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Abstract

In this paper we give formulas for the number of elements of the monoids ORm×n of all full transformations
on a finite chain with mn elements that preserve a uniform m-partition and preserve or reverse the orientation
and for its submonoids ODm×n of all order-preserving or order-reversing elements, OPm×n of all orientation-
preserving elements, Om×n of all order-preserving elements, O+

m×n of all extensive order-preserving elements
and O−

m×n of all co-extensive order-preserving elements.
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Introduction and preliminaries

For n ∈ N, let Xn be a finite chain with n elements, say Xn = {1 < 2 < · · · < n}. Following the standard
notations, we denote by PT n the monoid (under composition) of all partial transformations on Xn and by Tn
and In its submonoids of all full transformations and of all injective partial transformations, respectively.

A transformation α ∈ PT n is said to be extensive (resp., co-extensive) if x ≤ xα (resp., xα ≤ x), for
all x ∈ Dom(α). We denote by T +

n (resp., T −n ) the submonoid of Tn of all extensive (resp., co-extensive)
transformations.

A transformation α ∈ PT n is said to be order-preserving (resp., order-reversing) if x ≤ y implies xα ≤ yα
(resp., yα ≤ xα), for all x, y ∈ Dom(α). We denote by POn the submonoid of PT n of all order-preserving
partial transformations. As usual, we denote by On the monoid POn ∩ Tn of all full transformations that
preserve the order. This monoid has been extensively studied since the sixties (e.g. see [2, 1, 20, 34, 7, 3, 31, 9]).
In particular, in 1971, Howie [21] showed that the cardinal of On is

(
2n−1
n−1

)
and later, jointly with Gomes, in

[18] they proved that |POn| =
∑n

i=1

(
n
i

)(
n+i−1

i

)
+ 1. See also Laradji and Umar papers [27] and [28].

Next, denote by O+
n (resp., by O−n ) the monoid T +

n ∩On (resp., T −n ∩On) of all extensive (resp., co-extensive)
order-preserving full transformations. The monoids O+

n and O−n are isomorphic and it is well-known that the
pseudovariety of J-trivial monoids, which are the syntactic monoids of piecewise testable languages (see e.g.
[30]), is generated by the family {O+

n | n ∈ N}. Moreover, the cardinal of O+
n (or O−n ) is the nth-Catalan

number, i.e. |O+
n | = 1

n+1

(
2n
n

)
(see [32]).

Regarding the injective counterpart of On, i.e. the inverse monoid POIn = POn ∩ In of all injective order-
preserving partial transformations, we have |POIn| =

(
2n
n

)
. This result was first presented by Garba in [17]

(see also [7]).
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of CAUL.

2The author gratefully acknowledges support of ISEL and of FCT and PIDDAC, within the projects ISFL-1-143 and
PTDC/MAT/69514/2006 of CAUL.
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çõ
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Now, being PODn the submonoid of PT n of all partial transformations that preserve or reverse the order,
ODn = PODn ∩ Tn and PODIn = PODn ∩ In (the full and partial injective counterparts of PODn, respec-

tively), Fernandes et al. [10, 11] proved that |PODn| =
∑n

i=1

(
n
i

) (
2
(
n+i−1

i

)
− n

)
+ 1, |ODn| = 2

(
2n−1
n−1

)
−n and

|PODIn| = 2
(
2n
n

)
− n2 − 1.

Wider classes of monoids are obtained when we consider transformations that either preserve or reverse the
orientation. Let a = (a1, a2, . . . , at) be a sequence of t, t ≥ 0, elements from the chain Xn. We say that a
is cyclic (resp., anti-cyclic) if there exists no more than one index i ∈ {1, . . . , t} such that ai > ai+1 (resp.,
ai < ai+1), where at+1 denotes a1. Let α ∈ Tn and suppose that Dom(α) = {a1, . . . , at}, with t ≥ 0 and
a1 < · · · < at. We say that α is orientation-preserving (resp., orientation-reversing) if the sequence of its
images (a1α, a2α, . . . , atα) is cyclic (resp., anti-cyclic). This notions were introduced by McAlister in [29] and
independently Catarino and Higgins in [6].

