exact moments matched by these near-exact distributions
may be virtually as many as one wishes.

If the number of exact moments matched is equal to two, four or six, the
near-exact distributions developed in this paper will indeed have a slightly
more complicated structure than the near-exact distributions in Marques et
al. (2010) that match the same number of exact moments, since while the
previously developed near-exact distributions would correspond respectively
to a single GNIG distribution or to a mixture of two or three GNIG distri-
butions, we now have a mixture of respectively three, five or seven GNIG
distributions. However, the near-exact distributions proposed in the present
paper enjoy several advantages, among which are the following:

– they may equate virtually as many of the exact moments as one wishes,

– they show even better asymptotic characteristics than the near-exact
distributions previously proposed, with even better performances for
very small sample sizes,

– for a given number of exact moments matched, they always show a bet-
ter performance than the near-exact distributions previously proposed,

– the system of equations to be solved in order to determine the weights
pk (k = 0, . . . ,m∗ − 1) is linear and as such very simple to be solved,

– it is possible to obtain an a priori upper-bound on the probability
error, that is, an upper-bound on the difference between the near-
exact and the exact c.d.f..

In Tables 1 – 4 we may analyze the values for the measure

∆ =
1

2π

∫ +∞

−∞

∣∣∣∣ΦW (t)− Φ∗W (t)

t

∣∣∣∣ dt
where ΦW (t) represents the exact c.f. of W and Φ∗W (t) the near-exact c.f. of
W in (10), with

max
w∈IR+

|FW (w)− F ∗W (w)| ≤ ∆

and
max
z∈]0,1[

|FΛ(z)− F ∗Λ(z)| ≤ ∆ ,

where FW ( · ) and F ∗W ( · ) represent respectively the exact c.d.f. of W and
the near-exact c.d.f. corresponding to Φ∗W (t) in (10) and FΛ( · ) and F ∗Λ( · )
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represent respectively the exact c.d.f. of Λ and the near-exact c.d.f. corre-
sponding to Φ∗W (t) in (10). See Marques et al. (2010) and Coelho & Mexia
(2010) for details on the use of the measure ∆ as a measure of proximity
between distributions.

Tables 1 – 4 display values of the measure ∆ for the near-exact distribu-
tions proposed in this paper for the cases in which 4, 6, 10 and 15 exact
moments are matched, as well as for the near-exact distributions proposed
in Marques et al. (2010) in which 4 and 6 exact moments were matched.
These are designated by M2GNIG and M3GNIG respectively (since they
are mixtures of respectively 2 and 3 GNIG distributions).

All the computations relative to the l.r.t. statistics to test sphericity and
the equality of several covariance matrices, for the newly developed near-
exact distributions use a value of λ which is equal to the value obtained for
λ in (3.3) of Marques et al. (2010) when equating 4 exact moments.

From Table 1 we may see that the new near-exact distributions besides
showing even better performance for very small sample sizes than the already
very good performance of the former near-exact distributions, also will show
an an improved asymptotic behavior, in terms of sample size and number of
variables involved, compared to that of the former near-exact distributions
since they display a more accentuated decrease in the values of the measure
∆ even for small increases in the sample size or in the number of variables
involved than the former near-exact distributions.

By analyzing Table 2 we may see how also for the l.r.t. statistic used to
test the equality of q p-multivariate mean vectors, assuming equality of the
covariance matrices, the near-exact distributions proposed in this paper ex-
hibit improved behavior for increasing sample size, increasing dimension (p)
and also for increasing values of q, the number of mean vectors being tested.
Although this also happens for the former near-exact distributions, namely
for the M2GNIG and M3GNIG near-exact distributions, this behavior is
now more accentuated for the newly proposed near-exact distributions. We
may also notice that, as expected, the larger the number of exact moments
matched, the more accentuated is the asymptotic behavior of the new near-
exact distributions, since the decrease in the values of the measure ∆ is even
more substantial for increasing values of n, p and q when we consider the
near-exact distributions that match a larger number of exact moments.

