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Abstract

This paper is concerned with the application of global stochastic optimization methods
to extremum estimators. We propose a general stochastic method — the master method —,
which includes several other stochastic optimization algorithms as a particular case. The
proposed method is sufficiently general to include the Solis–Wets method, the improving hit-
and-run algorithm, and a stochastic version of the zigzag algorithm. A matrix formulation
of the master method is presented and some specific results are given for the stochastic
zigzag algorithm. Convergence of the proposed method is established under a mild set of
conditions.
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1 Introduction

Extremum estimators are one of the most extensive classes of methods for obtaining estimates
of a statistical model of interest (Amemiya, 1985; Newey and McFadden, 1994; Andrews, 1999;
Romano and Shaikh, 2010). The ordinary least squares, the generalized method of moments,
and maximum likelihood methods are defined by the solution of an optimization problem of
interest, and thus are instances of extremum estimators. One advantage of this general class of
estimators is its elegant asymptotic theory, which reduces to a set of general results. Despite their
appealing features, in many instances of interest these estimators are analytically intractable.
Stated differently, in several key cases we lack a closed-form solution for computing estimates
based on extremum estimators.

An approach to overcome this problem is to rely on optimization algorithms and obtain such
estimates computationally. The questions then arise. First, is there a method which outperforms
all others? Second, what type of algorithm should one use to perform the optimization? An
answer to the first question is provided by the No Free Lunch theorem — an impossibility result
which precludes the existence of a general purpose strategy, robust a priori to any type of
optimization problem (Wolpert and Macready, 1997). In the second question, a major concern
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is related with convergence features of the method used to iterate towards the optimal solution.
If the method converges to a local solution, consistency of the extremum estimator is no longer
ensured (cf. Newey and McFadden, 1994; Gan and Jiang, 1999). Hence, one should avoid to rely
on optimization methods which may converge to a local solution, since it is the global solution
that has noteworthy asymptotic features. Two types of algorithm are typically adopted to tackle
such problems, namely deterministic and stochastic optimization methods. The former includes
the Newton–Raphson algorithm, the steepest descent method, among many others (Nocedal and
Wright, 1999). In this paper the focus will, however, be on stochastic optimization algorithms.
These include random search methods (Spall, 2003; Zabinsky, 2003), the simulated annealing
technique (Bohachevsky et al., 1986), the improving hit-and-run algorithm (Zabinsky et al.,
1993; Andersen and Diaconis, 2007), the conditional Gaussian martingale algorithm (Esqúıvel,
2006), etc. Stochastic search and optimization algorithms are applied in many fields. The topic
includes applications ranging from game theory (Pakes and McGuire, 2001), to the clustering
of multivariate data (Booth et al., 2008). An overview of stochastic search and optimization
methods can be found, for instance, in Duflo (1996), Spall (2003), and Zabinsky (2003).

A major contribution of this paper is given by a master method from which several stochastic
optimization algorithms are a special instance. The generality of the proposed method is enough
to include the conceptual algorithm of Solis and Wets (1981) as a particular case. In addition,
we establish the convergence of the master method under a set of fairly mild assumptions. Just
as a master key can be used to open several doors, the establishment of convergence of the
master method, allows us to reach to the convergence of all the algorithms that it includes. An
important instance of this method, to which we also devote some time, is the stochastic zigzag
method — an algorithm largely inspired in the works of Mexia et al. (1999) and Pereira and
Mexia (2010).

The remainder of this paper is structured as follows. In the next section some preliminary
concepts are introduced. Section 3 revisits the meta-approach of Solis and Wets (1981). Section
4 is devoted to the introduction of the master method. The convergence of the proposed method
is established in Section 5. Concluding remarks are provided in Section 6.

2 Preliminaries

2.1 Problem formulation

The exposition starts with the definition of extremum estimator.

Definition 2.1. An estimator θ̂n is an extremum estimator if there is a parameter objective
function Tn , such that

θ̂n = arg max
θ∈Θ

Tn (θ) . (1)

Some remarks regarding notation: Θ ⊆ Rk denotes a parameter space; n is the sample size; the
true parameter will be denoted by θo (the “o” stands for optimal).

As a consequence of (1), the optimization problem at the center of our attention is

max
θ∈Θ

Tn(θ). (2)

For the sake of concreteness observe that the ordinary least squares estimator is obtained by
setting Tn(β) = −(y−Xβ)T(y−Xβ), where y, X, and β denote the response vector, the design
matrix, and the regression parameter, respectively.
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Even though our main interest relies over the optimization problem (2), the procedures de-
veloped in this paper carry over mutatis mutandis to other unconstrained optimization problems
of interest.

An alternative definition of extremum estimator is given by means of the following condition

Tn(θ̂n) = sup
θ∈Θ
Tn(θ) + op(1). (3)

Here and below, we say that a random variable Xn is op(1), if for any ε > 0 the following
condition is verified

P[|Xn| > ε] −→
n→∞

0.