Denote by POPn (resp., PORn) the submonoid of PT n of all orientation-preserving (resp., orientation-
preserving or orientation-reversing) transformations. The cardinalities of POPn and PORn were calculated by

Fernandes et al. [12] and are 1+(2n−1)n+
∑n

k=2 k
(
n
k

)2
2n−k and 1+(2n−1)n+2

(
n
2

)2
2n−2 +

∑n
k=3 2k

(
n
k

)2
2n−k,

respectively. As usual, OPn denotes the monoid POPn ∩ Tn of all full transformations that preserve the
orientation, ORn denotes the monoid PORn ∩ Tn of all full transformations that preserve or reserve the
orientation and POPIn and PORIn denote the submonoids of POPn and PORn, respectively, whose elements
are the injective transformations. McAlister in [29], and independently Catarino and Higgins in [6], proved that

|OPn| = n
(
2n−1
n−1

)
− n(n− 1) and |ORn| = n

(
2n
n

)
− n2

2 (n2 − 2n+ 5) + n. The monoids OPn and ORn were also
studied by Arthur and Rušcuk in [5]. Regarding their injective counterparts, in [8], Fernandes established that

|POPIn| = 1 + n
2

(
2n
n

)
and, in [10], Fernandes et al. showed that |PORIn| = 1 + n

(
2n
n

)
− n2

2 (n2 − 2n+ 3).
All these results are summarized in [13].

Now, let X be a set and denote by T (X) the monoid (under composition) of all full transformations on X.
Let ρ be an equivalence relation on X and denote by Tρ(X) the submonoid of T (X) of all transformations that
preserve the equivalence relation ρ, i.e. Tρ(X) = {α ∈ T (X) | (aα, bα) ∈ ρ, for all (a, b) ∈ ρ}. This monoid was
studied by Huisheng in [23] who determined its regular elements and described its Green’s relations.

Let m,n ∈ N. Of particular interest is the submonoid Tm×n = Tρ(Xmn) of Tmn, with ρ the equivalence
relation on Xmn defined by ρ = (A1 × A1) ∪ (A2 × A2) ∪ · · · ∪ (Am × Am), where Ai = {(i − 1)n + 1, . . . , in},
for i ∈ {1, . . . ,m}. Notice that the ρ-classes Ai, with 1 ≤ i ≤ m, form a uniform m-partition of Xmn.

Regarding the rank of Tm×n, first, Huisheng [22] proved that it is at most 6 and, later on, Araújo and
Schneider [4] improved this result by showing that, for |Xmn| ≥ 3, the rank of Tm×n is precisely 4.

Finally, denote by ORm×n the submonoid of Tm×n of all orientation-preserving or orientation-reversing
transformations, i.e. ORm×n = Tm×n∩ORmn. Similarly, let ODm×n = Tm×n∩ODmn, OPm×n = Tm×n∩OPmn
and Om×n = Tm×n ∩ Omn. Consider also the submonoids O+

m×n = Om×n ∩ T +
mn and O−m×n = Om×n ∩ T −mn of

Om×n whose elements are the extensive transformations and the co-extensive transformations, respectively.

Example 0.1 Consider the following transformations of T12:

α1 =

(
1 2 3 4 5 6 7 8 9 10 11 12
9 11 10 12 1 3 3 2 5 5 7 8

)
; α2 =

(
1 2 3 4 5 6 7 8 9 10 11 12
8 8 8 6 6 5 5 5 12 12 11 10

)
;

α3 =

(
1 2 3 4 5 6 7 8 9 10 11 12
11 11 10 10 10 9 9 9 4 3 3 1

)
; α4 =

(
1 2 3 4 5 6 7 8 9 10 11 12
7 7 7 8 8 8 5 5 5 6 6 7

)
;

α5 =

(
1 2 3 4 5 6 7 8 9 10 11 12
1 1 1 2 3 3 4 4 10 11 11 11

)
; α6 =

(
1 2 3 4 5 6 7 8 9 10 11 12
5 5 6 6 6 7 7 8 10 11 11 12

)
;

α7 =

(
1 2 3 4 5 6 7 8 9 10 11 12
1 1 2 3 5 5 6 8 9 9 10 11

)
; α8 =

(
1 2 3 4 5 6 7 8 9 10 11 12
1 1 2 3 5 5 6 9 9 10 10 11

)
.

Then, we have: α1 ∈ T3×4, but α1 6∈ OR3×4; α2 ∈ OR3×4, but α2 6∈ OP3×4; α3 ∈ OD3×4, but α3 6∈ O3×4;
α4 ∈ OP3×4, but α4 6∈ O3×4; α5 ∈ O3×4, but α5 6∈ O+

3×4 and α5 6∈ O−3×4; α6 ∈ O+
3×4; α7 ∈ O−3×4; and, finally,

α8 6∈ T3×4.

