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Abstract

In this paper we give formulas for the number of elements of the monoids OR,;, x, of all full transformations
on a finite chain with mn elements that preserve a uniform m-partition and preserve or reverse the orientation
and for its submonoids OD,,, «, of all order-preserving or order-reversing elements, OP,, «,, of all orientation-
preserving elements, O, «,, of all order-preserving elements, O, of all extensive order-preserving elements
and O, ., of all co-extensive order-preserving elements.
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Introduction and preliminaries

For n € N, let X,, be a finite chain with n elements, say X,, = {1 < 2 < --- < n}. Following the standard
notations, we denote by PT,, the monoid (under composition) of all partial transformations on X,, and by 7,
and Z, its submonoids of all full transformations and of all injective partial transformations, respectively.

A transformation o € PT,, is said to be extensive (resp., co-extensive) if x < za (resp., za < x), for
all z € Dom(a). We denote by T.F (resp., 7, ) the submonoid of 7, of all extensive (resp., co-extensive)
transformations.

A transformation a € PT,, is said to be order-preserving (resp., order-reversing) if x < y implies za < ya
(resp., ya < za), for all z,y € Dom(«). We denote by PQO,, the submonoid of PT,, of all order-preserving
partial transformations. As usual, we denote by O, the monoid PO, N T, of all full transformations that
preserve the order. This monoid has been extensively studied since the sixties (e.g. see [2, 1, 20, 34, 7, 3, 31, 9]).
In particular, in 1971, Howie [21] showed that the cardinal of O,, is (2::11) and later, jointly with Gomes, in
[18] they proved that [PO,| =31 (%) ("+§_1) + 1. See also Laradji and Umar papers [27] and [28].

Next, denote by O, (resp., by O,;) the monoid 7,;F NO,, (resp., 7,7 NO,,) of all extensive (resp., co-extensive)
order-preserving full transformations. The monoids O;f and O, are isomorphic and it is well-known that the
pseudovariety of J-trivial monoids, which are the syntactic monoids of piecewise testable languages (see e.g.

[30]), is generated by the family {O; | n € N}. Moreover, the cardinal of O} (or ;) is the n'h’-Catalan

number, i.e. |O;| = %H(Qg) (see [32]).
Regarding the injective counterpart of O, i.e. the inverse monoid POZ, = PO, NI, of all injective order-
preserving partial transformations, we have |POZ,| = (27?) This result was first presented by Garba in [17]

(see also [7]).
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Now, being POD,, the submonoid of PT,, of all partial transformations that preserve or reverse the order,
OD,, = POD,, N T, and PODI, = POD, NZ, (the full and partial injective counterparts of POD,,, respec-
tively), Fernandes et al. [10, 11] proved that |POD,| = Y"1, (%) (2 ("Jrffl) — n) +1, |0D,| = 2(2::11) —n and
PODZ,| = 2(>") —n? - 1.

Wider classes of monoids are obtained when we consider transformations that either preserve or reverse the
orientation. Let a = (ai,as,...,a:) be a sequence of ¢, t > 0, elements from the chain X,,. We say that a
is cyclic (resp., anti-cyclic) if there exists no more than one index i € {1,...,¢} such that a; > a;41 (resp.,
a; < ajy+1), where a;11 denotes a;. Let a € 7T, and suppose that Dom(«) = {ai,...,a:}, with ¢ > 0 and
ap < --- < a;. We say that « is orientation-preserving (resp., orientation-reversing) if the sequence of its
images (aja, asga, . .., apr) is cyclic (resp., anti-cyclic). This notions were introduced by McAlister in [29] and
independently Catarino and Higgins in [6].

Denote by POP,, (resp., POR,) the submonoid of PT, of all orientation-preserving (resp., orientation-
preserving or orientation-reversing) transformations. The cardinalities of POP,, and POR,, were calculated by
Fernandes et al. [12] and are 1+ (27— 1)n+ 35, k(7)?207% and 1+ (27 — 1)n+2(1)*2n2 4 320 _, 2k (1) *2nF,
respectively. As usual, OP,, denotes the monoid POP, N T, of all full transformations that preserve the
orientation, OR,, denotes the monoid POR, N T, of all full transformations that preserve or reserve the
orientation and POPZ,, and PORZ, denote the submonoids of POP,, and POR,,, respectively, whose elements
are the injective transformations. McAlister in [29], and independently Catarino and Higgins in [6], proved that
|OP,| = n(%f:f) —n(n—1) and |OR,| = n(i?) - %Q(nQ —2n+5) + n. The monoids OP,, and OR,, were also
studied by Arthur and Ruscuk in [5]. Regarding their injective counterparts, in [8], Fernandes established that
|POPI,| =1+ %(27?) and, in [10], Fernandes et al. showed that [PORZ,| =1+ n(%?) - %2(712 —2n+ 3).

