
A Cubical Set Approach to 2-Bundles with

Connection and Wilson Surfaces

João Faria Martins

Departamento de Matemática
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1 Introduction

The aim of this paper is to address the differential geometry of (categorical
group) 2-bundles over a smooth manifold M and their two dimensional parallel
transport with a minimal use of two dimensional category theory, the ultimate
goal being to define Wilson surface observables. The only categorical notion
needed is that of an (edge symmetric, strict) double groupoid (with thin struc-
ture), which is equivalent to a crossed module or to a categorical group; see
[BH1, BHS, BH6, BL, BS, BM]. We also use the concept of a cubical set
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[BH2, J1, GM], a cubical analogue of a simplicial set, familiar in algebraic
topology; see for example [Ma].

Our definition of a 2-bundle with connection will be given in the framework of
cubical sets. Given a crossed module of Lie groups G = (∂ : E → G, ⊲), where ⊲ is
a left action of G on E by automorphisms, the definition of a cubical G-2-bundle
with connection B over a manifold M is an almost exact cubical analogue of the
simplicial version considered in [H, BS1, BS2, BrMe]. Following [H, MP], we will
consider a coordinate neighbourhood description of 2-bundles with connection.
For a discussion of the total space of a 2-bundle see [RS, Bar, Wo].

We also define the thin homotopy double groupoid of a smooth manifold
M , constructed from smooth maps from the square to M , identified modulo
thin homotopy. An advantage of the cubical setting over the simplicial setting
is that subdivision is very easy to understand. In a cubical G-2-bundle with
connection, all connection forms are in principle only locally defined. Therefore,
given a smooth map [0, 1]2 →M , to define its holonomy (for brevity we will use
the term holonomy, instead of the more accurate term, parallel transport), one
needs to subdivide [0, 1]2 into smaller squares, consider all the locally defined
holonomies (which we will define and analyse carefully) and patch it all together
by using the 1- and 2-transition functions of the cubical G-2-bundle, and the
transition data of the connection. A double groupoid provides a convenient
context for doing this type of calculations, and is easier to handle than the
decomposition of [0, 1]2 into regions by means of a trivalent embedded graph of
[P]. Citing [BHS, BH1], double groupoids trivially have an algebraic inverse to
subdivision. This was the motivation for our cubical set approach to 2-bundles
with connection and their holonomy.

We derive the local two-dimensional holonomy (based on a crossed mod-
ule), the transition functions and their properties by extending results from our
previous study [FMP1] of holonomy and categorical holonomy in a principal
fibre bundle. Even though its definition is apparently non-symmetric in the
two variables parametrising [0, 1]2, the local 2-dimensional holonomy which is
associated to maps [0, 1]2 → M is covariant with respect to the dihedral group
of symmetries of the square. This important result (the Non-Abelian Fubini’s
Theorem) ultimately follows from the crossed module rules, and would not hold
if a pre-crossed module were used.

Let G = (∂ : E → G, ⊲) be a Lie crossed module. We show (in the final
section) that the cubical G-2-bundle holonomy which we define can be associated
to oriented embedded 2-spheres Σ ⊂M yielding an element W(B,Σ) ∈ ker ∂ ⊂
E (the Wilson sphere observable) independent of the parametrisation of the
sphere and the chosen coordinate neighbourhoods, up to acting by elements of
G. This follows from the invariance of cubical G-2-bundle holonomy under thin
homotopy (up to acting by elements of G) and the fact that the mapping class
group of the sphere S2 is {±1}. This Wilson sphere observable depends only on
the equivalence class of the cubical G-2-bundle with connection B. For surfaces
other than the sphere embedded in M , a holonomy can still be defined but it
will a priori (since the mapping class group is more complicated) depend on the
isotopy type of the parametrisation. We will illustrate this point with the case
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of Wilson tori.
An important problem that follows on from this construction is the definition

of a gauge invariant action in the space of all 2-bundles with connection over
a smooth closed 4-dimensional manifold, analogous to the Chern-Simons action
for principal bundles with connection over a 3-dimensional closed manifold -
see [B]. Given that a gauge invariant sphere holonomy was defined, this would
permit a physical definition of invariants of knotted spheres in S4 analogue to
the Jones polynomial; see for example [W, Ko, AF, CR].
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2 Preliminaries

2.1 The Box Category and cubical sets

2.1.1 Cubical sets

The box category B, see [J1, BH2, BH3, BHS, GM], is defined as the category
whose set of objects is the set of standard n-cubes Dn .

= In, where I
.
= [0, 1],

and whose set of morphisms is the set of maps generated by the cellular maps
δ±i,n : Dn → Dn+1, where i = 1, . . . , n+1 and σi,n : Dn+1 → Dn, i = 1, . . . , n+1.
We have put:

δ−i,n(x1, . . . , xi−1, xi+1, . . . , xn) = (x1, . . . , xi−1, 0, xi+1, . . . , xn)

δ+i,n(x1, . . . , xi−1, xi+1, . . . , xn) = (x1, . . . , xi−1, 1, xi+1, . . . , xn)
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σi,n+1(x1, . . . , xn+1) = (x1, . . . , xi−1, xi+1, . . . , xn).

We will usually abbreviate δi,n = δi and σi,n = σi.

Definition 2.1 (Cubical set) A cubical object K in the category of sets (ab-
brev. “cubical set”) is a functor Bop → Sets, the category of sets; see [BH3, J1,
GM, BHS]. Here Bop is the opposite category of the box category B. A mor-
phism of cubical sets (a cubical map) is a natural tranformation of functors. We
can analogously define cubical objects in any category, for example in the cate-
gory of smooth manifolds and their smooth maps (defining cubical manifolds),
or more generally in the category of smooth spaces [BHo, Ch].

Unpacking this definition, we can see that a cubical set K is defined as being
an assignment of a set Kn (the set of n-cubes) to each n ∈ N, together with
face maps ∂±i : Kn → Kn−1 and degeneracy maps ǫi : Kn−1 → Kn, where i ∈
{1, . . . , n} satisfying the cubical relations:

∂αi ∂
β
j = ∂βj−1∂

α
i (i < j)

ǫiǫj = ǫj+1ǫi (i ≤ j)
∂αi ǫj=





ǫj−1∂
α
i (i < j)

ǫj∂
a
i−1 (i > j)

id (i = j)

(2.1)

Here α, β ∈ {−,+}. The description of a cubical manifold is analogous, but
each Kn is to be a smooth manifold, and all faces and degeneracies are to be
smooth. A degenerate cube is a cube in the image of some degeneracy map. A
cubical set K for which Ki consists only of degenerate cubes if i > n will be
called n-truncated.

Definition 2.2 (Dihedral cubical set) If a cubical set K has an action of
the group of symmetries of the n-cube (the n-hyperoctahedral group) in each set
Kn, compatible with the faces and degeneracies in the obvious way, it will be
called a dihedral cubical set. A cubical map K → K ′ between dihedral cubical
sets that preserves the actions will be called a dihedral cubical map.

Dihedral cubical sets are called cubical sets with reversions and interchanges
in [GM]. To relate the two definitions, note that the n-hyperoctahedral group
is generated by reflections and interchanges of coordinates, and is therefore
isomorphic to Zn2 ⋊ Sn.

Example 2.3 Let M be a manifold. The smooth singular cubical set C(M) of
M is given by all smooth maps Dn → M , where Dn = [0, 1]n is the n-cube,
with the obvious faces and degeneracies, [BH3, BH3]. This is a dihedral cubical
set in the obvious way. We can also see C(M) as being a cubical object in
the category of smooth spaces [BHo], by giving the set of n-cubes the smooth
structure of [Ch, BHo].
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Example 2.4 Analogously, given a smooth manifold M , the restricted smooth
singular cubical set Cr(M) of M is given by all smooth maps f : Dn → M for
which there exists an ǫ > 0 such that f(x1, x2, . . . xn) = f(0, x2, . . . xn) if x1 ≤ ǫ,
and analogously for any other face of Dn, of any dimension. We will abbreviate
this condition by saying that f has a product structure close to the boundary
of the n-cube. This condition allows the composition of n-cubes to be defined,
which we will be needing shortly. In the terminology of [BH3], this example is a
cubical set with connections and compositions.

2.2 Lie crossed modules

All Lie groups and Lie algebras are taken to be finite-dimensional. For details
on (Lie) crossed modules see, for example, [B1, BM, FM, FMP1, B, BL], and
references therein.

Definition 2.5 (Crossed module and Lie crossed module) A crossed mod-
ule (of groups) G = (∂ : E → G, ⊲) is given by a group morphism ∂ : E → G
together with a left action ⊲ of G on E by automorphisms, such that:

1. ∂(g ⊲ e) = g∂(e)g−1; for each g ∈ G, for each e ∈ E,

2. ∂(e) ⊲ f = efe−1; for each e, f ∈ E.

If both G and E are Lie groups, ∂ : E → G is a smooth morphism, and the left
action of G on E is smooth then G will be called a Lie crossed module.

A morphism G → G′ between the Lie crossed modules G = (∂ : E → G, ⊲)
and G′ = (∂′ : E′ → G′, ⊲′) is given by a pair of smooth morphisms φ : G → G′

and ψ : E → E′ making the diagram:

E
∂

−−−−→ G

ψ

y
yφ

E′ ∂′

−−−−→ G′

commutative. In addition we must have ψ(g ⊲ e) = φ(g) ⊲′ ψ(e) for each e ∈ E
and each g ∈ G.