2



P
ré
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Notice that, as O−n and O+
n , the monoids O−m×n and O+

m×n are isomorphic [15]. Recall that in [25] Kunze
proved that the monoid On is a quotient of a bilateral semidirect product of its subsemigroups O−n and O+

n .
This result was generalized by the authors [15] by showing that Om×n also is a quotient of a bilateral semidirect
product of its subsemigroups O−m×n and O+

m×n. See also [26, 14].
In [24] Huisheng and Dingyu described the regular elements and the Green’s relations of Om×n. On the

other hand, the ranks of the monoids Om×n, O+
m×n and O−m×n were calculated by the authors in [15].

Regarding OPm×n, a description of the regular elements and a characterization of the Green’s relations
were given by Sun et al. in [33]. Its rank was determined by the authors in [16], who also computed in the same
paper the ranks of the monoids ODm×n and ORm×n.

In this paper we calculate the cardinals of the monoids ORm×n, OPm×n, ODm×n, Om×n, O+
m×n and O−m×n.

In order to achieve this objective, we use a wreath product description of Tm×n, due to Araújo and Schneider
[4], that we recall in Section 1.

1 Wreath products of transformation semigroups

In [4] Araújo and Schneider proved that the rank of Tm×n is 4, by using the concept of wreath product of
transformation semigroups. This approach will also be very useful in this paper. Next, we recall some facts
from [4, 15, 16].

First, we define the wreath product Tn o Tm of Tn and Tm as being the monoid with underlying set
T mn × Tm and multiplication defined by (α1, . . . , αm;β)(α′1, . . . , α

′
m;β′) = (α1α

′
1β, . . . , αmα

′
mβ;ββ′), for all

(α1, . . . , αm;β), (α′1, . . . , α
′
m;β′) ∈ T mn × Tm.

Now, let α ∈ Tm×n and let β = α/ρ ∈ Tm be the quotient map of α by ρ, i.e. for all j ∈ {1, . . . ,m}, we have
Ajα ⊆ Ajβ. For each j ∈ {1, . . . ,m}, define αj ∈ Tn by kαj = ((j−1)n+k)α− (jβ−1)n, for all k ∈ {1, . . . , n}.
Let α = (α1, α2, . . . , αm;β) ∈ T mn × Tm. With these notations, the function ψ : Tm×n −→ Tn o Tm, α 7−→ α, is
an isomorphism (see [4, Lemma 2.1]).

Observe that, from this fact, we can immediately conclude that the cardinal of Tm×n is nnmmm.

Example 1.1 Consider the transformation α =

(
1 2 3 4 5 6 7 8 9 10 11 12
5 5 7 6 10 10 9 12 1 1 2 3

)
∈ T3×4.

Then, being β =

(
1 2 3
2 3 1

)
, α1 =

(
1 2 3 4
1 1 3 2

)
, α2 =

(
1 2 3 4
2 2 1 4

)
and α3 =

(
1 2 3 4
1 1 2 3

)
,

we have α = (α1, α2, α3;β).

Next, consider

Om×n = {(α1, . . . , αm;β) ∈ Omn ×Om | jβ = (j + 1)β implies nαj ≤ 1αj+1, for all j ∈ {1, . . . ,m− 1}}.

Notice that, if (α1, . . . , αm;β) ∈ Om×n and 1 ≤ i < j ≤ m are such that iβ = jβ, then nαi ≤ 1αj .

Proposition 1.2 [15] The set Om×n is a submonoid of Tn o Tm (and of On o Om) isomorphic to Om×n.

On the other hand, being

O+
m×n = {(α1, . . . , αm;β) ∈ Om−1n ×O+

n ×O+
m | jβ = (j + 1)β implies nαj ≤ 1αj+1 and

jβ = j implies αj ∈ O+
n , for all j ∈ {1, . . . ,m− 1}}

and

O−m×n = {(α1, . . . , αm;β) ∈ O−n ×Om−1n ×O−m | (j − 1)β = jβ implies nαj−1 ≤ 1αj and
jβ = j implies αj ∈ O−n , for all j ∈ {2, . . . ,m}},

we have:

Proposition 1.3 [15] The set O+
m×n [resp. O−m×n] is a submonoid of Tn o Tm (and of On o Om) isomorphic to

O+
m×n [resp. O−m×n].