All these results are summarized in [13].

Now, let X be a set and denote by 7 (X) the monoid (under composition) of all full transformations on X.
Let p be an equivalence relation on X and denote by 7,(X) the submonoid of 7(X) of all transformations that
preserve the equivalence relation p, i.e. 7,(X) = {a € T(X) | (ac, ba) € p,for all (a,b) € p}. This monoid was
studied by Huisheng in [23] who determined its regular elements and described its Green’s relations.

Let m,n € N. Of particular interest is the submonoid Tp,xn = T,(Xmn) of T, with p the equivalence
relation on X, defined by p = (A; x A1) U (A2 x Ag)U---U (A X Ap,), where 4, = {(i — 1)n+1,...,in},
for i € {1,...,m}. Notice that the p-classes A;, with 1 < i < m, form a uniform m-partition of X,,,.

Regarding the rank of 7p,xn, first, Huisheng [22] proved that it is at most 6 and, later on, Araijo and
Schneider [4] improved this result by showing that, for |X,,,| > 3, the rank of T, is precisely 4.

Finally, denote by OR,,xn the submonoid of 7,,x, of all orientation-preserving or orientation-reversing
transformations, i.e. ORpmxn = TmxnNORmn. Similarly, let ODxn = Tinxn YODmn, OPrmxn = Trxn NYOPomn
and Oixn = Tmxn N Omn. Consider also the submonoids OF ., = Opxn N T and O = Ouxn N T, of

mXxXn mXxXn
Omxn Whose elements are the extensive transformations and the co-extensive transformations, respectively.

Example 0.1 Consider the following transformations of 7is:

(1 2 3 415 6 7 8|9 10 11 12 (12 3 4|5 6 7 8|9 10 11 12
“=\9 11 10 1201 33 2|/5 5 7 8 )  *T(8886|6 55 5[12 12 11 10 )°
(12 3 4]5 67 8[9 10 11 12 (123 4[56 7 89 10 11 12
5=\ 11 11 10 10010 9 9 9|4 3 3 1) “T\7 77888 55|56 6 7)°
(1 23 4[5 6 7 8[9 10 11 12, (1 2 3 4|5 6 7 89 10 11 12
=111 2334 4[10 11 11 11 )° =556 6/6 7 7 8[10 11 11 12 )’
(1 2 3 4|5 6 7 8|9 10 11 12 (123456 789 10 11 12
=112 3[556 8[9 9 10 11 )° “=\1 12355699 10 10 11 )"

Then, we have: a1 € T3x4, but a1 € ORsxa; as € ORsx4, but as &€ OPsyxy; ag € ODsyy, but ag € Osyxy;
g € OPsxy, but ag &€ O3x4; a5 € Oszxy, but as & O;M and a5 € O3, 4; a6 € (9;&4; ar € O3, 4; and, finally,
ag & T3xa.



Notice that, as O, and O, the monoids O,, ., and O, . are isomorphic [15]. Recall that in [25] Kunze
proved that the monoid O, is a quotient of a bilateral semidirect product of its subsemigroups O, and O;'.
This result was generalized by the authors [15} by showing that O,,xn, also is a quotient of a bilateral semidirect
product of its subsemigroups O, ., and O . See also [26, 14].

In [24] Huisheng and Dingyu described the regular elements and the Green’s relations of Oy,x,. On the
other hand, the ranks of the monoids Oy, xy, O, and O, .. were calculated by the authors in [15].

Regarding OP,,xn, a description of the regular elements and a characterization of the Green’s relations
were given by Sun et al. in [33]. Its rank was determined by the authors in [16], who also computed in the same
paper the ranks of the monoids OD,,x, and OR.,xn.

In this paper we calculate the cardinals of the monoids OR.,xn, OPmxns ODmxn, Omxn, Oan and O, .,
In order to achieve this objective, we use a wreath product description of 7,,x5, due to Aradjo and Schneider

[4], that we recall in Section 1.