From the conceptual standpoint, the definition provided in (3) is preferable since it only requires

that Tn(θ̂n) is within op(1) from the global maximum of Tn(θ̂n). This overcomes the question of
existence and it is also more suitable for computational purposes (Andrews, 1999).

In order to reduce the burden of notation, hereafter we omit the subscript n in the extremum
estimator and in the parameter objective function.

2.2 An overview of random search techniques

Suppose one has available a random sample of size n, from a population of interest. With such
a sample at hand, we aim to obtain estimates of θo by solving the optimization problem (2).
From the conceptual standpoint, for a fixed n, we can also think of the graph of T as another
population of interest from which we intend to consistently estimate the parameters1(

arg max
θ∈Θ

T (θ) ,max
θ∈Θ

T (θ)

)
.

In order to do so, suppose that we collect a random sample {(θi, T (θi)}pi=1 from such population.
Hence for each sampled value θi, we also inquire its corresponding image value T (θi). Assume
that such a sample is collected sequentially and that during each extraction period we compute

θ̃i+1 =

{
θ0 ⇐ i = 0

θ̃i I{T (θ̃i) ≥ T (θi+1)}+ θi+1 I{T (θi+1) > T (θ̃i)} ⇐ i ∈ N,
(4)

where I(.) denotes the indicator function. As we shall see below, the procedure described above
contains the quintessence of the classical pure random search algorithm (Zabinsky, 2003).

Classical random search algorithm

1. Choose an initial value of θ, say θ0 ∈ Θ, either randomly or deterministically. Set i = 0 and
θ̃0 = θ0.

2. Generate a new independent value θi+1 from a probability distribution f , with support over

Θ. If T (θi+1) > T (θ̃i), set θ̃i+1 = θi+1; else set θ̃i+1 = θ̃i. Increment i.

The convergence of the algorithm stated above was established in the seminal work of Solis and
Wets (1981). The crux of their work relies in the introduction of a conceptual algorithm which
includes among others the algorithm stated above. To shed some light on some standard variants
of the classical random search algorithm, observe that

1Recall that the graph of T is defined Gr(T ) = {(θ, T (θ)) : θ ∈ Θ}.
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- other types of processes can be used in lieu of (4);
- independence in the choice of the values of θi can be dropped;
- the probability distribution f can be allowed to have a support defined over Rk ⊇ Θ.2

3 Revisiting the Solis–Wets framework

3.1 Preliminaries and notation

In the sequel, we present some definitions and notation. We start by introducing the essential
supremum — a concept which is deeply related with the maximum. It turns out, however, that
the essential supremum is more suited for computational purposes than the maximum itself. The
concept of optimality region is also presented below.

The following shorthand notation will be useful

∇t = {θ ∈ Θ : T (θ) < t}, ∇t = {θ ∈ Θ : T (θ) ≤ t},
∆t = {θ ∈ Θ : T (θ) > t}, ∆t = {θ ∈ Θ : T (θ) ≥ t}.

(5)

Definition 3.1. Let T : Θ → R be a measurable function. The essential supremum is defined
as

ess sup
θ∈Θ

T (θ) ≡ inf{t : T (θ) ≤ t, a.e.}.

Remark 3.1. Observe that the essential supremum is tantamount to

sup{t : λ(∆t) > 0},

where λ denotes the Lebesgue measure. This type of representation is actually prefered by Solis
and Wets (1981).

In order to ease notation, below we use τ to denote the essential supremum. Let us recollect
two properties of the essential supremum which will be necessary in latter developments. First,
if the maximizer of T is unique, and T is continuous, the essential supremum τ coincides with
the maximum, i.e.

θ̂ = arg max
θ∈Θ

T (θ)⇒ τ = T (θ̂). (6)

Second, the measurable function T cannot take values above its essential supremum, except on
a set null of measure

T ≤ τ, a.e. (7)

These properties can be found for instance in Capiński and Kopp (1998, pp. 66 and 289). We
now formally define the concept of optimality zone.

Definition 3.2. Let τ denote the essential supremum of T . The optimality zone for the argu-
ment of the maximum of T is given by the set-valued function O : R2

+ ⇒ Θ, defined as

Oε,M =

{
{θ ∈ Θ : T (θ) > τ − ε} ⇐ τ ∈ R
{θ ∈ Θ : T (θ) > M} ⇐ τ = +∞.

2Obviously, due adaptations are necessary; otherwise some problems can arise in Step 2. In effect, the lapse
of such modifications may preclude the computation of the image for certain values of θ which are not included
in the domain of T .
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The arguments of the optimality zone Oε,M can be thought conceptually as a tolerance and
a threshold, respectively. Making use of the notation introduced in (5), we can restate the
optimality zones as

Oε,M =

{
∆(τ − ε) ⇐ τ ∈ R
∆(M) ⇐ τ = +∞.

The next definition closes our conceptual framework.

Definition 3.3. A function C : Θ× Rk → Θ is a compass function if{
(T ◦C)(θa,θb) ≥ T (θa),∀(θa,θb) ∈ Θ× Rk

(T ◦C)(θa,θb) ≥ T (θb),∀(θa,θb) ∈ Θ×Θ.