3
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ré

-P
u
b
li
ca

çõ
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A description of OPm×n in terms of wreath products is more elaborate. In fact, considering addition modulo
m (in particular, m+ 1 = 1), we have:

Proposition 1.4 [16] A (m + 1)-tuple (α1, α2, . . . , αm;β) of T mn × Tm belongs to OPm×nψ if and only if it
satisfies one of the following conditions:

1. β is a non-constant transformation of OPm,

for all i ∈ {1, . . . ,m}, αi ∈ On and,

for all j ∈ {1, . . . ,m}, jβ = (j + 1)β implies nαj ≤ 1αj+1;

2. β is a constant transformation,

for all i ∈ {1, . . . ,m}, αi ∈ On and

there exists at most one index j ∈ {1, . . . ,m} such that nαj > 1αj+1;

3. β is a constant transformation,

there exists one index i ∈ {1, . . . ,m} such that αi ∈ OPn \On and, for all j ∈ {1, . . . ,m} \ {i}, αj ∈ On
and, for all j ∈ {1, . . . ,m}, nαj ≤ 1αj+1.

Let α ∈ OPm×n. We say that α is of type i if αψ satisfies the condition i. of the previous proposition, for
i ∈ {1, 2, 3}.

2 The cardinals

In this section we use the previous bijections to obtain formulas for the number of elements of the monoids
Om×n, O+

m×n, O−m×n, ODm×n, OPm×n and ORm×n.

In order to count the elements of Om×n, on one hand, for each transformation β ∈ Om, we determine the
number of sequences (α1, . . . , αm) ∈ Omn such that (α1, . . . , αm;β) ∈ Om×n and, on the other hand, we notice
that this last number just depends of the kernel of β (and not of β itself).

With this purpose, let β ∈ Om. Suppose that Im(β) = {b1 < b2 < · · · < bt}, for some 1 ≤ t ≤ m, and
define ki = |biβ−1|, for i = 1, . . . , t. Being β an order-preserving transformation, the sequence (k1, . . . , kt)
determines the kernel of β: we have {k1 + · · ·+ ki−1 + 1, . . . , k1 + · · ·+ ki}β = {bi}, for i = 1, . . . , t (considering
k1 + · · · + ki−1 + 1 = 1, with i = 1). We define the kernel type of β as being the sequence (k1, . . . , kt). Notice
that 1 ≤ ki ≤ m, for i = 1, . . . , t, and k1 + k2 + · · ·+ kt = m.

Now, recall that the number of non-decreasing sequences of length k from a chain with n elements (which
is the same as the number of k-combinations with repetition from a set with n elements) is

(
n+k−1

k

)
=
(
n+k−1
n−1

)
(see [19], for example). Next, notice that, as a sequence (α1, . . . , αk) ∈ Okn satisfies the condition nαj ≤ 1αj+1,
for all 1 ≤ j ≤ k − 1, if and only if the concatenation sequence of the images of the transformations α1, . . . , αk
(by this order) is still a non-decreasing sequence, then we have

(
n+kn−1
n−1

)
such sequences.

Since (α1, . . . , αm;β) ∈ Om×n if and only if, for all 1 ≤ i ≤ t, αk1+···+ki−1+1, . . . , αk1+···+ki are ki order-
preserving transformations such that the concatenation sequence of their images (by this order) is still a non-
decreasing sequence, then we have

∏t
i=1

(
kin+n−1
n−1

)
elements in Om×n whose (m+ 1)-component is β.

Finally, now it is also clear that if β and β′ are two elements of Om with the same kernel type then
(α1, . . . , αm;β) ∈ Om×n if and only if (α1, . . . , αm;β′) ∈ Om×n. Thus, as the number of transformations
β ∈ Om with kernel type of length t (1 ≤ t ≤ m) coincides with the number of t-combinations (without
repetition) from a set with m elements, it follows:

Theorem 2.1 |Om×n| =
∑

1≤k1,...,kt≤m
k1+···+kt=m

1≤t≤m

(
m
t

) t∏
i=1

(
kin+n−1
n−1

)
.

4
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ré

-P
u
b
li
ca

çõ
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The table below gives us an idea of the size of the monoid Om×n.

m \ n 1 2 3 4 5 6

1 1 3 10 35 126 462

2 3 19 156 1555 17878 225820

3 10 138 2845 78890 2768760 115865211

4 35 1059 55268 4284451 454664910 61824611940

5 126 8378 1109880 241505530 77543615751 34003513468232

6 462 67582 22752795 13924561150 13556873588212 19134117191404027

In view of Theorem 2.1, finding the cardinal of ODm×n is not difficult. Indeed, consider the reflexion

permutation h =

(
1 2 · · · mn− 1 mn
mn mn− 1 · · · 2 1

)
. Observe that h ∈ ODm×n and, given α ∈ Tm×n, we

have α ∈ ODm×n if and only if α ∈ Om×n or hα ∈ Om×n. On the other hand, as clearly |Om×n| = |hOm×n|
and |Om×n ∩ hOm×n| = |{α ∈ Om×n | | Im(α)| = 1}| = mn, it follows immediately that:

Theorem 2.2 |ODm×n| = 2|Om×n| −mn = 2
∑

1≤k1,...,kt≤m
k1+···+kt=m

1≤t≤m

(
m
t

) t∏
i=1

(
kin+n−1
n−1

)
−mn.