1 Wreath products of transformation semigroups

n [4] Aradjo and Schneider proved that the rank of 7p,xp is 4, by using the concept of wreath product of
transformation semigroups. This approach will also be very useful in this paper. Next, we recall some facts
from [4, 15, 16].

First, we define the wreath product 7, ! 7, of T, and 7, as being the monoid with underlying set
T x Ty and multiplication defined by (au,...,am;B8)(ad, ..., ol 8) = (ala’w,...,ama;nﬁ;ﬂ,é”), for all
(a1, .. am; B), (. ...al; B)) € T X T

Now, let a € Tpxn and let 5 = «/p € Ty, be the quotient map of a by p, i.e. for all j € {1,...,m}, we have
Aja C Ajg. Foreach j € {1,...,m}, define oj € T, by kaj = ((j —1)n+k)a—(jB—1)n, forall k € {1,...,n}.
Let @ = (a1, 9,...,m; B) € T X Tp,. With these notations, the function ¥ : Trxn — Tn 0T, @ — @, is
an isomorphism (see [4, Lemma 2.1]).

Observe that, from this fact, we can immediately conclude that the cardinal of T, s, is n”
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Next, consider
Omxn ={(a1, ..., am;B) € O x Op, | 58 = (j + 1)B implies naj < lajiq, forall j € {1,...,m —1}}.

Notice that, if (a1,...,am;8) € Omxn and 1 <i < j < m are such that i3 = j3, then no; < laj.

5 5 7 610 10 9 12 |1

Example 1.1 Consider the transformation o = (
4 (12 3 4 Lo — (1
2 )02 T 221 4)*M® 71

Then,beingﬁz(% :2)) i’),alz(} ?

we have @ = (a1, a2, as; ().

Proposition 1.2 [15] The set Opxp is a submonoid of Tn U T (and of On 2 Oy,) isomorphic to Opyxn. ]

On the other hand, being

6;)(77, = {(o1,...,am;B) € O x OF x Of | j3 = (j +1)8 implies na; < lajy1 and
jB = j implies aj € O}, for all j € {1,...,m — 1}}

and
Opxn = {la1,...;am;B) € O x Ot x O | (j —1)B8 = jB implies naj_1 < lay and
JjB =j implies a; € O, for all j € {2,...,m}},
we have:
Proposition 1.3 [15] The set (’)mxn [resp. O, y,] is a submonoid of Tn X Tr (and of O, 2 Oy,) isomorphic to
Of ... [resp. O ]. n



A description of OP,,«y, in terms of wreath products is more elaborate. In fact, considering addition modulo
m (in particular, m + 1 = 1), we have:

Proposition 1.4 [16] A (m + 1)-tuple (a1, 9, ..., m;B) of T X Tm belongs to OPpxnt if and only if it
satisfies one of the following conditions:

1. B is a non-constant transformation of OP,,,
forallie{l,...,m}, oy € O, and,
forallj e{l,...,m}, jB = (j+1)B implies no; < lajyr;

2. B is a constant transformation,
forallie{1,...,m}, a; € Oy, and

there exists at most one index j € {1,...,m} such that na; > lajiq;

3. [ is a constant transformation,
there exists one index i € {1,...,m} such that o; € OP, \ O, and, for all j € {1,...,m}\{i}, a; € O,
and, for all j € {1,...,m}, na; < logqq.

Let @ € OPpuxn. We say that « is of type i if atp satisfies the condition i. of the previous proposition, for
ie€{1,2,3}.

2 The cardinals

In this section we use the previous bijections to obtain formulas for the number of elements of the monoids
Omxns O;;Xny O’;zxn7 ODxny OPrmxn and ORpxn.

In order to count the elements of O,,x,, on one hand, for each transformation 8 € O,,, we determine the
number of sequences (a, ..., q,) € O™ such that (a1,...,am;8) € Omxn and, on the other hand, we notice
that this last number just depends of the kernel of § (and not of /3 itself).