Example 3.1. A simple example of compass function is given by the mapping

C(θa,θb) = θaI{θa∈∆(T (θb))}(θa,θb) + θbI{θa∈∇(T (θb))}(θa,θb).

If we define
θ̃i+1 = C(θ̃i,θi+1),

then it holds that

θ̃i+1 = θ̃i I{T (θ̃i) ≥ T (θi+1)}+ θi+1 I{T (θi+1) > T (θ̃i)},

and so we recover the above-mentioned probabilistic recursive translation of the pure random
search algorithms.

It is worth mentioning that we refer to this function as a ‘compass’, because this mapping
guides the process of selection of the maxima. In the next section, we introduce the master
method — a broad algorithm which includes several other optimization algorithms.

4 The master method

4.1 Introducing the master method

We open this subsection with the introduction of a general method from which several other
algorithms are particular cases. Before we present the modus operandi of this master method
some comments on notation are necessary: Z will be used to denote the iterates of the algorithm;
the parameter c controls the length of each run of the algorithm. Further discussion on notation
is also given below.

Modus operandi of the master method (c ∈ N)

0. Set i, j = 1. Find a,b ∈ Θ, and set θ̃0 and θ0 equal to arg max
x∈{a,b}

T (x). Further, set z1 and

Z1,1 equal to arg min
x∈{a,b}

T (x).

1. If c > 1, generate Zi,j from the probability space (Rk,B(Rk),Pi,j), and set Zi,j+1 = Zi,j .
Else, go to Step 2.

2. If j < c − 1, increment j, and return to Step 1. Otherwise, set θ̃i = C(θ̃i−1,θi), where
θi = arg max

q∈{1,...,c}
T (Zi,q), and set j = 1.
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3. Generate zi from the probability space (Rk,B(Rk),Pi), set Zi,1 = zi, increment i and j, and
return to Step 1.

Some comments on this general algorithm are in order:

• The parameter c can be defined a priori by the user, and it can take any positive integer
value. As a rule of thumb, we suggest taking c as random (e.g. drawn from discrete uniform
distribution U{1, . . . , k}).

• Observe that Step 0 simply initiates the algorithm. If we repeat Step 1 for a fixed i, we
construct the iterates Zi,1,Zi,2, . . . ,Zi,c−1. In Step 2 we update the compass and obtain the
next ‘candidate’ for argument of the maximum, proposed by the algorithm. The repetition
of Step 3 yields z2, z3, etc.

• Here and below, we refer to each zi as a seed. If the seeds are independent and identically
distributed, we refer to the master method as pure. If the probability measure Pp depends
on some probability measure(s) Pq, with q < p, then the master method will be called
adaptive. Further, we refer to each Zi,j as an iterate. For each i we will refer to sequence
Zi,1, . . . ,Zi,c as a course. At the light of this terminology, we can say that the consecutive
repetition of Step 1 builds a course. Similarly, if we rerun serially Step 3 we obtain a
sequence of seeds.

• The mechanics of the algorithm is perhaps better understood through the law of movement
of the iterates, which can be written as

Zi,j = ziI(j = 1 ∨ c = 1) + Zi,j−1I(j ∈ {2, . . . , c} ∧ c > 1). (8)

In order to gain some insight on the mechanics of the method, consider the case wherein c = 1.
Throughout this section, this benchmark case will be invoked frequently. In such case we have
that

θi = arg max
q∈{1}

T (Zi,q) = Zi,1 = zi,

and hence θi = zi = Zi,1. Additionally, j becomes inactive in the the algorithm, since under
these circumstances, Step 1 is never activated. Consequently, for c = 1 the algorithm can be
equivalently rewritten as follows.

Modus operandi of the master method (c = 1)

0. Set i = 1. Find θ1 ∈ Θ, and set θ̃0 = θ1.

1. Set θ̃i = C(θ̃i−1,θi), and increment i.

2. Generate θi from the probability space (Rk,B(Rk),Pi), return to Step 1.

It turns out that this is precisely the Solis–Wets method (cf. Solis and Wets, 1981, pg. 19).
Hence, the classical Solis–Wets conceptual algorithm, is a particular case of our master method,
when c = 1. The master method is simply a generalization of this method which follows a course
between any two seeds. These and other features will become more clear after the introduction
of a matrix formulation of the master method which we present in the next subsection.
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4.2 Stochastic zigzag methods

We will be particularly interested in the instance of the proposed method where Step 1 takes the
form

1. If c > 1, generate αi,j from the probability space (R,B(R),Pi,j), and set Zi,j+1 = αi,jθi−1 +
(1− αi,j)zi. Else, go to Step 2.