Given a Lie crossed module G = (∂ : E → G, ⊲), then the induced Lie algebra
map ∂ : e → g, together with the derived action of g on e (also denoted by ⊲)
is a differential crossed module, in the sense of the following definition - see
[BS1, BS2, B, BC].

Definition 2.6 (Differential crossed module) A differential crossed mod-
ule (or crossed module of Lie algebras) G = (∂ : e → g, ⊲), is given by a Lie
algebra morphism ∂ : e → g together with a left action of g on the underlying
vector space of e, such that:
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1. For any X ∈ g the map v ∈ e 7→ X ⊲ v ∈ e is a derivation of e, in other
words

X ⊲ [u, v] = [X ⊲ u, v] + [u,X ⊲ v]; for each X ∈ g, for each u, v ∈ e.

2. The map g → Der(e) from g into the derivation algebra of e induced by
the action of g on e is a Lie algebra morphism. In other words:

[X,Y ] ⊲ v = X ⊲ (Y ⊲ v) − Y ⊲ (X ⊲ v); for each X,Y ∈ g, for each v ∈ e.

3. ∂(X ⊲ v) = [X, ∂(v)]; for each X ∈ g, for each v ∈ e.

4. ∂(u) ⊲ v = [u, v]; for each u, v ∈ e.

Note that the map (X, v) ∈ g × e 7→ X ⊲ v ∈ e is necessarily bilinear.
A very useful identity satisfied in any differential crossed module is the fol-

lowing:

∂(u) ⊲ v = [u, v] = −[v, u] = −∂(v) ⊲ u, for each u, v ∈ e. (2.2)

This will be used several times in this paper.
Given a Lie crossed module G = (∂ : E → G, ⊲), we will also denote the in-

duced action of G on e by ⊲. Finally, given a differential crossed module,
G = (∂ : e → g, ⊲) there exists a unique crossed module of simply connected Lie
groups G = (∂ : E → G, ⊲) whose differential form is G, up to isomorphism. The
proof of this result is standard Lie theory, together with the lift of the Lie algebra
action to a Lie group action, which can be found in [K], Theorem 1.102.

2.2.1 The edge symmetric double groupoid D(G) where G is a crossed
module

The definition of an edge symmetric (strict) double groupoid K (with thin
structure) can be found for example in [BH1, BHS, BHKP, BS]. These are
2-truncated cubical sets for which the set of 1-cubes K1 is a groupoid, with
set of objects given by the set of 0-cubes, and also with two partial composi-
tions, vertical and horizontal, in the set K2 of 2-cubes (squares), each defining
groupoid structures for which the set of objects is the set of 1-cubes. These
horizontal and vertical compositions should verify the interchange law:

(k1k2)

(k3k4)
=

(
k1

k3

)(
k2

k4

)
, for each k1, k2, k3, k4 ∈ K2,

familiar in 2-dimensional category theory, and be compatible with faces and
degeneracies, in the obvious way. In particular, the identity maps of the vertical
and horizontal compositions are given by degenerate squares.

There is also an extra condition that should be verified, which is the existence
of a thin structure, meaning that there exist, among the squares of K, special
elements called thin such that:
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1. Degenerate squares are thin.

2. Given a, b, c, d ∈ K1 with ab = cd, there exists a unique thin square k
whose boundary is:

∗
d

−−−−→ ∗

c

x
xb

∗ −−−−→
a

∗

;

in other words such that ∂d(k) = a, ∂r(k) = b, ∂u(k) = d and ∂l(k) = c,
where we have put ∂d = ∂−2 , ∂r = ∂+

1 , ∂u = ∂+
2 and ∂l = ∂−1 .

3. Any composition of thin squares is thin.

Let G = (∂ : E → G, ⊲) be a crossed module. Given that the categories of
crossed modules, categorical groups and double groupoids with a unique object
∗ are equivalent (see [BH1, BH6, BHS, BS, BL]), we can construct a double
groupoid D(G) out of G. The 1-cubes D1(G) of D(G) are given by all elements
of G, with product as composition, and the unique source and target maps to
the set {∗}. The 2-cubes D2(G) of D(G), which we will also call squares in G,
have the form:

∗
W

−−−−→ ∗

Z

x e

xY

∗ −−−−→
X

∗

(2.3)

where X,Y,Z,W ∈ G and e ∈ E is such that ∂(e)−1XY = ZW . The horizontal
and vertical compositions are:

∗
W

−−−−→ ∗

Z

x e

xY

∗ −−−−→
X

∗

∗
W ′

−−−−→ ∗

Y

x e′
xY ′

∗ −−−−→
X′

∗

=

∗
WW ′

−−−−→ ∗

Z

x (X⊲e′)e

xY ′

∗ −−−−→
XX′

∗

and

∗
W ′

−−−−→ ∗

Z′

x e′
xY ′

∗ −−−−→
W

∗

∗
W

−−−−→ ∗

Z

x e

xY

∗ −−−−→
X

∗

=

∗
W ′

−−−−→ ∗

ZZ′

x eZ⊲e′
xY Y ′

∗ −−−−→
X

∗
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The thin structure on D(G) is given by: a square is thin if the element of E
assigned to it is 1E .

Alternatively the thin structure can be given by introducing the following
special degeneracies, usually called connection maps (not to be confused with
differential geometric connections) p, x, q, y : D1(G) → D2(G), whose images are
thin:

p

(
∗
X
−→ ∗

)
=

∗
1G−−−−→ ∗

1G

x 1E

xX−1

∗ −−−−→
X

∗

, x

(
∗
X
−→ ∗

)
=

∗
X

−−−−→ ∗

1G

x 1E

xX

∗ −−−−→
1G

∗

q

(
∗
X
−→ ∗

)
=

∗
1G−−−−→ ∗

X

x 1E

x1G

∗ −−−−→
X

∗

, y

(
∗
X
−→ ∗

)
=

∗
X

−−−−→ ∗

X−1

x 1E

x1G

∗ −−−−→
1G

∗

Here we are using results of [BHS, BH1, BH2, BH3, Hi], where it is shown that
the existence of special degeneracies, satisfying a set of axioms, is equivalent
to the existence of a thin structure. Then an element of D2(G) is thin if and
only if it is the composition of degenerate squares and the images of special
degeneracies; see [Hi, BHS].

The set D2(G) is actually a D4-space, where D4 is the dihedral group of
symmetries of the square. This can be inferred from the existence of a thin
structure. Consider the following representative elements ρπ/2, rx, ry and rxy
of D4, where ρπ/2 denotes anticlockwise rotation by 90 degrees, and rx, ry, rxy
denote reflection in the y = 0, x = 0 and x = y axis (recall that these last three
elements are generators of D4

∼= Z2
2 ⋊ S2). Under the action of these elements

of D4, the square (2.3) is transformed into, respectively:

∗
Y −1

−−−−→ ∗

W

x Z−1⊲e

xX

∗ −−−−→
Z−1

∗

,

∗
X

−−−−→ ∗

Z−1

x Z⊲e−1

xY −1

∗ −−−−→
W

∗

,

∗
W−1

−−−−→ ∗

Y

x X⊲e−1

xZ

∗ −−−−→
X−1

∗

,

∗
Y

−−−−→ ∗

X

x e−1

xW

∗ −−−−→
Z

∗

.

In fact each element of D4 acts on D2(G) by automorphisms, though some
times permuting the horizontal and vertical multiplications, or the order of
multiplications.

The horizontal and vertical inverses e−h and e−v of an element e ∈ D2(G)
are given by e−h = ry(e) and e−v = rx(e); we will often identify an element of
D2(G) with the element of E assigned to it, whenever there is no ambiguity.

There are two particular maps Φ,Φ′
g : D2(G) → D2(G), where g ∈ G, called
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folding maps, which we would like to make explicit. These are defined as:

Φ




∗
W

−−−−→ ∗

Z

x e

xY

∗ −−−−→
X

∗


 =

∗
ZWY −1X−1

−−−−−−−−→ ∗

1G

x e

x1G

∗ −−−−−→
1G

∗

and

Φ′
g




∗
W

−−−−→ ∗

Z

x e

xY

∗ −−−−→
X

∗


 =

∗
ZWY −1X−1

−−−−−−−−→ ∗

g

x g⊲e

xg

∗ −−−−−→
1G

∗

.

There also exists an action of G on D2(G), which has the form:

g ⊲




∗
W

−−−−→ ∗

Z

x e

xY

∗ −−−−→
X

∗


 =

∗
gWg−1

−−−−−→ ∗

gZg−1

x g⊲e

xgY g−1

∗ −−−−→
gXg−1

∗

2.2.2 Flat G-colourings, the edge symmetric triple groupoid T(G) and
the nerve N(G) of the crossed module G

Going one dimension up, following [BHS, BH1, BH2, BH3, BH6], we can analo-
gously define an edge symmetric triple groupoid T(G) of thin 3-cubes in G, from
the crossed module G = (∂ : E → G, ⊲).

The 1- and 2-cubes of T(G) are already defined, being T1(G) = D1(G) and
T2(G) = D2(G), so let us define the set of thin 3-cubes T3(G) of T(G). Consider
the set of assignments (G-colourings of D3) of an element of G to each edge of
the standard cube D3 = [0, 1]3 in R3 and of an element of E to each face of D3.
Each of these assignments can be mapped to the set of G-colourings of D2, i.e.
assignments of elements of G to the set of edges of the standard square D2 in
R2, and an element of E to its unique face in several different ways, by using
the maps δ±i , i = 1, 2, 3 of 2.1.