Next, we describe a process to count the number of elements of O+
m×n.

First, recall that the cardinal of O+
n is the nth-Catalan number, i.e. |O+

n | = 1
n+1

(
2n
n

)
. See [32].

It is also useful to consider the following numbers: θ(n, i) = |{α ∈ O+
n | 1α = i}|, for 1 ≤ i ≤ n. Clearly,

we have |O+
n | =

∑n
i=1 θ(n, i). Moreover, for 2 ≤ i ≤ n− 1, we have θ(n, i) = θ(n, i+ 1) + θ(n− 1, i− 1). In fact,

{α ∈ O+
n | 1α = i} = {α ∈ O+

n | 1α = i < 2α} ∪̇ {α ∈ O+
n | 1α = 2α = i} and it is easy to show that the

function which maps each transformation β ∈ {α ∈ O+
n | 1α = i < 2α} into the transformation(

1 2 . . . n
i+ 1 2β . . . nβ

)
∈ {α ∈ O+

n | 1α = i+ 1}

and the function which maps each transformation β ∈ {α ∈ O+
n−1 | 1α = i− 1} into the transformation(

1 2 3 . . . n− 1 n
i i 2β + 1 . . . (n− 2)β + 1 (n− 1)β + 1

)
∈ {α ∈ O+

n | 1α = 2α = i}

are bijections. Thus

θ(n, i) = |{α ∈ O+
n | 1α = i < 2α}|+ |{α ∈ O+

n | 1α = 2α = i}|
= |{α ∈ O+

n | 1α = i+ 1}|+ |{α ∈ O+
n−1 | 1α = i− 1}|

= θ(n, i+ 1) + θ(n− 1, i− 1).

Also, it is not hard to prove that θ(n, 2) = θ(n, 1) =
∑n−1

i=1 θ(n− 1, i) = |O+
n−1|.

Now, we can prove:

Lemma 2.3 For all 1 ≤ i ≤ n, θ(n, i) = i
n

(
2n−i−1
n−i

)
= i

n

(
2n−i−1
n−1

)
.

Proof. We prove the lemma by induction on n.
For n = 1, it is clear that θ(1, 1) = 1 = 1

1

(
2−1−1
1−1

)
.

Let n ≥ 2 and suppose that the formula is valid for n− 1.
Next, we prove the formula for n by induction on i. For i = 1, as observed above, we have θ(n, 1) = |O+

n−1| =
1
n

(
2n−2
n−1

)
. For i = 2, we have θ(n, 2) = θ(n, 1) = 1

n

(
2n−2
n−1

)
= 2

n
(2n−2)!

(n−1)!(n−1)!
n−1
2n−2 = 2

n
(2n−3)!

(n−1)!(n−2)! = 2
n

(
2n−3
n−1

)
.

Now, suppose that the formula is valid for i− 1, with 3 ≤ i ≤ n. Then, using both induction hypothesis on
i and on n in the second equality, we have θ(n, i) = θ(n, i − 1) − θ(n − 1, i − 2) = i−1

n

(
2n−i
n−1

)
− i−2

n−1
(
2n−i−1
n−2

)
=

i−1
n

(2n−i)!
(n−1)!(n−i+1)! −

i−2
n−1

(2n−i−1)!
(n−2)!(n−i+1)! = i(n−i+1)

n(2n−i)
(2n−i)!

(n−1)!(n−i+1)! = i
n

(
2n−i−1
n−1

)
, as required.

5
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Recall that (α1, . . . , αm;β) ∈ O+
m×n if and only if β ∈ O+

m, αm ∈ O+
n , α1, . . . , αm−1 ∈ On and, for all

j ∈ {1, . . . ,m− 1}, jβ = (j + 1)β implies nαj ≤ 1αj+1 and jβ = j implies αj ∈ O+
n .

Let β ∈ O+
m. As for the monoid Om×n, we aim to count the number of sequences (α1, . . . , αm) ∈ Omn such

that (α1, . . . , αm;β) ∈ O+
m×n.