Essentially the layout of the stochastic zigzag algorithm is the following. In Step 0 we
initialize the algorithm, and sample from the line which passes through the points θ1 and z1.
The consecutive application of Step 1, simply collects a random sample of c points from such
line. In Step 2, we refresh the compass function C, obtaining the next ‘candidate’, for the
argument of the maximum, yield by the algorithm. We then move to Step 3, where a new seed is
generated. Again, we sample from the line which passes through the estimated argument of the
maximum of the previous line and the new generated seed, and repeat the procedure described
above (eventually ad infinitum).

For the sake of illustration in Figures 1 and 2, we exemplify the stochastic zigzag method to
the Styblisnki–Tang function (Spall, 2003).

L(θ1, θ2) =
1

2

[
θ4

1 − 16θ2
1 + 5θ1 + θ4

2 − 16θ2
2 + 5θ2

]
. (9)

Figure 1: The figure represents the initialization of the stochastic zigzag method. In the picture
in the left we start by finding points a and b which initialize the algorithm. The second picture
illustrates that in Step 1 we collect a random sample (c = 10) from line which passes through
a and b. The remaining picture depicts steps 2 and 3 where after estimating the argument of
the maximum of the first line, we generate another seed and extract a sample from the new line
which passes by such points.

Other variants of the stochastic zigzag algorithm are also included in the general method. For
example, if c = 2, we get the improving hit-and-run algorithm (Zabinsky et al., 1993; Andersen
and Diaconis, 2007). We could also have considered an alternative shape for the line. In fact,
given the generality of the master method, we are even able to consider a different shape per
each disparate course. The specification given above was chosen because of its simplicity and
ease of implementation (see Theorem 4.1 of the next subsection).

4.3 Matrix formulation of the master method

In this subsection, we shed some light on the matrix representation of the master method. This
conceptual framework will help us clarify some features of the method. Additionally, as we shall
see latter, this representation reduces the burden of computational implementation. In order to
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Figure 2: The application of the stochastic zigzag method to the Stybilinski-Tang function (r =
30; c = 10). This function pertains to a class which is typically used to assess the performance
of an optimization algorithm (see e.g. Spall, 2003). The functional form of this function is given
in formula (9).

be able to present this formulation, we need to consider a stopping time for the method, which
we denote by r. From the theoretical standpoint, one can consider for instance the time of entry
in the optimal zone. In fact, this can be defined for every ε,M > 0, as

rε,M = inf{i ∈ N : θi ∈ Oε,M}.

It can be easily shown that this is a stopping time, with respect to the natural filtration Fi =
σ(θ1,θ2, . . . ,θi). In effect, analogous stopping times can be found even in introductory textbooks
(e.g. Williams, 1991), so we skip the details. The crux of the proof is given by observing that
for every i ∈ N

{rε,M ≤ i} =

i⋃
p=1

{θp ∈ Oε,M} ∈ Fi.

The law of movement of the iterates (8) allows us to describe the mechanics of the method in a
matrix form, by defining the iterative matrix Z as the (r × kc)-matrix

Z ≡


Z1,1 Z1,2 · · · Z1,c

Z2,1 Z2,2 · · · Z2,c

...
...

. . .
...

Zr,1 Zr,2 · · · Zr,c

 =


z1 Z1,1 · · · Z1,c−1

z2 Z2,1 · · · Z2,c−1

...
...

. . .
...

zr Zr,1 · · · Zr,c−1

 =


z1

z2

...
zr

 .
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Further, we will refer to the map-iterative matrix TZ as the (r × c)-matrix

TZ ≡


T (Z1,1) T (Z1,2) · · · T (Z1,c)
T (Z2,1) T (Z2,2) · · · T (Z2,c)

...
...

. . .
...

T (Zr,1) T (Zr,2) · · · T (Zr,c)

 =


Tz1

Tz2

...
Tzr

 .
For the sake of illustration, let us rethink the case wherein c = 1. Then the iterative matrix Z
and the map-iterative matrix TZ become

Z =


z1
z2
...
zr

 , TZ =


T (z1)
T (z2)

...
T (zr)

 .
The affinity between the Solis–Wets conceptual algorithm and the master method introduced
above, now becomes more clear. In fact, in the particular case wherein c = 1, the iterative
matrix degenerates into a matrix composed uniquely by seeds, i.e., random draws generated
from the probability space (Rk,B(Rk),Pi).

In the particular case of the stochastic zigzag method, the following matrix also finds appli-
cation

α ≡


α1,1 α1,2 · · · α1,c−1

α2,1 α2,2 · · · α2,c−1

...
...

. . .
...

αr,1 αr,2 · · · αr,c−1

 =


α1

α2

...
αr

 .
In the next theorem we show how the matrix representation of the stochastic zigzag method can
ease its implementation.

Theorem 4.1 (Kronecker–zigzag decomposition). The i-th zigzag course can be rewritten
as

zi =

[
zi

... αi ⊗ θi−1 + (1T
c−1 −αi)⊗ zi

]
, i = 1, . . . , r

where θi−1 is defined accordingly to the formulation of the stochastic zigzag method given above.