Given a G-colouring c2 of D2, we put X±
i (c2) = ∂±i (c2) ∈ G as being

c2 ◦ δ
±
i (D1) where i = 1, 2. We also put e(c2) = c2(D

2). Analogously, if c3 is a
G-colouring of D3, we put e±i (c3) = ∂±i (c3) as being the colouring of D2 given
by c3 ◦ δ

±
i where i = 1, 2, 3.

Definition 2.7 (Flat G-colouring) A G-colouring c2 of D2 is said to be flat
if it yields an element of D2(G), in the obvious way, in other words if

∂(e(c2))
−1X−

2 (c2)X
+
1 (c2) = X−

1 (c2)X
+
2 (c2).

Analogously, a G-colouring c3 of D3 is said to be flat if:
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1. Each restriction ∂±j (c3) of c3 is a flat G-colouring of D2.

2. The following holds:

e+3 (c3) =

p(∂+
2 ∂

−
1 (c3)) e+2 (c3) q(∂+

2 ∂
+
1 (c3))

ρπ/2(e
−
1 (c3)) e−3 (c3) rxy(e

+
1 (c3))

x(∂−2 ∂
−
1 (c3)) ry(e

−
2 (c3)) y(∂−2 ∂

+
1 (c3))

. (2.4)

We will call this the homotopy addition equation, following the ter-
minology adopted in [BH5]. Note that we are expressing the fact that the
non-abelian composition of five faces of a cube agrees with the sixth face.

The set T3(G) of (thin) 3-cubes in G is given by the set of flat G-colourings of
the 3-cube.

The set T3(G) of thin 3-cubes in G has three interchangeable associative
compositions (horizontal, vertical and upwards), as well as boundary maps,
∂±i , i = 1, 2, 3. These compositions are induced by the horizontal and vertical
composition of squares in G in the unique way such that the boundary maps ∂±i
in the transverse directions are groupoid morphisms. By considering the obvious
degeneracies ǫi : D1(G) → D2(G), i = 1, 2 and ǫi : D2(G) → T3(G), i = 1, 2, 3,
obtained by projecting in the ith direction (see 2.1.1), we can see that we obtain
a 3-truncated cubical set T(G), which is a strict triple groupoid.

By continuing this process, one gets a cubical set N(G), which is called the
cubical nerve of G. The n-cubes of N(G) are given by all G-colourings of the
n-cube Dn such that for each 2- and 3-dimensional face of Dn the restriction of
the colouring to it is flat. This is a cubical manifold if G is a Lie crossed module.
The geometric realisation of N(G) is called the cubical classifying space of G; see
[BHS, BH4] and [BH5] for the simplicial version. Note that more generally we
can take G to be a crossed module of groupoids [BHS, FMPo], with completely
analogous definitions.

Note that the homotopy addition equation (2.4) can be expressed in several
different ways by using the D4-symmetry, and applying the maps Φ,Φ′

g. In
particular, we get the equivalent equation:

Φ′
∂−

2 ∂
−

1 (c3)
(e+3 (c3)) =

e−1 (c3) e+2 (c3) rx(e
+
1 (c3)) rx(e

−
2 (c3))

Φ(e−3 (c3))
(2.5)

2.3 Construction of the thin homotopy double groupoid

of a smooth manifold

Let M be a smooth manifold. We now construct the thin homotopy double
groupoid S2(M) of M . For the analogous construction of the fundamental thin
categorical group of a smooth manifold see [FMP1].
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2.3.1 1-paths, 2-paths and 1-tracks

Definition 2.8 (1-path) A 1-path is given by a smooth map γ : [0, 1] → M
such that there exists an ǫ > 0 such that γ is constant in [0, ǫ]∪ [1− ǫ, 1]; in the
terminology of [CP], this can be abbreviated by saying that each end point of γ
has a sitting instant. Given a 1-path γ, define the source and target or initial
and end point of γ as σ(γ) = γ(0) and τ(γ) = γ(1), respectively.

Given two 1-paths γ and φ with τ(γ) = σ(φ), their concatenation γφ is
defined in the usual way:

(γφ)(t) =

{
γ(2t), if t ∈ [0, 1/2]

φ(2t− 1), if t ∈ [1/2, 1]

Note that the concatenation of two 1-paths is also a 1-path, and in particular
is smooth due to the sitting instant condition.

Definition 2.9 (2-paths) A 2-path Γ is given by a smooth map Γ: [0, 1]2 →M
such that there exists an ǫ > 0 for which:

1. Γ(t, s) = Γ(0, s) if 0 ≤ t ≤ ǫ and s ∈ [0, 1],

2. Γ(t, s) = Γ(1, s) if 1 − ǫ ≤ t ≤ 1 and s ∈ [0, 1],

3. Γ(t, s) = Γ(t, 0) if 0 ≤ s ≤ ǫ and t ∈ [0, 1],

4. Γ(t, s) = Γ(t, 1) if 1 − ǫ ≤ s ≤ 1 and t ∈ [0, 1].

We abbreviate this by saying that Γ has a product structure close to the boundary
of [0, 1]2.

Given a 2-path Γ, define the following 1-paths:

∂l(Γ)(s) = Γ(0, s), s ∈ [0, 1], ∂r(Γ)(s) = Γ(1, s), s ∈ [0, 1],

∂d(Γ)(t) = Γ(t, 0), t ∈ [0, 1], ∂u(Γ)(t) = Γ(t, 1), t ∈ [0, 1].

If Γ and Γ′ are 2-paths such that ∂r(Γ) = ∂l(Γ
′) their horizontal concatena-

tion Γ◦hΓ′ is defined in the obvious way, in other words:

(
Γ◦hΓ′

)
(t, s) =

{
Γ(2t, s), if t ∈ [0, 1/2] and s ∈ [0, 1]

Γ′(2t− 1, s), if t ∈ [1/2, 1] and s ∈ [0, 1]

Similarly, if ∂u(Γ) = ∂d(Γ
′) we can define a vertical concatenation Γ◦vΓ

′ as:

(
Γ◦vΓ

′
)
(t, s) =

{
Γ(t, 2s), if s ∈ [0, 1/2] and t ∈ [0, 1]

Γ′(t, 2s− 1), if s ∈ [1/2, 1] and t ∈ [0, 1]

Note that again both concatenations are smooth due to the product structure
condition.
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Definition 2.10 Two 1-paths φ and γ are said to be rank-1 homotopic (and we
write φ ∼=1 γ) if there exists a 2-path Γ such that:

1. ∂l(Γ) and ∂r(Γ) are constant.

2. ∂u(Γ) = γ and ∂d(Γ) = φ.

3. Rank(DvΓ) ≤ 1, for each v ∈ [0, 1]2.

Here D denotes the derivative.

Thus if γ and φ are rank-1 homotopic, they have the same initial and end-points.
Note also that rank-1 homotopy is an equivalence relation. Given a 1-path γ,
the equivalence class to which it belongs is denoted by [γ]. Rank-1 homotopy is
one of a number of notions of “thin” equivalence between paths or loops, and
was introduced in [CP], following a suggestion by A. Machado.

We denote the set of 1-paths of M by S1(M). The quotient of S1(M) by the
relation of thin homotopy is denoted by S1(M). We call the elements of S1(M)
1-tracks. The concatenation of 1-tracks together with the source and target
maps σ, τ : S1(M) → M , defines a groupoid S1(M) whose set of morphisms is
S1(M) and whose set of objects is M .

2.3.2 2-Tracks

We recall the notation of 2.1.1.

Definition 2.11 Two 2-paths Γ and Γ′ are said to be rank-2 homotopic (and
we write Γ ∼=2 Γ′) if there exists a smooth map J : [0, 1]3 →M such that:

1. J(t, s, 0) = Γ(t, s), J(t, s, 1) = Γ′(t, s) for s, t ∈ [0, 1]. In other words
J ◦ δ−3 = Γ and J ◦ δ+3 = Γ′.

2. J ◦ δ±i is a rank-1 homotopy from Γ ◦ δ±i to Γ′ ◦ δ±i , where i = 1, 2.

3. There exists an ǫ > 0 such that J(t, s, x) = J(t, s, 0) if x ≤ ǫ and s, t ∈
[0, 1], and analogously for all the other faces of [0, 1]3. We will describe this
condition by saying that J has a product structure close to the boundary
of [0, 1]3.

4. Rank(DvJ) ≤ 2 for any v ∈ [0, 1]
3
.

Note that rank-2 homotopy is an equivalence relation. To prove transitivity
we need to use the penultimate condition of the previous definition. We denote
by S2(M) the set of all 2-paths of M . The quotient of S2(M) by the relation of
rank-2 homotopy is denoted by S2(M). We call the elements of S2(M) 2-tracks.
If Γ ∈ S2(M), we denote the equivalence class in S2(M) to which Γ belongs by
[Γ].
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2.3.3 Horizontal and vertical compositions of 2-tracks

Suppose that Γ and Γ′ are 2-paths with ∂u(Γ) ∼=1 ∂d(Γ
′). Choose a rank-1 homo-

topy J connecting ∂u(Γ) and ∂d(Γ
′). Then [Γ] ◦v [Γ′] is defined as [(Γ◦vJ)◦vΓ

′].
The fact that this composition is well defined in S2(M) is not tautological (and
was left as an open problem in [MP]). However this follows immediately from
the following lemma proved in [FMP1].

Lemma 2.12 Let f : ∂(D3) → M be a smooth map such that Rank(Dvf) ≤
1, for each
v ∈ ∂(D3). Here D3 = [0, 1]3. Suppose that f is constant in a neighbourhood
of each vertex of ∂(D3). In addition, suppose also that in a neighbourhood
I × [−ǫ, ǫ] of each edge I of ∂(D3), f(x, t) = φ(x), where (x, t) ∈ I × [−ǫ, ǫ] and
φ : I → M is smooth. Then f can be extended to a smooth map F : D3 → M
such that Rank(DwF ) ≤ 2, for each w ∈ D3. Moreover we can choose F so
that it has a product structure close to the boundary of D3.