Let (k1, . . . , kt) be the kernel type of β. Let Ki = {k1+· · ·+ki−1+1, . . . , k1+· · ·+ki}, for i = 1, . . . , t. Then,

β fixes a point in Ki if and only if it fixes k1 + · · ·+ ki, for i = 1, . . . , t. It follows that (α1, . . . , αm;β) ∈ O+
m×n

if and only if, for all 1 ≤ i ≤ t:

1. If β does not fix a point in Ki, then αk1+···+ki−1+1, . . . , αk1+···+ki are ki order-preserving transformations
such that the concatenation sequence of their images (by this order) is still a non-decreasing sequence (in
this case, we have

(
kin+n−1
n−1

)
subsequences (αk1+···+ki−1+1, . . . , αk1+···+ki) allowed);

2. If β fixes a point in Ki, then αk1+···+ki−1+1, . . . , αk1+···+ki−1 are ki − 1 order-preserving transformations
such that the concatenation sequence of their images (by this order) is still a non-decreasing sequence,
nαk1+···+ki−1 ≤ 1αk1+···+ki and αk1+···+ki ∈ O+

n (in this case, we have
∑n

j=1

(
(ki−1)n+j−1

j−1
)
θ(n, j) subse-

quences (αk1+···+ki−1+1, . . . , αk1+···+ki) allowed).

Define

d(β, i) =

{ (
kin+n−1
n−1

)
, if (k1 + · · ·+ ki)β 6= k1 + · · ·+ ki∑n

j=1
j
n

(
2n−j−1
n−1

)(
(ki−1)n+j−1

j−1
)
, if (k1 + · · ·+ ki)β = k1 + · · ·+ ki,

for all 1 ≤ i ≤ t.
Thus, we have:

Proposition 2.4 |O+
m×n| =

∑
β∈O+

m

t∏
i=1

d(β, i).

Next, we obtain a formula for |O+
m×n| which does not depend of β ∈ O+

m.
Let β be an element of O+

m with kernel type (k1, . . . , kt). Define sβ = (s1, . . . , st) ∈ {0, 1}t−1×{1} by si = 1
if and only if (k1 + · · ·+ ki)β = k1 + · · ·+ ki, for all 1 ≤ i ≤ t− 1.

Let 1 ≤ t, k1, . . . , kt ≤ m be such that k1 + · · · + kt = m and let (s1, . . . , st) ∈ {0, 1}t−1 × {1}. Let
k = (k1, . . . , kt) and s = (s1, . . . , st). Define ∆(k, s) = |{β ∈ O+

m | β has kernel type k and sβ = s}|.
In order to get a formula for ∆(k, s), we count the number of distinct restrictions to unions of partition

classes of the kernel of transformations β of O+
m with kernel type k and sβ = s corresponding to maximal

subsequences of consecutive zeros of s.
Let β be an element of O+

m with kernel type k and sβ = s.
First, notice that, given i ∈ {1, . . . , t}, if si = 1 then Kiβ = {k1 + · · ·+ ki} and if si = 0 then the (unique)

element of Kiβ belongs to Kj , for some i < j ≤ t.
Next, let i ∈ {1, . . . , t} and r ∈ {1, . . . , t− i} be such that sj = 0, for all j ∈ {i, . . . , i+ r− 1}, si+r = 1 and,

if i > 1, si−1 = 1 (i.e. (si, . . . , si+r−1) is a maximal subsequence of consecutive zeros of s). Then

(Ki ∪ · · · ∪Ki+r−2 ∪Ki+r−1)β ⊆ Ki+1 ∪ · · · ∪Ki+r−1 ∪ (Ki+r \ {k1 + · · ·+ ki+r}).

Let `j = |Ki+j ∩ (Ki ∪ · · · ∪Ki+r−1)β|, for 1 ≤ j ≤ r. Hence, we have `1, . . . , `r−1 ≥ 0, `r ≥ 1, `1 + · · ·+ `r = r
and 0 ≤ `1 + · · ·+ `j ≤ j, for all 1 ≤ j ≤ r − 1.