Proof. Just note that

zi =

[
zi

... αi,1θi−1 + (1− αi,1)zi · · · αi,c−1θi−1 + (1− αi,c−1)zi

]
=

[
zi

... αi,1θi−1 · · · αi,c−1θi−1

]
+

[
0

... (1− αi,1)zi · · · (1− αi,c−1)zi

]
=

[
zi

... αi ⊗ θi−1 + (1T
c−1 −αi)⊗ zi

]
.

The latter result warrants some comments. Roughly speaking, it states that the law of move-
ment of each iterate, can be readily extended to describe the whole law of movement of a zigzag
course by simply replacing the scalar product with the Kronecker product; this can only be done
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after performing the necessary scalar to vector adaptations. To put this differently, making use
of the binary operation ⊗, we are able to build in a step each line of the iterative matrix Z. The
latter result thus allows us to easily implement computationally the algorithm by a ‘loop’ which
is stated below in pseudocode.

Pseudocode implementation of the stochastic zigzag method

• rand:

- seeds;

- alpha.

for i=1 to r,

- compute theta_i-1;

- compute z_i;

- increment i.

In the following we introduce an illustration of the Kronecker–zigzag decomposition and of the
stochastic zigzag method.

Example 4.1 (Minimizing the Styblinski-Tang function). Suppose that the following ma-
trices were generated

α =

 α1

α2

α3

 =

 2/3 1/3
−1 −1/3
−2 −1

 , z =

 −4 1
0 0
2 0

 , θ̃0 = θ0 =
[
−1 4

]
.

By Theorem 4.1, it follows that

z1 =

[
z1

... α1 ⊗ θ0 + (1T
2 −α1)⊗ z1

]
=
[
−4 1 −2 3 −3 2

]
.

Hence
Tz1 =

[
−15 −53 −58

]
,

and so θ1 = [ −3 2 ]. Similarly, we build second and third lines of the iterative matrix Z

z2 =

[
z2

... α2 ⊗ θ1 + (1T
2 −α2)⊗ z2

]
=
[

0 0 3 −2 1 − 2
3

]
.

This yields
Tz2

=
[

0 −53 −10, 12
]
,

so that θ2 = [ 3 −2 ]. Finally, we have

z3 =

[
z3

... α3 ⊗ θ2 + (1T
2 −α3)⊗ z3

]
=
[

2 0 0 4 1 2
]
.

Thus
Tz3 =

[
−19 10 −24

]
,

and so θ3 = [ 1 2 ]. Thus, we have the following iterative matrix Z and corresponding map-
iterative matrix TZ

Z =

 −4 1 −2 3 −3 2
0 0 3 −2 1 −2/3
2 0 0 4 1 2

 , TZ =

 −15 −53 −58
0 −53 −10, 12
−19 10 −24

 .
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Example 4.2 (Maximum likelihood estimation). We now consider an example of maxi-
mum likelihood estimation in a logistic regression model. The data are from 23 flights of the space
shuttle Challenger previous to the accident of 1986, where the shuttle blew up during takeoff. On
the morning of this catastrophic accident, the O-rings were 22◦F below the temperature recorded
in all prior launches. There has been a large discussion in the literature about how to conduct a
scientific risk analysis which allows one to predict the O-rings failure/success from its tempera-
ture (see, for instance, Dalal et al., 1989; Maranzano and Krzysztofowicz, 2008). The simplest
possibility is by a logistic regression model where the variables of interest are the temperature
of the primary O-rings of the space shuttle and an indicator of failure/success of the O-rings
during takeoff; the data can be found in Christensen (1990). The interest is thus to model the
probability pi that at least one O-ring fails, by taking temperature ti as a covariate. This can be
accomplished by considering the model

log

{
pi

1− pi

}
= θα + θβti, (10)

where θα and θβ respectively denote an intercept and a slope parameter. By (10), we can rewrite
the probability that at least one O-ring fails, in case i, as

pi =
exp{θα + θβti}

1 + exp{θα + θβti}
,

so that the loglikelihood can be written as

` =

n∑
i=1

log{pi × I(failurei)}+

n∑
i=1

log{(1− pi)× I(successi)}. (11)

The estimation objects of interest are the intercept and slope parameters of model (10). Table
(4.2) summarizes the estimates obtained by the application of the stochastic zigzag method to
the loglikelihood (11). The results are from the averaging of a Monte Carlo simulation study
with 500 trials; per each value of c we considered r = 1000. As it can be observed from Table
(4.2), the estimates are close to the ones presented by Christensen (1990), namely (θ̂α, θ̂β) =
(15.04,−0.2321).

Outputs from the c

Monte Carlo simulation study 2 3 4

Average estimate (14.9121,−0.2302) (14.9932, 0.5871) (14.9945,−0.2315)
Standard deviation (−0.2302, 0.0145) (−0.2314, 0.0086) (−0.2315, 0.0067)

Table 1: Estimates of the intercept and slope parameters (θα, θβ), for the logistic regression model (11), obtained
by the stochastic zigzag method.