Remark 2.13 This basically says that any smooth map f : S2 → M for which
the rank of the derivative is less than or equal to 1, for each point in S2, can be
extended to all of the unit 3-ball, in such a way that the rank of the derivative
of the resulting map at each point is less than or equal to 2.

Analogously the horizontal composition of 2-paths descends to S2(M). These
compositions are obviously associative, and admit units and inverses. Note that
the interchange law is also verified.

Finally, a 2-track [Γ] is thin if it admits a representative which is a thin
map, in other words for which Rank(DxΓ) ≤ 1, for each x ∈ [0, 1]2. Lemma
2.12 implies that if a, b, c, d : [0, 1] → M are 1-paths with [ab] = [cd] then there
exists a unique 2-track [Γ] for which ∂d([Γ]) = [a], ∂r([Γ]) = [b], ∂l([Γ]) = [c]
and ∂u([Γ]) = [d].

Therefore the following theorem holds:

Theorem 2.14 Let M be a smooth manifold. The horizontal and vertical com-
positions in S2(M) together with the boundary maps ∂u, ∂d, ∂l, ∂r : S2(M) →
S1(M) define a double groupoid S2(M), called the thin homotopy double groupoid
of M , whose set of objects is given by all points of M , set of 1-morphisms by the
set S1(M) of 1-tracks on M , and set of 2-morphisms by all 2-tracks in S2(M).
In addition, S2(M) admits a thin structure given by: a 2-track is thin if it
admits a representative whose derivative has rank less than or equal to 1 (in
other words if it is thin as a smooth map).

Remark 2.15 Another possible argument to prove that the compositions of 2-
tracks are well defined is to adapt the arguments in [BH1, BHS, BH2, BH3,
BHKP], which lead to the construction of the fundamental double groupoid of
a triple of spaces and of a Hausdorff space (and can be continued to define the
homotopy ω-groupoid of a filtered space). The same technique therefore leads to
the construction of the fundamental ω-groupoid of a smooth manifold. Details
will appear elsewhere.
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This construction should be compared with [HKK, BHKP], where the thin
strict 2-groupoid of a Hausdorff space was defined, using a different notion of
thin equivalence (factoring through a graph). For analogous non-strict construc-
tions see [M, BS1, MP].

2.4 Connections and categorical connections in principal

fibre bundles

To approach non-abelian integral calculus based on a crossed module, it is con-
venient (since the proofs are slightly easier) to consider categorical connections
in principal fibre bundles. For details of this approach see [FMP1]. For a treat-
ment of non-abelian integral calculus based on a crossed module, using forms
on the base space of the principal bundle, see [SW1, SW2, SW3, FMP2].

2.4.1 Differential crossed module valued forms

Let M be a smooth manifold with its Lie algebra of vector fields denoted by
X(M). Consider also a differential crossed module G = (∂ : e → g, ⊲). In partic-
ular the map (X, e) ∈ g × e 7→ X ⊲ e ∈ e is bilinear.

Let a ∈ An(M, g) and b ∈ Am(M, e) be g- and e-valued (respectively) differ-
ential forms on M . We define a⊗⊲ b as being the e-valued covariant tensor field
on M such that

(a⊗⊲b)(A1, . . . , An, B1, . . . Bm) = a(A1, . . . , An)⊲b(B1, . . . , Bm);Ai, Bj ∈ X(M).

We also define an alternating tensor field a ∧⊲ b ∈ An+m(M, e), being given by

a ∧⊲ b =
(n+m)!

n!m!
Alt(a⊗⊲ b).

Here Alt denotes the natural projection from the vector space of e-valued co-
variant tensor fields on M onto the vector space of e-valued differential forms
on M . For example, if a ∈ A1(M, g) and b ∈ A2(M, e), then a ∧⊲ b satisfies:

(a ∧⊲ b)(X,Y,Z) = a(X) ⊲ b(Y,Z) + a(Y ) ⊲ b(Z,X) + a(Z) ⊲ b(X,Y ), (2.6)

where X,Y,Z ∈ X(M).

2.4.2 Categorical connections in principal fibre bundles

In [FMP1] we defined categorical connections in terms of differential forms on
the total space of a principal fibre bundle. Let M be a smooth manifold and
G a Lie group with Lie algebra g. Let also π : P → M be a smooth principal
G-bundle over M . Denote the fibre at each point x ∈M as Px

.
= π−1(x).

Definition 2.16 Let G = (∂ : E → G, ⊲) be a Lie crossed module, where ⊲ is a
Lie group left action of G on E by automorphisms. Let also G = (∂ : e → g, ⊲)
be the associated differential crossed module. A G-categorical connection on P
is a pair (ω,m), where ω is a connection 1-form on P , i.e. ω ∈ A1(P, g) is a
1-form on P with values in g such that:
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• R∗
g(ω) = g−1ωg, for each g ∈ G, (i.e. ω is G-equivariant)

• ω(A#) = A, for each A ∈ g;

where A# denotes the vertical vector field associated to A coming from the G-
action on P , and m ∈ A2(P, e) is a 2-form on P with values in e, the Lie
algebra of E, such that:

• m is G-equivariant, in the sense that R∗
g(m) = g−1 ⊲ m for each g ∈ G.

• m is horizontal, in other words:

m(X,Y ) = m(XH , Y H), for each X,Y ∈ X(P ).

In particular m(Xu, Yu) = 0 if either of the vectors Xu, Yu ∈ TuP is
vertical, where u ∈ P . Here the map X ∈ X(P ) 7→ XH ∈ X(P ) denotes
the horizontal projection of vector fields on P with respect to the connection
1-form ω.

Finally (ω,m) satisfies the “vanishing of the fake curvature condition” [BS1,
BS2, BrMe]:

∂(m) = Ω, (2.7)

where Ω = dω + 1
2ω ∧ad ω ∈ A2(P, g) is the curvature 2-form of ω.

2.4.3 The categorical curvature 3-form of a G-categorical connection

Let P be a principal G-bundle over M . Let ω ∈ A1(P, g) be a connection 1-form
on P . Given an n-form a on P , the exterior covariant derivative of a is given by

Da = da ◦ (H ×H . . .×H).

Let Ω ∈ A2(P, g) be the (G-equivariant) curvature 2-form of the connection
ω. It can be defined as the exterior covariant derivative Dω of the connection
1-form ω and also by the Cartan structure equation Ω = dω + 1

2ω ∧ad ω. It is
therefore natural to define:

Definition 2.17 (Categorical curvature) Let G = (∂ : E → G, ⊲) be a crossed
module of Lie groups, and let P →M be a smooth principal G-bundle. The cat-
egorical curvature 3-form or 2-curvature 3-form of a G-categorical connection
(ω,m) on P is defined as M = Dm, where the exterior covariant derivative D
is taken with respect to ω.

The following equation is an analogue of Cartan’s structure equation.

Proposition 2.18 (Categorical structure equation) We have: M = dm+ω∧⊲

m. In particular the 2-curvature 3-form M is G-equivariant, in other words:
R∗
g(M) = g−1 ⊲M, for each g ∈ G.

This categorical structure equation follows directly from the following natural
lemma, easy to prove; see [FMP1]:
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Lemma 2.19 Let a be a G-equivariant horizontal n-form in P . Then Da =
da+ ω ∧⊲ a.

Recall that the usual Bianchi identity can be written as DΩ = 0, which is
the same as saying that dΩ + ω ∧ad Ω = 0.

Corollary 2.20 The 2-curvature 3-form of a categorical connection is k-valued,
where k is the Lie algebra of K = ker(∂).

Proof. We have ∂(M) = ∂(dm+ ω ∧⊲ m) = dΩ + ω ∧ad Ω = 0, by the Bianchi
identity.

The 2-curvature 3-form of a categorical connection satisfies the following.

Proposition 2.21 (2-Bianchi identity) Let M ∈ A3(P, e) be the 2-curvature
3-form of (ω,m). Then the exterior covariant derivative DM of M vanishes,
which by Lemma 2.19 is the same as: dM + ω ∧⊲ M = 0.

2.4.4 Local form

Let P → M be a principal G-bundle with a categorical connection (ω,m).
Let {Ui} be an open cover of M , with local sections σi : Ui → P of P . The
local form of (ω,m) is given by the forms (ωi,mi), where ωi = σ∗

i (ω) and
mi = σ∗

i (m), and we have ∂(mi) = dωi + 1
2ωi ∧

ad ωi = Ωi = σ∗
i (Ω), and also

ωj = g−1
ij ωigij + g−1

ij dgij and mj = g−1
ij ⊲ mi. Here σigij = σj . Conversely,

given forms {(ωi,mi)} satisfying these conditions then there exists a unique
categorical connection (ω,m) in P whose local form (with respect to the given
sections σi) is (ωi,mi).

Note that locally the 2-curvature 3-form of a categorical connection reads
Mi = dmi + ωi ∧

⊲ mi, with Mj = g−1
ij ⊲ Mi and the 2-Bianchi identity is

dMi + ωi ∧
⊲ Mi = 0.