With this purpose, let 8 € O,,. Suppose that Im(5) = {b; < by < --- < b}, for some 1 < t < m, and
define k; = |b;37!], for i = 1,...,t. Being B8 an order-preserving transformation, the sequence (ki,...,k;)
determines the kernel of §: we have {k1+---+ki—1+1,..., k1 + -+ k;}8={b;i}, fori =1,...,t (considering
ki +---+ki—1+1=1, with i = 1). We define the kernel type of § as being the sequence (ki, ..., k). Notice
that 1 < k; <m, fori=1,...,t,and k1 + ko + - + ks = m.

Now, recall that the number of non-decreasing sequences of length k from a chain with n elements (which
is the same as the number of k-combinations with repetition from a set with n elements) is (”+Z_1) = (":ﬁ;l)
(see [19], for example). Next, notice that, as a sequence (a,...,qx) € OF satisfies the condition nay; < lajiy,
for all 1 < j <k —1, if and only if the concatenation sequence of the images of the transformations aq, ..., ag
(by this order) is still a non-decreasing sequence, then we have ("J;kaf 1) such sequences.

Since (a1,...,am;B) € Omxn if and only if, for all 1 < i < #, Qg tothy_y+1y- -+ Qky+tk; are k; order-
preserving transformations such that the concatenation sequence of their images (by this order) is still a non-
decreasing sequence, then we have H§:1 (k”;j_ﬁ_l) elements in O,,x, whose (m + 1)-component is 3.

Finally, now it is also clear that if 8 and ' are two elements of O,, with the same kernel type then
(a1, am; B) € Omxn if and only if (aq,...,am;B) € Omxn. Thus, as the number of transformations
B € O, with kernel type of length ¢t (1 < ¢ < m) coincides with the number of ¢-combinations (without

repetition) from a set with m elements, it follows:

t

Theorem 2.1 |0, xn| = Z (T)H(k,r;ﬂ—l) .
1<k1,....ke<m =1
ki+--+ki=m
1<t<m



The table below gives us an idea of the size of the monoid O,,xy,.

m\n| 1 2 3 4 5 6
1 1 3 10 35 126 462
2 3 19 156 1555 17878 225820
3 10 138 2845 78890 2768760 115865211
4 35 | 1059 55268 4284451 454664910 61824611940
5 126 | 8378 | 1109880 241505530 77543615751 34003513468232
6 462 | 67582 | 22752795 | 13924561150 | 13556873588212 | 19134117191404027

In view of Theorem 2.1, finding the cardinal of OD,,«, is not difficult. Indeed, consider the reflexion

1 2 .- mn—1 mn
mn mn—1 --. 2 1
have & € ODy,xy, if and only if a € Opyxp or hao € Opyxn. On the other hand, as clearly |Opxn| = |hOmxnl
and |Opmxn N hOmxn| = {a € Omxn | | Im(a)| = 1} = mn, it follows immediately that:

permutation h = > Observe that h € OD,,«n and, given a € Tpxpn, We

t

Theorem 2.2 |OD,,xn| = 2|Opxn| — mn =2 g (T)H(k”;:ﬁ_l) —mn. ]
1<ky,....ke<m =1
ki+--+ki=m
1<t<m

Next, we describe a process to count the number of elements of O ..

First, recall that the cardinal of O} is the n''-Catalan number, i.e. |0 = 5 (*™). See [32].

It is also useful to consider the following numbers: 6(n,i) = |[{a € O;f | la =i}, for 1 <1i < n. Clearly,
we have |0 | = Y7, 6(n, ). Moreover, for 2 < i <n—1, we have 0(n,i) = 0(n,i+1)+0(n—1,i —1). In fact,
{aceOf | la=i}={ae€eOf | la=i<2a}U{a € O} | la =2a =i} and it is easy to show that the
function which maps each transformation 8 € {« € O;} | 1la =i < 2a} into the transformation

1 2 n + .
(z’+1 2% .. n6>€{a€(’)nl la =i+ 1}
and the function which maps each transformation 8 € {a € O} | | la =i — 1} into the transformation
1 2 3 n—1 n + P
<i i 2841 ... (n—2)8+1 (n—1)5+1>€{0‘60”| lo=2a =i}

are bijections. Thus

O(n,i) = HaeOf | la=i<2a} +|{a€Of| la=2a=1}
= a0t | la=i+1}+{acOf || la=i-1}
= O(n,i+1)+60(n—1,i-1).