From Table 3 we may see that, as with the other l.r.t. statistics, for the
l.r.t. statistic used to test sphericity, the near-exact distributions proposed
in this paper provide improved approximations both for increasing sample
sizes as well as for increasing dimension. Once again use of the near-exact
distributions that match more exact moments results in even better approx-
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imations and more marked improvement as sample size and/or dimension
increases.

Table 1 – Values of the measure ∆ for several near-exact distributions for the l.r.t.
statistic to test the independence of m groups of variables, the k-th of
group of which contains pk variables (k = 1, . . . ,m).

former near-exact dists. new near-exact dists. (# of exact moments matched)
m pk n M2GNIG M3GNIG 4 6 10 15

3 {3,5,6} 16 2.16×10−11 3.81×10−15 3.84×10−13 1.24×10−16 1.09×10−21 5.88×10−27

50 1.33×10−11 5.53×10−15 2.04×10−14 2.93×10−18 5.81×10−25 9.96×10−32

100 2.21×10−12 1.21×10−15 7.95×10−16 3.17×10−20 5.76×10−28 2.04×10−36

3 {5,7,10} 24 3.09×10−13 9.10×10−18 2.41×10−15 1.48×10−19 2.74×10−27 2.65×10−34

50 8.16×10−13 1.11×10−16 1.33×10−15 6.73×10−20 1.80×10−27 2.97×10−35

100 1.86×10−13 2.04×10−17 7.16×10−17 1.15×10−21 3.69×10−30 1.75×10−39

3 {7,11,15} 35 7.50×10−15 1.18×10−19 2.65×10−17 2.98×10−22 2.92×10−31 2.08×10−40

50 4.14×10−14 1.71×10−18 6.90×10−17 1.09×10−21 2.90×10−30 2.87×10−39

100 1.78×10−14 7.68×10−19 7.04×10−18 4.56×10−23 2.46×10−32 1.34×10−42

4 {3,5,7,7} 24 5.83×10−13 1.60×10−17 4.25×10−15 2.68×10−19 2.13×10−27 2.90×10−34

50 1.32×10−12 1.56×10−16 1.97×10−15 9.54×10−20 2.21×10−27 2.67×10−35

100 2.89×10−13 5.37×10−17 1.01×10−16 1.52×10−21 4.07×10−30 1.37×10−39

4 {7,7,9,10} 35 6.74×10−15 1.01×10−19 2.39×10−17 2.55×10−22 2.24×10−31 1.36×10−40

50 3.25×10−14 1.22×10−18 5.42×10−17 7.76×10−22 1.70×10−30 1.30×10−39

100 1.28×10−14 4.85×10−19 5.08×10−18 2.89×10−23 1.21×10−32 4.76×10−43

5 {3,5,5,5,4} 24 5.45×10−13 1.45×10−17 3.98×10−15 2.43×10−19 1.79×10−27 2.19×10−34

50 1.12×10−12 1.23×10−16 1.67×10−15 7.57×10−20 1.54×10−27 1.57×10−35

100 2.38×10−13 4.09×10−17 8.32×10−17 1.16×10−21 2.69×10−30 7.56×10−40

5 {5,5,7,7,9} 35 1.36×10−14 1.92×10−19 4.43×10−17 4.95×10−22 4.76×10−31 2.49×10−40

50 6.23×10−14 2.16×10−18 9.47×10−17 1.38×10−21 2.98×10−30 1.96×10−39

100 2.36×10−14 1.62×10−18 8.43×10−18 4.80×10−23 1.88×10−32 6.11×10−43

5 {9,9,11,11, 50 4.70×10−16 2.46×10−21 7.19×10−19 1.60×10−24 8.83×10−35 6.89×10−46

8} 100 2.25×10−15 6.03×10−20 8.10×10−19 1.82×10−24 1.12×10−34 3.68×10−46

200 5.39×10−16 5.20×10−21 4.69×10−20 3.39×10−26 2.25×10−37 1.93×10−50

6 {11,11,15, 100 9.06×10−18 2.25×10−23 2.77×10−21 6.28×10−28 3.57×10−40 3.01×10−54