2.5 Holonomy and categorical holonomy in a principal fi-

bre bundle

Let P be a principal G-bundle over the manifold M . Let ω ∈ A1(P, g) be a
connection on P . Recall that ω determines a parallel transport along smooth
curves. Specifically, given x ∈ M and a smooth curve γ : [0, 1] → M , with
γ(0) = x, then there exists a smooth map:

(t, u) ∈ [0, 1] × Px 7→ Hω(γ, t, u) ∈ P,

uniquely defined by the conditions:

1. d
dtHω(γ, t, u) =

(
d̃
dtγ(t)

)

Hω(γ,t,u)

; for each t ∈ [0, 1], for each u ∈ Px,

where ˜ denotes the horizontal lift,

2. Hω(γ, 0, u) = u; for each u ∈ Px.
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In particular this implies that Hω(γ, t), given by u 7→ Hω(γ, t, u), maps Px bi-
jectively into Pγ(t), for any t ∈ [0, 1]. We will also use the notation Hω(γ, 1, u)

.
=

uγ. Therefore if γ and γ′ are such that γ(1) = γ′(0) we have: (uγ)γ′ = u(γγ′).
Recall that the parallel transport is G-equivariant, in other words:

Hω(γ, t, ug) = Hω(γ, t, u)g, for each g ∈ G, for each u ∈ Px.

2.5.1 A form of the Ambrose-Singer Theorem

Let M be a smooth manifold. Let Dn .
= [0, 1]n be the n-cube, where n ∈ N.

A map f : Dn → M is said to be smooth if its partial derivatives of any order
exist and are continuous as maps Dn →M .

The well known relation between curvature and parallel transport can be
summarised in the following lemma, proved for instance in [FMP1, SW2].

Lemma 2.22 Let G be a Lie group with Lie algebra g. Let P be a smooth
principal G-bundle over the manifold M . Consider a smooth map Γ: [0, 1]2 →
M . For each s, t ∈ [0, 1], define the curves γs, γ

t : [0, 1] →M as γs(t) = γt(s) =
Γ(t, s). Consider a connection ω ∈ A1(P, g). Choose u ∈ Pγ0(0), and let us =
Hω(γ0, s, u), and analogously ut = Hω(γ0, t, u) where s, t ∈ [0, 1]. The following
holds for each s, t ∈ [0, 1]:

ω

(
∂

∂s
Hω(γs, t, us)

)
=

∫ t

0

Ω

(
∂̃

∂t′
γs(t′),

∂̃

∂s
γs(t′)

)

Hω(γs,t′,us)

dt′, (2.8)

and by reversing the roles of s and t we also have:

ω

(
∂

∂t
Hω(γt, s, ut)

)
= −

∫ s

0

Ω

(
∂̃

∂t
γs′(t),

∂̃

∂s′
γs′(t)

)

Hω(γt,s′,ut)

ds′. (2.9)

Continuing the notation of the previous lemma, define the elements
ω
gΓ(u, t, s)

by the rule:

Hω(γt, s, ut)
ω
gΓ(u, t, s) = Hω(γs, t, us).

Therefore
u
ω
gΓ(u, t, s) = Hω(γ̂, 1, u)

where γ̂ is the curve γ̂ = ∂Γ′, starting in Γ(0, 0) and oriented clockwise, and Γ′

is the truncation of Γ such that Γ′(t′, s′) = Γ(t′t, s′s), for 0 ≤ s′, t′ ≤ 1.
By using the fact that ∂

∂tHω(γs, t, us) is horizontal it follows that:

ω

(
∂

∂t

(
Hω(γt, s, ut)

ω
gΓ(u, t, s)

))
= 0.

Thus, by using the Leibniz rule together with the fact that ω is a connection
1-form,

(
ω
gΓ(u, t, s))−1ω

(
∂

∂t
Hω(γt, s, ut)

)
ω
gΓ(u, t, s) + (

ω
gΓ(u, t, s))−1 ∂

∂t

ω
gΓ(u, t, s) = 0.
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Therefore:

∂

∂t

ω
gΓ(u, t, s) =



∫ s

0

Ω

(
∂̃

∂t
γs′(t),

∂̃

∂s′
γs′(t)

)

Hω(γt,s′,ut)

ds′


 ω
gΓ(u, t, s).

(2.10)

Analogously we have (since ∂
∂sHω(γt, s, ut) is horizontal):

∂

∂s

ω
gΓ(u, t, s) =

ω
gΓ(u, t, s)

∫ t

0

Ω

(
∂̃

∂t′
γs(t′),

∂̃

∂s
γs(t′)

)

Hω(γs,t′,us)

dt′. (2.11)

2.5.2 Categorical holonomy in a principal fibre bundle

Let P be a principal fibre bundle with a G-categorical connection (ω,m). Here

G = (E
∂
−→ G, ⊲) is a Lie crossed module, where ⊲ is a Lie group left action

of G on E by automorphisms. Let also G = (∂ : e → g, ⊲) be the associated
differential crossed module.

As before, for each smooth map Γ: [0, 1]2 → M , let γs(t) = γt(s) = Γ(t, s).
Let a = Γ(0, 0). Let also u ∈ Pa, us = H(γ0, s, u) and ut = H(γ0, t, u). Define

the function
(ω,m)
eΓ : Pa × [0, 1]2 → E as being the solution of the differential

equation:

∂

∂s

(ω,m)
eΓ (u, t, s) =

(ω,m)
eΓ (u, t, s)

∫ t

0

m

(
∂̃

∂t′
γs(t′),

∂̃

∂s
γs(t′)

)

Hω(γs,t′,us)

dt′,

(2.12)

with initial condition
(ω,m)
eΓ (u, t, 0) = 1E , for each t ∈ [0, 1]. Let

(ω,m)
eΓ (u)

.
=

(ω,m)
eΓ (u, 1, 1). Compare with equations (2.10) and (2.11). The apparently non-

symmetric way the horizontal and vertical directions are treated will be dealt
with later.

Given a smooth map Γ: [0, 1]2 →M , define:

XΓ = γ0, YΓ = γ1, ZΓ = γ0 and WΓ = γ1.

Theorem 2.23 (Non-Abelian Green’s Theorem, bundle form) For any
u ∈ Pa we have:

Hω(XΓYΓ, 1, u)∂
(

(ω,m)
eΓ (u)

)
= Hω(ZΓWΓ, 1, u),

or, in the other notation of section 2.5,

uXΓYΓ∂
(

(ω,m)
eΓ (u)

)
= uZΓWΓ.
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Proof. Let kx = Hω(γ1, x, u1) and lx = Hω(γx, 1, ux). Let x 7→ gx ∈ G be
defined as kxgx = lx. We have, since ( ddxkx)gx is horizontal:

ω

(
d

dx
(kxgx)

)
= ω

(
kx

d

dx
gx

)
= ω

(
kxgxg

−1
x

d

dx
gx

)
= g−1

x

d

dx
gx.

On the other hand:

ω

(
d

dx
(kxgx)

)
= ω

(
d

dx
lx

)
=

∫ 1

0

Ω

(
∂̃

∂t
γx(t),

∂̃

∂x
γx(t)

)

Hω(γx,t,ux)

dt.

Therefore
d

dx
gx = gx

∫ 1

0

Ω

(
∂̃

∂t
γx(t),

∂̃

∂x
γx(t)

)

Hω(γx,t,ux)

dt. (2.13)

This is a differential equation satisfied also by x 7→ ∂(
(ω,m)
eΓ (u, x, 1)), by the

vanishing of the fake curvature condition ∂(m) = Ω, and both have the same
initial conditions.

Note that it follows from the Non-Abelian Green’s Theorem that:

Hω(γt, s, ut)∂
(

(ω,m)
eΓ (u, t, s)

)
= Hω(γs, t, us), for each t, s ∈ [0, 1]. (2.14)

Lemma 2.24 (Vertical multiplication) We have:

(ω,m)
eΓ◦vΓ′ (u) =

(ω,m)
eΓ (u)

(ω,m)
eΓ′ (uZΓ).

Here Γ,Γ′ : [0, 1]2 →M are smooth maps such that ∂u(Γ) = ∂d(Γ
′) and moreover

Γ◦vΓ
′ is smooth.

Proof. Obvious from the definition.

Lemma 2.25 (Vertical inversion) We have:

(ω,m)
eΓ (u)

(ω,m)
eΓ−v (uZΓ) = 1E .

Here Γ−v denotes the obvious vertical reversion of Γ: [0, 1]2 →M .

Proof. Obvious from the definition.

Lemma 2.26 (Horizontal multiplication) We have:

(ω,m)
eΦ◦hΨ (u) =

(ω,m)
eΨ (uXΦ)

(ω,m)
eΦ (u).

Here Φ,Ψ′ : [0, 1]2 →M are smooth maps such that ∂r(Φ) = ∂l(Ψ) and moreover
Φ◦hΨ is smooth.

20



Proof. Let Γ = Φ◦hΨ. As before put φs(t) = φt(s) = Φ(t, s) and ψs(t) =
ψt(s) = Ψ(t, s). We have:

∂

∂s

(
(ω,m)
eΨ (uXΦ, 1, s)

(ω,m)
eΦ (u, 1, s)

)

=
(ω,m)
eΨ (uXΦ, 1, s)

(ω,m)
eΦ (u, 1, s)



∫ 1

0

m

(
∂̃

∂t
φs(t),

∂̃

∂s
φs(t)

)

Hω(φs,t,us)

dt




+
(ω,m)
eΨ (uXΦ, 1, s)



∫ 1

0

m

(
∂̃

∂t
ψs(t),

∂̃

∂s
ψs(t)

)

Hω(ψs,t,(uXΦ)s)

dt


 (ω,m)

eΦ (u, 1, s)

= Q+W.