Also, it is not hard to prove that #(n,2) = 6(n,1) = S" " 0(n — 1,7) = |O;_,|.
Now, we can prove:

Lemma 2.3 For all1 <i<mn, §(n,i)= %(2”7#1) = %(2”7i71).

n—i n—1
Proof. We prove the lemma by induction on n.
For n =1, it is clear that 0(1,1) =1 = %(%if)
Let n > 2 and suppose that the formula is valid for n — 1.
Next, we prove the formula for n by induction on i. For i = 1, as observed above, we have f(n, 1) = |0} | =

n— . n— n—2)! n— n—3)! n—
%(2 2)' For i = 2, we have 0(n,2) = 0(n, 1) = %(2 2) = %(n£21)!('3)—1)! 2n712 = % n£21)!(7§)—2)! = %(2 3)-

n—1 n—1 n—1

Now, suppose that the formula is valid for 7 — 1, with 3 <4 <n. Then, using both induction hypothesis on
i and on n in the second equality, we have 0(n,i) = 0(n,i —1) —0(n — 1,1 — 2) = %(Qn”:f) — =2 (2"7:271) =
i—1 (2n—1i)! i—2  (2n—i—1)! i(n—i+1) (2n—1)! i (Qn—i—l

n (n—D)In—it1)!  n—1 (n-2)(n—i+1)! _ n@n—i) n-)(n—i+1)! _ n\ n—1 ), as required. u

5



Recall that (a1,...,am;8) € @;Xn if and only if 8 € Of, ap, € OF, ay,...,a;m-1 € O, and, for all
je{l,...,m—1}, j8 = (j + 1)B implies na; < laj4q and j8 = j implies a; € O;F.
Let 8 € O;f. As for the monoid O, x,, we aim to count the number of sequences (aq, ..., ay,) € O such

that (aq,...,am;B) € 6;“.

Let (k1,..., k) be the kernel type of 8. Let K; = {k1+---+ki—1+1,...,ki+---+k;},fori =1,...,t. Then,
B fixes a point in K; if and only if it fixes ky + -+ + k;, for i = 1,...,¢. It follows that (ai,...,qm;B) € @;Xn
if and only if, for all 1 <4 <t:

1. If B does not fix a point in K;, then o y..qk; 415+, Qky4.tk; are k; order-preserving transformations
such that the concatenation sequence of their images (by this order) is still a non-decreasing sequence (in

this case, we have (k”;f_ﬂfl) subsequences (g, f.otk; y+1,-- - Oky+tk;) allowed);

2. If B fixes a point in Kj;, then o 4oqky 141, -+ Qky+-tky—1 are k; — 1 order-preserving transformations
such that the concatenation sequence of their images (by this order) is still a non-decreasing sequence,
Nk 4othy—1 < 10 gk, and g, oqp;, € OF (in this case, we have 377 ((ki_l)”ﬂ_l)ﬁ(n,j) subse-

j—1
qUENCes (Qgy il 141» -« - s Uy 4tk ) allowed).
Define
2(B,1) = (k?_qﬂ), ‘ ‘ if (k4 +k)BFk+-+k
) Z?:l %(2n7;_j;1) ((ki*?_n;r]fl)’ if (kl 4+ 4 kz)ﬁ =k + -+ ki,

forall 1 <7<t
Thus, we have:

t
Proposition 2.4 (O, | = Z HD(B,Z’). [
5€O7Jr§ =1

Next, we obtain a formula for |O;! .| which does not depend of 8 € O}.

Let 3 be an element of O}, with kernel type (ki, ..., k). Define sg = (s1,...,8:) € {0,1}"1 x {1} by s, = 1
if and only if (k1 +---+ ki) =ki1+---+ ki, forall 1 <i<t¢—1.

Let 1 < t,k1,...,k < m be such that ky + --- + k = m and let (s1,...,s;) € {0,1}71 x {1}. Let
k= (ki,...,k) and s = (s1,...,5:). Define A(k,s) = |{8 € O, | 8 has kernel type k and sg = s}|.

In order to get a formula for A(k,s), we count the number of distinct restrictions to unions of partition
classes of the kernel of transformations 8 of O}, with kernel type k and sg = s corresponding to maximal
subsequences of consecutive zeros of s.

Let 8 be an element of O, with kernel type k and sg = s.

First, notice that, given i € {1,...,t}, if s; = 1 then K;5 = {k1 +--- + k;} and if s; = 0 then the (unique)
element of K;#3 belongs to K, for some i < j <'t.