4.4 A short note on the construction of confidence intervals

This subsection is devoted to the construction of confidence intervals for the maximum of T ,
through the use of the image of the first column of the map-iterative matrix TZ. As we shall
see below, if the master method is pure, and the seeds are uniformly distributed over Θ, then it
is possible to take advantage of a result on extreme value theory due to de Haan (1981). In the
sequel, let T z(1) ≤ T z(2) ≤ · · · ≤ T z(r) denote the order statistics of the sequence of the image
of the seeds, where r denotes a finite (possibly degenerated) stopping time.
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Theorem 4.2 (Confidence intervals for the maximum – de Haan 1981). Consider the
sequence of independent and identically distributed zi with uniform distribution over Θ. Further,
consider the auxiliary correspondence Ξ : N× [0; 1] ⇒ R, defined as follows

Ξ(i, p) =

]
T z(i); T z(i) +

T z(i) − T z(i−1)

(1− p)−
2
k − 1

[
.

The following large sample result holds

P [Ti(θo) ∈ Ξ(i, p)]− (1− p) = o(1), as i→∞.

Proof. See de Haan (1981), pp. 467–469.

Remark 4.1. This result has also been used to conduct inference. For example, Veall (1990)
relied on Theorem 4.2 to develop a statistical procedure for testing if a certain solution is global.
Hence, in the same spirit, if the method is pure and the seeds are uniformly distributed, Veall’s
test can be implemented here by making use of the first column of the iterative matrix Z.

It is worth noting that the method is extremely easy to apply making use of the following
inputs: two order statistics (T z(r), T z(r−1)), level of significance p, and the dimension of the
optimization problem k. Further details on how to construct confidence intervals with Theorem
4.2, can be found in de Carvalho (2010).

5 Convergence of the master method

This section establishes the convergence of the general algorithm introduced above. We start
with the introduction of some preliminary considerations. As a consequence of the compass
update rule of the master algorithm, θ̃i = C(θ̃i−1,θi), it holds that the sequence {T (θ̃i)}i∈N is
increasing. In fact, we have that

T (θ̃i) = (T ◦C)(θ̃i−1,θi) ≥ T (θ̃i−1).

This reasoning can be extended by induction, being valid that for every positive integer κ

T (θ̃i+κ) ≥ T (θ̃i).

This simple fact will play an important role in the establishment of the following trinity of
elementary results.

Proposition 5.1. For every positive integer κ, we have that

1. If θi ∈ Oε,M , then θ̃i+κ ∈ Oε,M .

2. If θ̃i ∈ Oε,M , then θ̃i+κ ∈ Oε,M .

3. {θ̃κ ∈ Ocε,M} ⊆ {θ̃1, . . . , θ̃κ−1 ∈ Ocε,M} ∩ {θ1, . . . ,θκ−1 ∈ Ocε,M}.
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Proof.

1. We just deal with the case where the essential supremum is finite, because the case where
τ =∞ is similar. Given that the sequence {T (θ̃i)}i∈N is increasing, it holds that for every
positive integer κ

T (θ̃i+κ) ≥ T (θ̃i) = T (C(θ̃i−1,θi)) ≥ T (θi). (12)

Further, since by assumption θi ∈ Oε,M , it holds that

T (θi) > τ − ε. (13)

The final result now follows by combining inequalities (12) and (13).

2. We only consider the case in which τ ∈ R, given that the case where τ = ∞ is similar.
Since by assumption we have that θ̃i ∈ Oε,M , then it holds that

T (θ̃i) > τ − ε.

The final result follows directly as a consequence of the sequence {T (θ̃i)}i∈N being increas-
ing.

3. As a consequence of claims 1 and 2, we have that for every positive integer κ(
θκ−1 ∈ Oε,M ∨ θ̃κ−1 ∈ Oε,M

)
⇒ θ̃κ ∈ Oε,M . (14)

A counter-reciprocal argument of (14), yields

θ̃κ ∈ Ocε,M ⇒

{
θκ−1 ∈ Ocε,M
θ̃κ−1 ∈ Ocε,M

⇒

{
θ1, . . . ,θκ−1 ∈ Ocε,M
θ̃1, . . . , θ̃κ−1 ∈ Ocε,M

,

where the last implication follows directly from claims 1 and 2.

Claims 1 and 2 of the foregoing theorem, translate the idea that if an iterate of the algorithm
falls in the optimal zone, then it remains there forever. Claim 3 will be particularly useful in the
proof of convergence of the general algorithm stated above. The next theorem starts the analysis
of convergence of the master method.

Theorem 5.1 (Convergence of the pure master method, part I).

1. Suppose that T is bounded from above. Further, suppose that the master method is pure,
and that the following condition holds

∀B ∈ B(Θ) λ(B) > 0⇒ P[z1 ∈ B] > 0. (15)

Then
P[θ̃i ∈ Ocε,M ] = o(1).

13



2. Suppose that T is bounded from above. Then

T (θ̃i)− T = o(1), a.s.,

where T is a random variable such that P[T = τ ] = 1.

Proof. The proof is as follows.