Here (uXΦ)s = Hω(ZΨ, s, uXΦ). Let us analyse each term separately. We have:

Q =
(ω,m)
eΨ (uXΦ, 1, s)

(ω,m)
eΦ (u, 1, s)



∫ 1

2

0

m

(
∂̃

∂t
γs(t),

∂̃

∂s
γs(t)

)

Hω(γs,t,us)

dt




where γs(t) = Φ◦hΨ(t, s). On the other hand:

W =
(ω,m)
eΨ (uXΦ, 1, s)

(ω,m)
eΦ (u, 1, s)


∂(

(ω,m)
eΦ (u, 1, s))−1 ⊲



∫ 1

0

m

(
∂̃

∂t
ψs(t),

∂̃

∂s
ψs(t)

)

Hω(ψs,t,(uXΦ)s)

dt




 ,

(2.15)

and therefore

W =
(ω,m)
eΨ (uXΦ, 1, s)

(ω,m)
eΦ (u, 1, s)



∫ 1

0

m

(
∂̃

∂t
ψs(t),

∂̃

∂s
ψs(t)

)

Hω(ψs,t,(uXΦ)s∂(
(ω,m)
eΦ (u,1,s)))

dt




=
(ω,m)
eΨ (uXΦ, 1, s)

(ω,m)
eΦ (u, 1, s)



∫ 1

0

m

(
∂̃

∂t
ψs(t),

∂̃

∂s
ψs(t)

)

Hω(ψs,t,usφs)

dt




=
(ω,m)
eΨ (uXΦ, 1, s)

(ω,m)
eΦ (u, 1, s)



∫ 1

1
2

m

(
∂̃

∂t
γs(t),

∂̃

∂s
γs(t)

)

Hω(γs,t,us)

dt


 .

Therefore both sides of the equation of the lemma satisfy the same differential
equation, and they have the same initial condition.
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Lemma 2.27 (Horizontal inversion) We have:

(ω,m)
eΓ−h (uXΓ)

(ω,m)
eΓ (u) = 1E ,

where Γ−h denotes the obvious horizontal reversion of Γ: [0, 1]2 →M .

Proof. Analogous to the proof of the previous result.

Lemma 2.28 (Gauge transformations) We have:

(ω,m)
eΓ (ug) = g−1 ⊲

(ω,m)
eΓ (u).

Proof. Analogous to the proof of the previous result.

2.5.3 The Non-Abelian Fubini’s Theorem

We continue with the notation of 2.5.2. Again let Γ: [0, 1]2 → M be a smooth

map, a = Γ(0, 0) and u ∈ Pa. Define
(ω,m)

fΓ (u, t, s) by the differential equation:

∂

∂t

(ω,m)

fΓ (u, t, s) =
(ω,m)

fΓ (u, t, s)

∫ s

0

m

(
∂̃

∂s′
γt(s′),

∂̃

∂t
γt(s′)

)

Hω(γt,s′,ut)

ds′,

(2.16)

with initial condition
(ω,m)

fΓ (u, 0, s) = 1E , for each s ∈ [0, 1]. Note that the

differential equation for
(ω,m)

fΓ is obtained from the differential equation for
(ω,m)
eΓ ,

equation (2.12), by reversing the roles of s and t. Let
(ω,m)

fΓ (u, 1, 1)
.
=

(ω,m)

fΓ (u).
The following holds.

Theorem 2.29 (Non-abelian Fubini’s Theorem, bundle form)

(ω,m)
eΓ (u)

(ω,m)

fΓ (u) = 1.

Proof. In fact we show for every t, s ∈ [0, 1]:

(ω,m)
eΓ (u, t, s)

(ω,m)

fΓ (u, t, s) = 1. (2.17)

In the following put
(ω,m)
eΓ (u, t, s) = e(t, s). Let θ be the canonical left invariant

1-form in E (the Maurer-Cartan 1-form); see 2.6.1. Taking the t derivative of
(2.12), we obtain:

∂

∂t
θ

(
∂

∂s
e(t, s)

)
= m

(
∂̃

∂t
γs(t),

∂̃

∂s
γs(t)

)

Hω(γs,t,us)

.
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By (2.14) and the G-equivariance of m:

∂(e(t, s)) ⊲
∂

∂t
θ

(
∂

∂s
e(t, s)

)
= m

(
∂̃

∂t
γs(t),

∂̃

∂s
γs(t)

)

Hω(γt,s,ut)

.

We also have:

∂

∂s

(
∂(e(t, s)) ⊲ θ

(
∂

∂t
e(t, s)

))

= ∂(e(t, s)) ⊲

(
∂

(
θ

(
∂

∂s
e(t, s)

))
⊲ θ

(
∂

∂t
e(t, s)

))
+ ∂(e(t, s)) ⊲

∂

∂s

(
θ

(
∂

∂t
e(t, s)

))

= ∂(e(t, s)) ⊲

([
θ

(
∂

∂s
e(t, s)

)
, θ

(
∂

∂t
e(t, s)

)]
+

∂

∂s
θ

(
∂

∂t
e(t, s)

))

= ∂(e(t, s)) ⊲
∂

∂t
θ

(
∂

∂s
e(t, s)

)
.

The second equation follows from the definition of a differential crossed module,
and the third from the fact dθ(X,Y ) = −[X,Y ] for each X,Y ∈ e. Combining

the two equations and integrating in s, with
(ω,m)
eΓ (u, t, 0) = 1E , we obtain:

∂

∂t

(ω,m)
eΓ (u, t, s) =



∫ s

0

m

(
∂̃

∂t
γs′(t),

∂̃

∂s′
γs′(t)

)

Hω(γt,s′,ut)

ds′


 (ω,m)

eΓ (u, t, s),

with initial condition
(ω,m)
eΓ (u, 0, s) = 1E , (set t = 0 in (2.12)), from which (2.17)

follows as an immediate consequence. Note that by using the Non-Abelian
Fubini’s Theorem, lemmas 2.26 and 2.27 follow directly from lemmas 2.24 and
2.25.

From the Non-Abelian Fubini’s Theorem and 2.5.2 it follows that the two-
dimensional holonomy of a categorical connection is covariant with respect to
the action of the dihedral group D4

∼= Z2
2 ⋊ Z2 of symmetries of the square; see

2.6.4.

2.6 Dependence of the categorical holonomy on a smooth

family of squares

In this subsection we prove a fundamental result giving the variation of the 2-
holonomy of a smooth family of 2-paths in terms of the 2-curvature, analogous
to equation (2.13) for the variation of the 1-holonomy of a smooth family of
1-paths in terms of the curvature. Let P → M be a principal G-bundle
over the smooth manifold M with a G-categorical connection (ω,m). Here

G = (E
∂
−→ G, ⊲) is a Lie crossed module, where ⊲ is a Lie group left action of

G on E by automorphisms. Let G = (∂ : e → g, ⊲) be the associated differential
crossed module.
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Consider a smooth map J : [0, 1]3 → M . Put J(t, s, x) = Γx(t, s), where
x, t, s ∈ [0, 1]. Define q(x) = J(0, 0, x), for each x ∈ [0, 1]. Choose u ∈ Pq(0)
and let u(x) = Hω(q, x, u). We want to analyse the dependence on x of the

categorical holonomy
(ω,m)
eΓx (u(x), t, s), see equation (2.12). To this end, we now

prove the following well known technical lemma, also appearing in [FMP1].

2.6.1 A well-known lemma

Let G be a Lie group. Consider a g-valued smooth function V (s, x) defined on
[0, 1]2. Consider the following differential equation in G:

∂

∂s
a(s, x) = a(s, x)V (s, x),

with initial condition a(0, x) = 1G, for each x ∈ [0, 1]. We want to know
∂
∂xa(s, x).

Let θ be the canonical g-valued 1-form on G. Thus θ is left invariant and
satisfies θ(A) = A, for each A ∈ g, being defined uniquely by these properties.
Also dθ(A,B) = −θ([A,B]), where A,B ∈ g. We have:

∂

∂x
θ

(
∂

∂s
a(s, x)

)
=

∂

∂x
θ
(
a(s, x)V (s, x)

)
=

∂

∂x
V (s, x).

On the other hand:

∂

∂x
θ

(
∂

∂s
a(s, x)

)
= da∗(θ)

(
∂

∂x
,
∂

∂s

)
+
∂

∂s
a∗(θ)

(
∂

∂x

)
+a∗(θ)

([
∂

∂x
,
∂

∂s

])

= dθ

(
∂

∂x
a(s, x),

∂

∂s
a(s, x)

)
+
∂

∂s
θ

(
∂

∂x
a(s, x)

)
.

Therefore:

θ

(
∂

∂x
a(s, x)

)
+

∫ s

0

(
dθ

(
∂

∂x
a(s′, x),

∂

∂s′
a(s′, x)

)
+
∂

∂x
V (s′, x)

)
ds′ = θ

(
∂

∂x
a(0, x)

)
.

Since ∂
∂xa(0, x) = 0 (due to the initial conditions) we have the following:

Lemma 2.30

∂

∂x
a(s, x) = a(s, x)

∫ s

0

(
−dθ

(
∂

∂x
a(s′, x),

∂

∂s′
a(s′, x)

)
+
∂

∂x
V (s′, x)

)
ds′,

for each x, s ∈ [0, 1].