15,19,21} 200 1.66×10−17 5.30×10−24 1.21×10−21 1.99×10−28 6.07×10−41 9.08×10−56

By analyzing the values of the measure ∆ in Table 4 we see that, for
the l.r.t. statistic to test the equality of q p-variate covariance matrices,
the newly proposed near-exact distributions once again display improved
behavior and provide excellent approximations to the exact distributions,
as also happened for all the other l.r.t. statistics addressed in this paper.
Once again the near-exact distributions proposed in this paper show better
behavior than the previously proposed approximations, with improved per-
formance both for increasing sample sizes as well as for increasing dimension
(p) and also for increasing number of matrices involved (q).

Also, given the oscillating sign nature of the weights pk in (10), for
all the new near-exact distributions, we may take the absolute value of
the last of these weights, that is pm∗−1, as a rough upper-bound on the
difference between the near-exact and exact c.d.f.’s. This means that before
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we determine the value for ∆ in each single case, which may indeed take some
time, we may obtain from the absolute value of pm∗−1 a rough upper-bound
on this value, which may come in quite handy.

Table 2 – Values of the measure ∆ for several near-exact distributions for the l.r.t.
statistic to test the equality of q p-variate mean vectors, for odd p and even q

former near-exact dists. new near-exact dists. (# of exact moments matched)
p q n M2GNIG M3GNIG 4 6 10 15

5 4 30 2.82×10−9 5.61×10−12 9.16×10−12 1.15×10−14 5.88×10−20 1.16×10−24

50 7.06×10−10 1.36×10−12 7.69×10−13 3.75×10−16 6.51×10−22 1.06×10−27

100 9.62×10−11 1.17×10−13 2.46×10−14 3.06×10−18 4.12×10−25 1.17×10−32

5 10 70 1.29×10−11 6.51×10−15 9.36×10−15 9.72×10−19 1.10×10−25 5.46×10−33

100 5.02×10−12 2.02×10−15 1.73×10−15 9.16×10−20 2.82×10−27 1.79×10−35

7 4 35 6.64×10−10 9.36×10−13 1.76×10−12 1.28×10−15 3.71×10−21 2.56×10−26

50 2.67×10−10 3.59×10−13 3.30×10−13 1.25×10−16 1.43×10−22 1.57×10−28

100 3.88×10−11 3.41×10−14 1.12×10−14 1.11×10−18 1.02×10−25 2.01×10−33

7 10 100 2.02×10−12 5.72×10−16 7.31×10−16 2.83×10−20 4.91×10−28 1.65×10−36

200 2.98×10−13 4.91×10−17 2.61×10−17 2.65×10−22 3.25×10−31 1.78×10−41

15 4 65 1.30×10−11 6.40×10−15 1.11×10−14 1.25×10−18 1.68×10−25 1.17×10−32

100 4.52×10−12 1.76×10−15 1.57×10−15 8.04×10−20 2.35×10−27 1.42×10−35

200 6.81×10−13 1.55×10−16 5.70×10−17 7.70×10−22 1.59×10−30 1.55×10−40

15 10 200 3.94×10−14 2.93×10−18 3.67×10−18 1.79×10−23 5.45×10−33 6.01×10−44

300 1.28×10−14 6.76×10−19 5.23×10−19 1.17×10−24 7.50×10−35 7.23×10−47

25 4 120 6.00×10−13 1.13×10−16 1.53×10−16 3.26×10−21 1.80×10−29 1.26×10−38

200 1.64×10−13 3.60×10−17 1.47×10−17 1.22×10−22 1.02×10−31 3.68×10−42

25 10 260 4.78×10−15 1.65×10−19 2.67×10−19 4.65×10−25 1.86×10−35 1.26×10−47

300 3.25×10−15 9.98×10−20 1.36×10−19 1.81×10−25 2.21×10−36 1.22×10−48

500 7.82×10−16 1.54×10−20 1.17×10−20 5.81×10−27 1.90×10−38 2.38×10−52

Table 3 – Values of the measure ∆ for several near-exact distributions for the l.r.t.
statistic to test sphericity

former near-exact dists. new near-exact dists. (# of exact moments matched)
p n M2GNIG M3GNIG 4 6 10 15