On the other hand, given `1, . . . , `r such that `1, . . . , `r−1 ≥ 0, `r ≥ 1, `1+ · · ·+`r = r and 0 ≤ `1+ · · ·+`j ≤
j, for all 1 ≤ j ≤ r − 1, we have precisely

(ki+1

`1

)(ki+2

`2

)
· · ·
(ki+r−1

`r−1

)(ki+r−1
`r

)
=
(ki+r−1

`r

)∏r−1
j=1

(ki+j

`j

)
distinct

restrictions to Ki ∪ · · · ∪ Ki+r−1 of transformations β of O+
m, with kernel type k and sβ = s, such that

6
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çõ
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`j = |Ki+j ∩ (Ki ∪ · · · ∪ Ki+r−1)β|, for 1 ≤ j ≤ r. It follow that the number of distinct restrictions to
Ki ∪ · · · ∪Ki+r−1 of transformations β of O+

m with kernel type k and sβ = s is

∑
`1+···+`r=r

0≤`1+···+`j≤j, 1≤j≤r−1
`1,...,`r−1≥0, `r≥1

(
ki+r − 1

`r

) r−1∏
j=1

(
ki+j
`j

)
.

Now, let p be the number of distinct maximal subsequences of consecutive zeros of s. Clearly, if p = 0 then
∆(k, s) = 1. Hence, suppose that p ≥ 1 and let 1 ≤ u1 < v1 < u2 < v2 < · · · < up < vp ≤ t be such that

{j ∈ {1, . . . , t} | sj = 0} =

p⋃
i=1

{ui, . . . , vi − 1}

(i.e. (sui , . . . , svi−1), with 1 ≤ i ≤ p, are the p distinct maximal subsequences of consecutive zeros of s). Then,
being ri = vi − ui, for 1 ≤ i ≤ p, we have

∆(k, s) =

p∏
i=1

∑
`1+···+`ri=ri

0≤`1+···+`j≤j 1≤j≤ri−1
`1,...,`ri−1≥0, `ri≥1

(
kui+ri − 1

`ri

) ri−1∏
j=1

(
kui+j
`j

)
.

Finally, notice that, if β and β′ two elements of O+
m with kernel type k = (k1, . . . , kt) such that sβ′ = sβ,

then d(β, i) = d(β′, i), for all 1 ≤ i ≤ t. Thus, defining Λ(k, s) =
∏t
i=1 d(β, i), where β is any transformation of

O+
m with kernel type k and sβ = s, we have:

Theorem 2.5 |O+
m×n| = |O−m×n| =

∑
k=(k1,...,kt)
1≤k1,...,kt≤m
k1+···+kt=m

1≤t≤m

∑
s∈{0,1}t−1×{1}

∆(k, s)Λ(k, s).

The next table gives us an idea of the size of the monoid O+
m×n (or O−m×n).

m \ n 1 2 3 4 5 6

1 1 2 5 14 42 132

2 2 8 35 306 2401 21232

3 5 42 569 10024 210765 5089370

4 14 252 8482 410994 25366480 1847511492

5 42 1636 138348 18795636 3547275837 839181666224

6 132 11188 2388624 913768388 531098927994 415847258403464

Despite the unpleasant appearance, the previous formula allows us to calculate the cardinal of O+
m×n, even

for larger m and n. For instance, we have |O+
10×10| = 47016758951069862896388976221392645550606752244.

In order to count the number of elements of the monoid OPm×n, we begin by recalling that, for k ∈ N,

being gk the k-cycle

(
1 2 · · · k − 1 k
2 3 · · · k 1

)
∈ OPk, each element α ∈ OPk admits a factorization α = gjkγ,

with 0 ≤ j ≤ k − 1 and γ ∈ Ok, which is unique unless α is constant [6].
Next, consider the permutations (of {1, . . . ,mn})

g = gmn =

(
1 2 · · · mn− 1 mn
2 3 · · · mn 1

)
∈ OPmn

7
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and

f = gn =

(
1 · · · n n+ 1 · · · mn− n mn− n+ 1 · · · mn

n+ 1 · · · 2n 2n+ 1 · · · mn 1 · · · n

)
∈ OPm×n.

Being α an element of OPm×n \Om×n of type 1 or 2 (see Proposition 1.4) and j ∈ {1, . . . ,m− 1} such that
(jn)α > (jn + 1)α, as (jn + 1)α ≤ · · · ≤ (mn)α ≤ 1α ≤ · · · ≤ (jn)α, it is clear that f jα ∈ Om×n. Thus, each
element α of OPm×n of type 1 or 2 admits a factorization α = f jγ, with 0 ≤ j ≤ m− 1 and γ ∈ Om×n, which
is unique unless α is constant. Notice that, this uniqueness follows immediately from Catarino and Higgins’s
result mentioned above. Therefore we have precisely m(|Om×n|−mn) non-constant transformations of OPm×n
of types 1 and 2 and mn constant transformations (which are elements of type 2 of OPm×n).