2.6.2 The relation between 2-curvature and categorical holonomy

The following main theorem is more general than the analogous result in [FMP1,
SW2] since it is valid for any smooth homotopy J connecting two 2-paths Γ and
Γ′, and in particular the basepoints of the 2-paths may vary with the parameter
x. For this reason the proof is considerably longer, forcing several integrations
by parts.
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Theorem 2.31 Let M be a smooth manifold. Let G = (∂ : E → G, ⊲) be a Lie
crossed module. Let P → M be a principal G-bundle over M . Consider a G-
categorical connection (ω,m) on P . Let J : [0, 1]3 → M be a smooth map. Let
J(t, s, x) = Γx(t, s) = γxs (t) = γx,t(s); for each t, s, x ∈ [0, 1]. Define q(x) =
Γx(0, 0). Choose u ∈ Pq(0), the fibre of P at q(0). Let u(x) = Hω(q, x, u) and
u(x, s) = Hω(γx,0, s, u(x)), where s, x ∈ [0, 1].

Consider the map (s, x) ∈ [0, 1]2 7→ eΓx(s) ∈ E defined by:

∂

∂s
eΓx(s) = eΓx(s)

∫ 1

0

m

(
∂̃

∂t
γxs (t),

∂̃

∂s
γxs (t)

)

Hω(γx
s ,t,u(x,s))

dt, (2.18)

with initial condition:

eΓx(0) = 1E , for each x ∈ [0, 1], (2.19)

Let eΓx = eΓx(1). For each x ∈ [0, 1], we have:

d

dx
eΓx = eΓx

∫ 1

0

∫ 1

0

M

(
∂̃

∂x
γxs (t),

∂̃

∂t
γxs (t),

∂̃

∂s
γxs (t)

)

Hω(γx
s ,t,u(x,s))

dtds

+ eΓx

∫ 1

0

m

(
∂̃

∂n
γ̂x(n),

∂̃

∂x
γ̂x(n)

)

Hω(γ̂x,n,u(x))

dn,

where γ̂x = ∂Γx, starting at Γx(0, 0) and oriented clockwise. Here M ∈ A3(P, e)
is the categorical curvature 3-form of (ω,m); see 2.4.3.

Proof. Consider the smooth map f : [0, 1]3 → P such that f(x, s, t) = Hω(γxs , t, u(x, s)),
for each x, s, t ∈ [0, 1]. By definition we have:

∂

∂t
f(x, s, t) =

∂̃

∂t
γxs (t)

Hω(γx
s ,t,u(x,s))

and therefore ω( ∂∂tf(x, s, t)) = 0. We also have:

(
∂

∂s
f(x, s, t)

)H
=

∂̃

∂s
γxs (t)

Hω(γx
s ,t,u(x,s))

and (
∂

∂x
f(x, s, t)

)H
=

∂̃

∂x
γxs (t)

Hω(γx
s ,t,u(x,s))

.

Note also that m(X,Y ), Ω(X,Y ) and M(X,Y,Z) vanish if either X, Y or Z is
vertical.
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By the 2-structure equation, see Proposition 2.18, and equation (2.6) it
follows that (since M is horizontal):

∫ 1

0

∫ 1

0

M

(
∂̃

∂x
γxs (t),

∂̃

∂t
γxs (t),

∂̃

∂s
γxs (t)

)

Hω(γx
s ,t,u(x,s))

dtds

=

∫ 1

0

∫ 1

0

M

(
∂

∂x
f(x, s, t),

∂

∂t
f(x, s, t),

∂

∂s
f(x, s, t)

)
dtds

=

∫ 1

0

∫ 1

0

dm

(
∂

∂x
f(x, s, t),

∂

∂t
f(x, s, t),

∂

∂s
f(x, s, t)

)
dtds

+

∫ 1

0

∫ 1

0

ω

(
∂

∂x
f(x, s, t)

)
⊲ m

(
∂

∂t
f(x, s, t),

∂

∂s
f(x, s, t)

)
dtds

−

∫ 1

0

∫ 1

0

ω

(
∂

∂s
f(x, s, t)

)
⊲ m

(
∂

∂t
f(x, s, t),

∂

∂x
f(x, s, t)

)
dtds.

Using Lemma 2.22 and integration by parts, we rewrite the integral in the last
term:
∫ 1

0

ω

(
∂

∂s
f(x, s, t)

)
⊲ m

(
∂

∂t
f(x, s, t),

∂

∂x
f(x, s, t)

)
dt

=

∫ 1

0

∫ t

0

Ω

(
∂

∂t′
f(x, s, t′),

∂

∂s
f(x, s, t′)

)
dt′ ⊲ m

(
∂

∂t
f(x, s, t),

∂

∂x
f(x, s, t)

)
dt

or

∫ 1

0

Ω

(
∂

∂t′
f(x, s, t′),

∂

∂s
f(x, s, t′)

)
dt′⊲

∫ 1

0

m

(
∂

∂t′
f(x, s, t′),

∂

∂x
f(x, s, t′)

)
dt′

−

∫ 1

0

Ω

(
∂

∂t
f(x, s, t),

∂

∂s
f(x, s, t)

)
⊲

(∫ t

0

m

(
∂

∂t′
f(x, s, t′),

∂

∂x
f(x, s, t′)

)
dt′
)
dt.

Using equation (2.2), we have for the final term:

∫ 1

0

Ω

(
∂

∂t
f(x, s, t),

∂

∂s
f(x, s, t)

)
⊲

(∫ t

0

m

(
∂

∂t′
f(x, s, t′),

∂

∂x
f(x, s, t′)

)
dt′
)
dt

= −

∫ 1

0

∫ t

0

Ω

(
∂

∂t′
f(x, s, t′),

∂

∂x
f(x, s, t′)

)
dt′ ⊲ m

(
∂

∂t
f(x, s, t),

∂

∂s
f(x, s, t)

)
dt

= −

∫ 1

0

ω

(
∂

∂x
f(x, s, t)

)
⊲ m

(
∂

∂t
f(x, s, t),

∂

∂s
f(x, s, t)

)
dt

+

∫ 1

0

∫ s

0

Ω

(
∂

∂s′
f(x, s′, 0),

∂

∂x
f(x, s′, 0)

)
ds′ ⊲ m

(
∂

∂t
f(x, s, t),

∂

∂s
f(x, s, t)

)
dt

= −

∫ 1

0

ω

(
∂

∂x
f(x, s, t)

)
⊲ m

(
∂

∂t
f(x, s, t),

∂

∂s
f(x, s, t)

)
dt

+

∫ 1

0

ω

(
∂

∂x
f(x, s, 0)

)
⊲ m

(
∂

∂t
f(x, s, t),

∂

∂s
f(x, s, t)

)
dt.
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where we have used Lemma 2.22 twice. Combining the previous equations,
yields

∫ 1

0

∫ 1

0

M

(
∂̃

∂x
γxs (t),

∂̃

∂t
γxs (t),

∂̃

∂s
γxs (t)

)

Hω(γx
s ,t,u(x,s))

dtds

=

∫ 1

0

∫ 1

0

dm

(
∂

∂x
f(x, s, t),

∂

∂t
f(x, s, t),

∂

∂s
f(x, s, t)

)
dtds

−

∫ 1

0

∫ 1

0

Ω

(
∂

∂t′
f(x, s, t′),

∂

∂s
f(x, s, t′)

)
dt′⊲

∫ 1

0

m

(
∂

∂t′
f(x, s, t′),

∂

∂x
f(x, s, t′)

)
dt′ds

−

∫ 1

0

∫ 1

0

ω

(
∂

∂x
f(x, s, 0)

)
⊲ m

(
∂

∂t
f(x, s, t),

∂

∂s
f(x, s, t)

)
dtds. (2.20)

For the second term on the right hand side in the theorem, we obtain:

∫ 1

0

m

(
∂̃

∂n
γ̂x(n),

∂̃

∂x
γ̂x(n)

)

Hω(γ̂x,n,u(x))

dn

=

∫ 1

0

m

(
∂

∂s
f(x, s, 0),

∂

∂x
f(x, s, 0)

)
ds+

∫ 1

0

m

(
∂

∂t
f(x, 1, t),

∂

∂x
f(x, 1, t)

)
dt

−g−1⊲
( ∫ 1

0

m

(
∂

∂s
f ′(x, s, 1),

∂

∂x
f ′(x, s, 1)

)
ds−

∫ 1

0

m

(
∂

∂t
f(x, 0, t),

∂

∂x
f(x, 0, t)

)
dt
)
,

(2.21)

where we have put g(x, s) = ∂(eΓx(s)) and f ′(x, s, t) = Hω (γx,t, s,Hω(γx0 , t, u(x)));
also g = g(x, 1). Therefore f(x, s, 1) = f ′(x, s, 1)∂(eΓx(s)) by the Non-Abelian
Green’s Theorem. Note that f ′(x, 0, t) = f(x, 0, t). We will be using the func-
tion f ′ again shortly.

Thus it remains to prove that e−1
Γx

d
dxeΓx is equal to the sum of the right hand

sides of (2.20) and (2.21).

By Lemma 2.30, we have

d

dx
eΓx = eΓx(Ax −Bx), (2.22)

where

Ax =

∫ 1

0

∫ 1

0

∂

∂x


m

(
∂̃

∂t
γxs (t),

∂̃

∂s
γxs (t)

)

Hω(γx
s ,t,u(x,s))


 dtds

Bx =

∫ 1

0

dθ

(
∂

∂x
eΓx(s),

∂

∂s
eΓx(s)

)
ds.