3 5 2.27×10−6 5.78×10−7 6.47×10−8 1.20×10−8 1.54×10−10 2.06×10−12

15 2.76×10−7 1.24×10−9 1.46×10−9 7.40×10−12 5.96×10−15 3.59×10−18

6 8 3.57×10−9 3.74×10−12 4.79×10−11 6.76×10−14 1.64×10−17 2.01×10−21

18 1.14×10−9 5.05×10−12 2.62×10−12 1.67×10−15 2.42×10−21 2.53×10−26

30 3.03×10−10 8.19×10−13 2.37×10−13 5.99×10−17 3.12×10−23 1.84×10−29

10 12 6.59×10−11 1.23×10−14 4.26×10−13 1.15×10−16 2.24×10−22 7.89×10−28

22 6.13×10−11 2.56×10−14 1.09×10−13 1.80×10−17 3.13×10−24 2.12×10−30

35 2.22×10−11 8.30×10−15 1.51×10−14 1.16×10−18 7.09×10−26 3.93×10−33

50 8.90×10−12 2.69×10−15 2.91×10−15 1.16×10−19 2.15×10−27 1.69×10−35

15 17 5.34×10−12 9.62×10−17 3.97×10−14 4.52×10−18 8.84×10−24 7.78×10−30

27 9.72×10−12 1.17×10−15 2.92×10−14 3.95×10−18 5.44×10−25 2.26×10−31

50 3.03×10−12 4.34×10−16 2.64×10−15 1.57×10−19 6.79×10−27 3.90×10−34

100 5.04×10−13 8.02×10−18 1.09×10−16 1.88×10−21 9.26×10−30 1.30×10−38

20 22 3.14×10−13 1.80×10−17 5.96×10−16 9.86×10−21 1.83×10−29 1.01×10−37

35 7.39×10−13 1.30×10−17 5.38×10−16 8.09×10−21 2.14×10−29 3.62×10−38

50 4.19×10−13 4.12×10−18 1.48×10−16 1.34×10−21 1.46×10−30 4.95×10−40

100 8.07×10−14 1.87×10−19 6.98×10−18 1.88×10−23 1.99×10−33 2.05×10−44

25 27 8.79×10−14 2.48×10−18 2.23×10−16 3.92×10−21 1.30×10−29 7.19×10−38

50 2.12×10−13 1.16×10−17 1.56×10−16 2.54×10−21 1.03×10−29 3.64×10−38

100 4.89×10−14 1.95×10−18 8.97×10−18 4.85×10−23 2.99×10−32 3.66×10−42
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Table 4 – Values of the measure ∆ for several near-exact distributions for the l.r.t.
statistic to test the equality of q covariance matrices of dimension p

former near-exact dists. new near-exact dists. (# of exact moments matched)
p q n M2GNIG M3GNIG 4 6 10 15