1. As a consequence of Proposition 5.1, it holds that

P[θ̃i ∈ Ocε,M ] ≤ P

 ⋂
1≤p≤i−1

{θ̃p ∈ Ocε,M} ∩ {θp ∈ Ocε,M}


≤ P

 ⋂
1≤p≤i−1

{θp ∈ Ocε,M}

 .
(16)

Observe now that since by definition θp = arg max
q∈{1,...,c}

T (Zp,q), then it holds that {θp ∈

Ocε,M}⊆ {zp ∈ Ocε,M}, for any positive integer p. This latter observation combined with
(16) yields

P[θ̃i ∈ Ocε,M ] ≤ P

 ⋂
1≤p≤i−1

{zp ∈ Ocε,M}

 = P[z1 ∈ Ocε,M ]i−1.

The final result now holds since by assumption P[z1 ∈ Ocε,M ] < 1.

2. Start by noting that {T (θ̃i),Fi}i∈N is a submartingale, where Fi = σ(θ̃1, θ̃2, . . . , θ̃i), de-
notes the natural filtration. In effect, just observe that

E[T (θ̃i)|Fi] = E[(T ◦C)(θ̃i−1,θi)|Fi] ≥ E[T (θ̃i−1)|Fi] = T (θ̃i−1), a.s.

Since this submartingale is bounded from above, it is a.s. convergent to a random variable
T .3 Moreover, since ε is arbitrary, the preceding claim implies that

P[T (θi) < τ ] = o(1). (17)

Fatou’s lemma yields

P[T < τ ] = P
[
lim inf
i→∞

{T (θ̃i) < τ}
]
≤ lim sup

i→∞
P
[
T (θ̃i) < τ

]
= 0,

where the last equality follows by (17). Furthermore, recall that (7) holds, i.e.

T ≤ τ, a.e.

In particular, this implies that for every positive integer i we have P[T (θ̃i) > τ ] = 0. Con-
sequently it holds that

P[T (θ̃i) > τ ] = o(1). (18)

Therefore, again by Fatou’s lemma, it holds that

P[T > τ ] = P
[
lim inf
i→∞

{T (θ̃i) > τ}
]
≤ lim sup

i→∞
P
[
T (θ̃i) > τ

]
= 0,

where the last equality holds as a consequence of (18).

3Since by assumption T is bounded from above, it holds that sup
i

E[T (θ̃i)] < ∞. Consequently, Doob’s

martingale convergence theorem can be applied, hence establishing the a.s. convergence to T .
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The latter result warrants some general remarks. Roughly speaking, claim 1 states that the
probability of the algorithm failing to sample the optimality region, approaches 0 as the number
of iterates increases. Further, claim 2 ensures that the sequence {T (θ̃i)}i∈N converges a.s. to
a random variable T which is indistinguishable from the essential supremum. The proof of the
second claim is entirely robust to both the pure stochastic method and the adaptive master
method. Hence, the second result also holds in what concerns the adaptive master method. It
then arises the question. Is the first claim of the previous theorem also extendable to the adaptive
master method? This question is addressed in the next theorem.

Theorem 5.2 (Convergence of the adaptive master method, part I). Suppose that T is
bounded from above. Further, suppose that the master method is adaptive, and that the following
condition holds

inf
1≤p≤i−1

P[zp ∈ Ocε,M ] = o(1). (19)

Then
P[θ̃i ∈ Ocε,M ] = o(1).

Proof. Our line of attack is similar to the previous proof. By a similar reasoning, it holds that

P[θ̃i ∈ Ocε,M ] ≤ P

 ⋂
1≤p≤i−1

{zp ∈ Ocε,M}

 ≤ inf
1≤p≤i−1

P[zp ∈ Ocε,M ],

from where the final result follows directly.

It is important to underscore that the hypothesis considered here in order to establish the
convergence of the adaptive stochastic method is known in the literature. In effect, condition
(19) is tantamount to the one recommended by Esqúıvel (2006). Note however, that whereas
Esqúıvel used this condition as a means to establish the convergence of the adaptive random
search, here it is used in the more general context of the adaptive master method.

Theorem 5.3 (Convergence of the pure master method, part II). Suppose that T is
bounded from above. Further, suppose that master method is pure, and that the following condi-
tion holds

∀B ∈ B(Θ) λ(B) > 0⇒ P[z1 ∈ B] > 0.

Further, suppose that T (θ) is continuous and that θ̂ = arg max
θ∈Θ

T (θ). Then, it holds that

T (θ̃i)− T (θ̂) = o(1) a.s., as i→∞.

If furthermore Θ ⊂ Rk is compact, then

θ̃i − θ̂ = o(1) a.s., as i→∞. (20)

Proof. The proof is split in two claims. The first claim establishes that T (θ̃i)−T (θ̂) = o(1), a.s.

The second claim shows that θ̃i − θ̂ = o(1), a.s.