Next,let i € {1,...,t} and r € {1,...,t —i} be such that s; =0, for all j € {i,...,i+r—1}, s;y, =1 and,
ifi>1,s8.-1=1(e (8,...,84r—1) s a maximal subsequence of consecutive zeros of s). Then

(KiU-- - UKijpp 2 UKijpr 1)BC K1 U UKiyr 1 U (Kigp \ {1+ + kitr }).

Let ¢ = |K;yj N (K;U---UKijp1)B], for 1 < j <r. Hence, we have ¢1,..., 4,1 >0, 6. > 1, b1 +---+ L. =7
and 0 < 0y + -+ < j, forall1 <j<r—1.

On the other hand, given /1, ... ¢, such that ¢,...,0,_1 >0,6, > 1, /1444, =rand 0 < l1+---+{; <
j, for all 1 < 5 < r — 1, we have precisely (kzl) (ng)(kg’_Il) (k”ﬁ’;_l) = (k”e’;_l) H;i (kgj) distinct
restrictions to K; U --- U K;,_1 of transformations 3 of O}, with kernel type k and sg = s, such that

mo



l = \Kzﬂ (K; U« UKiyr—1)B|, for 1 < j < r. It follow that the number of distinct restrictions to
K;U--- UK, of transformations 3 of O, with kernel type k and sz = s is

L2 ()

+lr=r -
0< i+ 4£;<j, 1<j<r—1
£yl —120, £r2>1
Now, let p be the number of distinct maximal subsequences of consecutive zeros of s. Clearly, if p = 0 then
A(k,s) = 1. Hence, suppose that p > 1 and let 1 <wu; <v; <ug <wvg <--- <wuy < v, <t besuch that

el th] s =0} = J{ui,...,0i -1}

i=1

(i.e. (Suys---»Sv;—1), with 1 <4 < p, are the p distinct maximal subsequences of consecutive zeros of s). Then,
being r; = v; — u;, for 1 < i < p, we have

Fuyir, — 1\ T (s
N VD VR G 1 ]
i=1 Ol =1 " j=1 J

0<ly+-4+£;<5 1<j<r;—1
617"'7‘67"1'7120’ ETZZI

Finally, notice that, if 5 and ' two elements of O, with kernel type k = (ki,..., k) such that sg = sg,
then 0(8,4) = o(8',1), for all 1 <4 <t. Thus, defining A(k, s) = Hlf:l 0(8,1), where § is any transformation of
O;} with kernel type k and sg = s, we have:

Theorem 2.5 |0} | =10 ..|= Z Z Ak, s)A(k, s). [

k=(k1,....kt) se{0,1} " 1x{1
1<ky,....ke<m 0.1y 1
k1+4-+ki=m

1<t<m

The next table gives us an idea of the size of the monoid O}, (or O, ).

m\n| 1 2 3 4 5 6
1 1 2 ) 14 42 132
2 2 8 35 306 2401 21232
3 ) 42 569 10024 210765 5089370
4 14 252 8482 410994 25366480 1847511492
) 42 | 1636 | 138348 | 18795636 3547275837 839181666224
6 132 | 11188 | 2388624 | 913768388 | 531098927994 | 415847258403464

Despite the unpleasant appearance, the previous formula allows us to calculate the cardinal of Omxn, even
for larger m and n. For instance, we have |0}, o] = 47016758951069862896388976221392645550606752244.

In order to count the number of elements of the monoid OP,,xy, Wwe begin by recalling that, for £ € N,

12 -+ k-1 k

2 3 - k 1

with 0 < j <k —1 and v € Oy, which is unique unless « is constant [6].
Next, consider the permutations (of {1,...,mn})

1 2 --- mn—1 mn
g—gmn—<2 3 ... mn 1 >60Pmn

being g the k-cycle ( > € OPy, each element a € OP), admits a factorization o = gi%



and
n+1l -+ mn—-n|mn-n+1 --- mn

2n+1 --- mn 1

1 e n
_on
f=g _<n—|—1 cee o 2n

) € 0P

Being « an element of OP,,xn \ Omxn of type 1 or 2 (see Proposition 1.4) and j € {1,...,m — 1} such that
(jn)a > (jn+ Da, as (jn + Da < - < (mn)a < la < --- < (jn)a, it is clear that ffa € Oy,xy,. Thus, each
element o of OP,,xr of type 1 or 2 admits a factorization o = f7+y, with 0 < j < m — 1 and v € O, %y, which
is unique unless « is constant. Notice that, this uniqueness follows immediately from Catarino and Higgins’s
result mentioned above. Therefore we have precisely m(|Oyp,xn| —mn) non-constant transformations of OP,,xn
of types 1 and 2 and mn constant transformations (which are elements of type 2 of OP,,xn)-