5 3 7 2.24×10−7 7.42×10−10 5.23×10−9 1.98×10−11 2.39×10−14 1.15×10−16

50 3.85×10−11 2.11×10−12 3.64×10−13 7.62×10−17 8.60×10−23 1.50×10−29

100 1.03×10−11 1.29×10−13 1.23×10−14 4.41×10−19 2.05×10−26 4.93×10−34

5 7 7 9.86×10−8 5.42×10−10 2.13×10−8 9.79×10−11 4.71×10−15 6.07×10−20

50 1.25×10−10 1.04×10−13 5.51×10−13 4.43×10−17 1.11×10−24 9.17×10−32

100 1.25×10−11 2.32×10−14 1.49×10−14 2.97×10−19 5.79×10−28 8.55×10−37

7 5 9 5.17×10−9 6.54×10−12 3.33×10−10 2.51×10−13 1.61×10−18 5.80×10−24

50 2.39×10−11 8.90×10−15 3.22×10−14 1.55×10−18 4.00×10−26 6.34×10−33

100 1.83×10−12 7.32×10−15 5.43×10−16 1.00×10−20 2.94×10−29 1.99×10−37

7 10 9 2.35×10−9 2.53×10−12 3.82×10−10 3.18×10−13 4.23×10−19 2.84×10−26

50 1.88×10−11 2.72×10−14 1.24×10−13 4.70×10−18 1.39×10−26 4.68×10−35

100 1.83×10−12 1.63×10−14 3.44×10−15 3.28×10−20 6.58×10−30 4.00×10−40

10 5 12 1.64×10−10 3.25×10−14 3.88×10−12 5.14×10−16 8.45×10−24 2.41×10−31

50 3.59×10−12 1.34×10−14 3.68×10−15 1.96×10−19 3.01×10−28 3.68×10−39

100 1.67×10−13 9.61×10−16 2.46×10−16 2.31×10−21 1.97×10−31 1.08×10−43

10 15 12 7.13×10−12 —× — 1.84×10−13 5.58×10−18 5.73×10−27 1.56×10−36

50 2.81×10−13 —× — 3.51×10−16 1.24×10−21 3.48×10−33 5.51×10−43

100 1.97×10−14 1.03×10−20 5.23×10−18 3.29×10−24 8.09×10−36 5.82×10−46

6. Conclusions

In all cases, for a given number of exact moments matched, the newly
proposed near-exact distributions show smaller values of the discrepancy
measure ∆ than the former near-exact distributions,indicating in this way
that an excellent approximation to the exact distribution has been obtained.

Although it is clear that, for a given number of exact moments matched,
the near-exact distributions proposed in this paper have a somewhat more
complicated structure than the ones proposed in Marques et al. (2010), since
they will correspond to a mixture of a larger number of GNIG distributions,
the near-exact distributions proposed here are still quite manageable when
using adequate software on most computers available nowadays. Moreover,
the computation of the parameters involved in these near-exact distribu-
tions, which have to be computed by matching some of the exact moments,
cause absolutely no problems since the systems of equations to be solved
are always linear and as such very easy to solve. This would not be the
case with the formerly proposed near-exact distributions when the number
of exact moments matched is larger than 4.

With the proposed technique we may essentially get near-exact distribu-
tions that match as many of the exact moments as we wish and which will
be as close to the exact distribution as we wish. As we may see from the
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tables in the previous section, in many situations such near-exact distribu-
tions, even when a quite small number of exact moments is matched, the
discrepancy measure ∆ is remarkably small. In practice, for example when
computing p-values and quantiles, they may be used with confidence, even
for applications requiring very good approximations, instead of the exact
distributions, which are considerably less manageable.

Moreover, the technique used to build the near-exact distributions pro-
posed in this paper may be readily extended to any l.r.t. statistic which may
be built as the product of any number of independent l.r.t. statistics of the
type studied in this paper, just by applying the methods and ideas in Coelho
& Marques (2009).

References

Coelho, C. A., 1998. The Generalized Integer Gamma distribution – a ba-
sis for distribution in Multivariate Statistics. Journal of Multivariate
Analysis, 64, 86-102.

Coelho, C. A., 2004. The generalized near-integer Gamma distribution, a
basis for ”near-exact” approximations to the distributions of statis-
tics which are the product of an number of independent Beta random
variables. Journal of Multivariate Analysis, 89, 191-218.

Coelho, C. A., Marques, F. J., 2009. The advantage of decomposing elabo-
rate hypotheses on covariance matrices into conditionally independent
hypotheses in building near-exact distributions for the test statistics.
Linear Algebra and Its Applications, 430, 2592-2606.

Coelho, C. A., Mexia, J. T., 2010. Product and Ratio of Generalized Gamma-
Ratio Random Variables: Exact and Near-exact Distributions - Ap-
plications, LAP - Lambert Academic Publishing AG & Co. KG,
Saarbrücken, Germany (ISBN: 978-3-8383-5846-8).

Marques, F. J., Coelho, C. A., Arnold, B. C., 2010. A general near-exact dis-
tribution theory for the most common likelihood ratio test statistics
used in Multivariate Analysis. Test (in print – DOI 10.1007/s11749-
010-0193-3).
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