1. Let us first show that the sequence {T (θ̃i)}i∈N converges in probability to T (θ̃0). Consider
ε > 0. Start by noting that

P[|T (θ̃i)− T (θ̂)| ≥ ε] = P[{T (θ̃i) ≤ T (θ̂)− ε} ∪ {T (θ̃i) ≥ T (θ̂) + ε}]. (21)
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Observe now that by (6) it holds that the essential supremum and the maximum coincide.

Hence, by definition of essential supremum it holds that P[{T (θ̃i) ≥ T (θ̂) + ε}] = 0. This
implies that (21) can be rewritten as

P[|T (θ̃i)− T (θ̂)| ≥ ε] = P[T (θ̃i) ≤ T (θ̂)− ε] = P[θ̃i ∈ Ocε,M ].

Now, observe that as a consequence of Proposition 5.1, it holds

P[θ̃i ∈ Ocε,M ] ≤ P[θ1, . . . ,θi−1 ∈ Ocε,M ] ≤ P[z1, . . . , zi−1 ∈ Ocε,M ] = (P[z1 ∈ Ocε,M ])i−1.

Since by assumption P[z1 ∈ Ocε,M ] < 1, the last inequality establishes that T (θ̃i)−T (θ̂) =
op(1). The remaining part of the proof follows by a standard argument, given that the

sequence {T (θ̃i)}i∈N is increasing. In effect, this implies that the sequence of events Ei,ε =

{|T (θ̃i) − T (θ̂)| ≤ ε} is contractive, i.e., it is such that Ei+1,ε ⊆ Ei,ε, for every i ∈ N and
ε > 0. Consequently by a standard argument,4 convergence in probability implies that for
every ε > 0

P
[

lim
i→∞
|T (θ̃i)− T (θo)| ≤ ε

]
= 1.

Given that ε is arbitrary, we get

P
[

lim
i→∞
|T (θ̃i)− T (θ̂)| = 0

]
= 1,

from where the final result follows.

2. Let us now suppose that Θ is compact, and suppose by contradiction that (20) does not
hold. Then for every ω on a set of positive probability Ω ⊂ Rk

∃ε > 0 ∀p ∈ N ∃Ni > p |θ̃i(ω)− θ̂| > ε . (22)

Now for all ω ∈ Ω the sequence {θ̃i(ω)}i∈N is a sequence of points in a compact set Θ and by

Bolzano-Weierstrass theorem there is a convergent subsequence {θ̃iκ(ω)}κ∈N of {θ̃i(ω)}i∈N.

This subsequence must converge to θ̂ because if the limit were θa then, by the continuity
of T we would have the sequence {T (θ̃iκ)(ω)}κ∈N converging to T (θa) = T (θ̂). Since θ̂ is

the unique maximizer of T in Θ we have θa = θ̂. Finally, observe that the subsequence
{θ̃iκ(ω)}κ∈N also verifies the condition expressed in (22) for κ large enough, which yields
the desired contradiction.

A similar result can be established if the master method is adaptive. Again, the framework
has to be suitably accommodated making use Esqúıvel’s condition (Esqúıvel, 2006).

Theorem 5.4 (Convergence of the adaptive master method, part II). Suppose that T
is bounded from above. Further, suppose that master method is adaptive, and that the following
condition holds

inf
1≤p≤i−1

P[zp ∈ Ocε,M ] = o(1). (23)

4Recall that when a sequence of events Ei is either expansive or contracting it holds that lim
i→∞

P [Ei] =

P
[

lim
i→∞

Ei

]
. Thus, under such circumstances one can interchange the limit with the measure. See e.g. Proposition

1.1.1 in Ross (1996).
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Suppose in addition that T (θ) is continuous and that θ̂ = arg min
θ∈Θ

T (θ). Then, it holds that

T (θ̃i)− T (θ̂) = o(1) a.s., as i→∞.

If furthermore Θ ⊂ Rk is compact, then

θ̃i − θ̂ = o(1) a.s., as i→∞.

Proof. By a similar reasoning to the proof of Theorem 5.4 we get that

P[θ̃i ∈ Ocε,M ] ≤ P[θ1, . . . ,θi−1 ∈ Ocε,M ] ≤ P[z1, . . . , zi−1 ∈ Ocε,M ] ≤ inf
1≤p≤i−1

P[zp ∈ Ocε,M ].

This establishes that T (θ̃i) − T (θ̂) = op(1). The a.s. convergence can be now achieved by the
same argument used in the proof of Theorem 5.4. Hence, the remaining part of the proof is the
same as above.

6 Summary

This paper introduces the master method — a general algorithm which comprises several other
stochastic optimization algorithms as a particular case. The generality of the master method
is considerable including, for instance, the conceptual algorithm of Solis and Wets (1981) and
the improving hit-and-run algorithm Zabinsky et al. (1993). Another specific embodiment of
the master method is provided by the stochastic zigzag method — an optimization algorithm
which is based on the works of Mexia et al. (1999) and Pereira and Mexia (2010). We introduce
a matrix formulation of the algorithm which brings new insights into the general method and
diminishes the burden of implementation. The stochastic convergence of the master method is
here achieved under a fairly mild set of conditions.
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