Now, let a be a transformation of OP,,x, of type 3. As « is not constant, it can be factorized in a unique
way as ¢"v, for some r € {0,...,mn — 1} \ {jn | 0 < j < m — 1} and some non-constant order-preserving
transformation v from {1,...,mn} to A4, for some 1 < i < m. Since only elements of OP,, . of type 3 have
factorizations of this form and the number of non-constant and non-decreasing sequences of length mn from

a chain with n elements is equal to (mﬁj_qfl) — n, we have precisely m(mn — m) ((m’:;ffl) - n) elements of
type 3 in OPuixn. Thus |OPsn| = m|Omxn| + m?(n — 1)(m7;;£”fl) —mn(mn — 1) and so we obtain:
t
Theorem 2.6 |OP,xn| =m Z (T)H(k”?_qfl) +m?(n — 1)(m7:;fifl) —mn(mn — 1). [
1<ky,..ke<m  i=1
ki+-+ki=m
1<t<m
It follows a table that gives us an idea of the size of the monoid OP,,xp.
m\n| 1 2 3 4 5 6
1 1 4 24 128 610 2742
2 4 46 506 5034 51682 975268
3 24 447 9453 248823 8445606 349109532
4 128 4324 223852 17184076 1819339324 247307947608
5 610 | 42075 5555990 1207660095 387720453255 170017607919290
6 2742 | 405828 | 136530144 | 83547682248 | 81341248206546 | 114804703283314542

We finish this paper computing the cardinal of the monoid OR,,x». Notice that, as for OD,,,xn and Op,xp,
we have a similar relationship between OR,;,xn and OP,,xn. In fact, @ € OR,,xy, if and only if @« € OP,,,xsn Or
ha € OP,xn. Hence, since |OPpywn| = |hOPpxn| and OPxn N hOP s = {a € OPrxn | | Im(a)| < 2}, we
obtain |ORpxn| = 2|OPmxn| — {a € OPpxn | | Im(a)| = 2} — mn.

It remains to calculate the number of elements of A = {av € OPp,xp | | Im(a)| = 2}.

First, we count the number of elements of A of types 2 and 3. Let a be such a transformation. Then, there
exists k € {1,...,m} such that |Im(a)| C Ag. Clearly, in this case, the number of distinct kernels allowed for
a coincides with the number of distinct kernels allowed for transformations of OP,,, of rank 2, which is (”;”)
(see [6]). On the hand, it is easy to check that we have m(}) distinct images for o. Furthermore, for each such
possible kernel and image, we have two distinct transformations of A. Hence, the total number of elements of
A of types 2 and 3 is precisely 2m(5) (")

Finally, we determine the number of elements of A of type 1. Let a € A be of type 1 and suppose that
ar) = (a1, ..., um; B). Then S must have rank 2 and so, as 8 € OP,,, we have 2(“21)2 distinct possibilities for
B (see [6]). Moreover, for each 1 < i < m, «; must be a constant transformation of O,, and, for 1 <i,5 < m,
if i3 = jB then o; = aj. Thus, for a fixed 3, since 8 as rank 2, we have precisely n? sequences (as, .. ., am; 3)
allowed. Hence, A has 2n? (7;)2 distinct elements of type 1.

Therefore, |ORmxn| = 2|OPmxn| — 2m(g) (";") — 2n2(m)2 —mn = 2m|Omxn| + 2m?(n — 1)(m"+"71) —

2 n—1
2m (Z) (n;n) — 2n? (7;)2 —mn(2mn — 1) and so we get:



t

Theorem 2.7 |OR,xn| = 2m Z (T)H(kin+nfl)+

n—1
1<ky,....kt<m i=1

ki+4-+ki=m
1<t<m

+2m?(n — 1)("”;::7;71) - Qm(g) (") — 2n? (ZL)2 —mn(2mn —1). m
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