Now, let α be a transformation of OPm×n of type 3. As α is not constant, it can be factorized in a unique
way as grγ, for some r ∈ {0, . . . ,mn − 1} \ {jn | 0 ≤ j ≤ m − 1} and some non-constant order-preserving
transformation γ from {1, . . . ,mn} to Ai, for some 1 ≤ i ≤ m. Since only elements of OPm×n of type 3 have
factorizations of this form and the number of non-constant and non-decreasing sequences of length mn from

a chain with n elements is equal to
(
mn+n−1
n−1

)
− n, we have precisely m(mn −m)

((
mn+n−1
n−1

)
− n

)
elements of

type 3 in OPm×n. Thus |OPm×n| = m|Om×n|+m2(n− 1)
(
mn+n−1
n−1

)
−mn(mn− 1) and so we obtain:

Theorem 2.6 |OPm×n| = m
∑

1≤k1,...,kt≤m
k1+···+kt=m

1≤t≤m

(
m
t

) t∏
i=1

(
kin+n−1
n−1

)
+m2(n− 1)

(
mn+n−1
n−1

)
−mn(mn− 1).

It follows a table that gives us an idea of the size of the monoid OPm×n.

m \ n 1 2 3 4 5 6

1 1 4 24 128 610 2742

2 4 46 506 5034 51682 575268

3 24 447 9453 248823 8445606 349109532

4 128 4324 223852 17184076 1819339324 247307947608

5 610 42075 5555990 1207660095 387720453255 170017607919290

6 2742 405828 136530144 83547682248 81341248206546 114804703283314542

We finish this paper computing the cardinal of the monoid ORm×n. Notice that, as for ODm×n and Om×n,
we have a similar relationship between ORm×n and OPm×n. In fact, α ∈ ORm×n if and only if α ∈ OPm×n or
hα ∈ OPm×n. Hence, since |OPm×n| = |hOPm×n| and OPm×n ∩ hOPm×n = {α ∈ OPm×n | | Im(α)| ≤ 2}, we
obtain |ORm×n| = 2|OPm×n| − |{α ∈ OPm×n | | Im(α)| = 2}| −mn.

It remains to calculate the number of elements of A = {α ∈ OPm×n | | Im(α)| = 2}.
First, we count the number of elements of A of types 2 and 3. Let α be such a transformation. Then, there

exists k ∈ {1, . . . ,m} such that | Im(α)| ⊆ Ak. Clearly, in this case, the number of distinct kernels allowed for
α coincides with the number of distinct kernels allowed for transformations of OPmn of rank 2, which is

(
mn
2

)
(see [6]). On the hand, it is easy to check that we have m

(
n
2

)
distinct images for α. Furthermore, for each such

possible kernel and image, we have two distinct transformations of A. Hence, the total number of elements of
A of types 2 and 3 is precisely 2m

(
n
2

)(
mn
2

)
.

Finally, we determine the number of elements of A of type 1. Let α ∈ A be of type 1 and suppose that
αψ = (α1, . . . , αm;β). Then β must have rank 2 and so, as β ∈ OPm, we have 2

(
m
2

)2
distinct possibilities for

β (see [6]). Moreover, for each 1 ≤ i ≤ m, αi must be a constant transformation of On and, for 1 ≤ i, j ≤ m,
if iβ = jβ then αi = αj . Thus, for a fixed β, since β as rank 2, we have precisely n2 sequences (α1, . . . , αm;β)

allowed. Hence, A has 2n2
(
m
2

)2
distinct elements of type 1.

Therefore, |ORm×n| = 2|OPm×n| − 2m
(
n
2

)(
mn
2

)
− 2n2

(
m
2

)2 − mn = 2m|Om×n| + 2m2(n − 1)
(
mn+n−1
n−1

)
−

2m
(
n
2

)(
mn
2

)
− 2n2

(
m
2

)2 −mn(2mn− 1) and so we get:

8
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Theorem 2.7 |ORm×n| = 2m
∑

1≤k1,...,kt≤m
k1+···+kt=m

1≤t≤m

(
m
t

) t∏
i=1

(
kin+n−1
n−1

)
+

+2m2(n− 1)
(
mn+n−1
n−1

)
− 2m

(
n
2

)(
mn
2

)
− 2n2

(
m
2

)2 −mn(2mn− 1).
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[2] A.Ya. Aı̆zenštat, The defining relations of the endomorphism semigroup of a finite linearly ordered set, Sb.
Math. 3 (1962), 161–169 (Russian).

[3] J. Almeida and M.V. Volkov, The gap between partial and full, Internat. J. Algebra Comput. 8 (1998),
399–430.
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