Let us analyse Ax and Bx separately. Using the well known equation:

dα(X,Y,Z) = Xα(Y,Z)+Y α(Z,X)+Zα(X,Y )+α(X, [Y,Z])+α(Y, [Z,X])+α(Z, [X,Y ]),
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valid for any smooth 2-form α in a manifold, and any three vector fields X,Y,Z
in M , we obtain for Ax:

Ax =

∫ 1

0

∫ 1

0

∂

∂x
m

(
∂

∂t
f(x, s, t),

∂

∂s
f(x, s, t)

)
dtds

=

∫ 1

0

∫ 1

0

dm

(
∂

∂x
f(x, s, t),

∂

∂t
f(x, s, t),

∂

∂s
f(x, s, t)

)
dtds

−

∫ 1

0

∫ 1

0

∂

∂t
m

(
∂

∂s
f(x, s, t),

∂

∂x
f(x, s, t)

)
+

∂

∂s
m

(
∂

∂x
f(x, s, t),

∂

∂t
f(x, s, t)

)
dtds

or

Ax =

∫ 1

0

∫ 1

0

dm

(
∂

∂x
f(x, s, t),

∂

∂t
f(x, s, t),

∂

∂s
f(x, s, t)

)
dtds (2.23)

+

∫ 1

0

m

(
∂

∂s
f(x, s, 0),

∂

∂x
f(x, s, 0)

)
ds+

∫ 1

0

m

(
∂

∂t
f(x, 1, t),

∂

∂x
f(x, 1, t)

)
dt

−

∫ 1

0

m

(
∂

∂t
f(x, 0, t),

∂

∂x
f(x, 0, t)

)
dt−

∫ 1

0

m

(
∂

∂s
f(x, s, 1),

∂

∂x
f(x, s, 1)

)
ds.

Recall that g(x, s) = ∂(eΓx(s)) and f ′(x, s, t) = Hω (γx,t, s,Hω(γx0 , t, u(x))), and
the relation f(x, s, 1) = f ′(x, s, 1)∂(eΓx(s)). We thus have:

ω

(
∂

∂s
f ′(x, s, 1)

)
= ω

(
∂

∂s

(
f(x, s, 1)g−1(x, s)

))
,

which since ∂
∂sf

′(x, s, 1) is horizontal implies, by using the Leibniz rule and the
fact that ω is a connection 1-form, that:

g(x, s)ω

(
∂

∂s
f(x, s, 1)

)
g−1(x, s) + g(x, s)

∂

∂s
g−1(x, s) = 0.

Analogously (this will be used later):

g−1(x, s)ω

(
∂

∂x

(
Hω(γx,1, s, u(x)γx0 )

))
g(x, s)

= −g−1(x, s)
∂

∂x
g(x, s) + ω

(
∂

∂x

(
u(x, s)γxs

))
,

which is the same as:

∂

∂x
g(x, s) = g(x, s)ω

(
∂

∂x
f(x, s, 1)

)
− ω

(
∂

∂x
f ′(x, s, 1)

)
g(x, s).
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The very last term R of (2.23) can be simplified as follows (since m is horizontal
and G-equivariant):

R = −

∫ 1

0

m

(
∂

∂s
f(x, s, 1),

∂

∂x
f(x, s, 1)

)
ds

= −

∫ 1

0

g−1(x, s) ⊲ m

(
∂

∂s
f ′(x, s, 1),

∂

∂x
f ′(x, s, 1)

)
ds

= −g−1(x, 1) ⊲

∫ 1

0

m

(
∂

∂s
f ′(x, s, 1),

∂

∂x
f ′(x, s, 1)

)
ds

+

∫ 1

0

∫ s

0

∂

∂s
g−1(x, s) ⊲ m

(
∂

∂s′
f ′(x, s′, 1),

∂

∂x
f ′(x, s′, 1)

)
ds′ds;

(the penultimate equation follows from integrating by parts). Therefore:

R = −g−1(x, 1) ⊲

∫ 1

0

m

(
∂

∂s
f ′(x, s, 1),

∂

∂x
f ′(x, s, 1)

)
ds

−

∫ 1

0

∫ s

0

ω

(
∂

∂s
f(x, s, 1)

)
g−1(x, s)⊲m

(
∂

∂s′
f ′(x, s′, 1),

∂

∂x
f(x, s′, 1)

)
ds′ds.

(2.24)

We now analyse Bx, for each x ∈ [0, 1]. We have:

Bx = dθ
(
e−1
Γx (s)

∂

∂x
eΓx(s), e−1

Γx (s)
∂

∂s
eΓx(s)

)

= −
[
e−1
Γx (s)

∂

∂x
eΓx(s), e−1

Γx (s)
∂

∂s
eΓx(s)

]

= −

(
g−1(x, s)

∂

∂x
g(x, s)

)
⊲

(
e−1
Γx (s)

∂

∂s
eΓx(s)

)

= −ω

(
∂

∂x
f(x, s, 1)

)
⊲

∫ 1

0

m

(
∂

∂t
f(x, s, t),

∂

∂s
f(x, s, t)

)
dt

+

(
g−1(x, s)ω

(
∂

∂x
f ′(x, s, 1)

)
g(x, s)

)
⊲

∫ 1

0

m

(
∂

∂t
f(x, s, t),

∂

∂s
f(x, s, t)

)
dt.

By using Lemma 2.22, this may be rewritten as Bx = Cx + C ′
x, where

Cx = −

∫ 1

0

Ω

(
∂

∂t
f(x, s, t),

∂

∂x
f(x, s, t)

)
dt⊲

∫ 1

0

m

(
∂

∂t
f(x, s, t),

∂

∂s
f(x, s, t)

)
dt

−

∫ s

0

Ω

(
∂

∂s′
f(x, s′, 0),

∂

∂x
f(x, s′, 0

)
ds′⊲

∫ 1

0

m

(
∂

∂t
f(x, s, t),

∂

∂s
f(x, s, t)

)
dt
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and

C ′
x =

(
g−1(x, s)

(∫ s

0

Ω

(
∂

∂s′
f ′(x, s′, 1),

∂

∂x
f ′(x, s′, 1)

)
ds′
)
g(x, s)

)
⊲

∫ 1

0

m

(
∂

∂t
f(x, s, t),

∂

∂s
f(x, s, t)

)
dt

+

(
g−1(x, s)

(∫ 1

0

Ω

(
∂

∂t
f(x, 0, t),

∂

∂x
f(x, 0, t)

)
dt

)
g(x, s)

)
⊲

∫ 1

0

m

(
∂

∂t
f(x, s, t),

∂

∂s
f(x, s, t)

)
dt,

Again using ∂(m) = Ω and ∂(u)⊲v = [u, v] = −[v, u] = −∂(v)⊲u; for each u, v ∈
e, together with ∂(m) = Ω and Lemma 2.22, for all but the second term of the
right hand side of the previous equation, we obtain:

Bx =
∫ 1

0

(∫ 1

0

Ω

(
∂

∂t
f(x, s, t),

∂

∂s
f(x, s, t)

)
dt ⊲

∫ 1

0

m

(
∂

∂t
f(x, s, t),

∂

∂x
f(x, s, t)

)
dt

)
ds.

−

∫ 1

0

∫ 1

0

ω

(
∂

∂x
f(x, s, 0)

)
⊲ m

(
∂

∂t
f(x, s, t),

∂

∂s
f(x, s, t)

)
dtds

−

∫ 1

0

∫ s

0

ω

(
∂

∂s
f(x, s, 1)

)
g−1(x, s) ⊲ m

(
∂

∂s′
f ′(x, s′, 1),

∂

∂x
f ′(x, s′, 1)

)
ds′ds

−

∫ 1

0

∫ 1

0

ω

(
∂

∂s
f(x, s, 1)

)
g−1(x, s) ⊲ m

(
∂

∂t
f(x, 0, t),

∂

∂x
f(x, 0, t)

)
dtds

(2.25)

Finally, since (given that ω is a connection 1-form):

ω

(
∂

∂s
f(x, s, 1)

)
g−1(x, s) = g−1(x, s)ω

(
∂

∂s
f(x, s, 1)g−1(x, s)

)

= g−1(x, s)ω

(
∂

∂s
f ′(x, s, 1) − f(x, s, 1)

∂

∂s
g−1(x, s)

)

= −g−1(x, s)ω

(
f(x, s, 1)

∂

∂s
g−1(x, s)

)

= −
∂

∂s
g−1(x, s),

the last term R′ of the previous expression is rewritten as follows:

R′ = −

∫ 1

0

∫ 1

0

ω

(
∂

∂s
f(x, s, 1)

)
g−1(x, s) ⊲ m

(
∂

∂t
f(x, 0, t),

∂

∂x
f(x, 0, t)

)
dsdt

=

∫ 1

0

∫ 1

0

∂

∂s
g−1(x, s) ⊲ m

(
∂

∂t
f(x, 0, t),

∂

∂x
f(x, 0, t)

)
dsdt,
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or

R′ = g−1(x)⊲

∫ 1

0

m

(
∂

∂t
f(x, 0, t),

∂

∂x
f(x, 0, t)

)
dt−

∫ 1

0

m

(
∂

∂t
f(x, 0, t),

∂

∂x
f(x, 0, t)

)
dt,

(2.26)
where we have put g(x) = g(x, 1). Combining Ax − Bx from equations (2.23),
(2.24), (2.25), (2.26), four terms cancel and the remaining terms are equal to
the sum of the right hand sides of (2.20) and (2.21). This finishes the proof of
Theorem 2.31.

2.6.3 Invariance under thin homotopy

From Theorem 2.31 and the fact that the horizontal lift X 7→ X̃ of vector fields
on M defines a linear map X(M) → X(P ) we obtain the following:

Corollary 2.32 Let M be a smooth manifold. Let also G = (∂ : E → G, ⊲) be a
Lie crossed module. Let P →M be a principal G-bundle over M , and consider
a G-categorical connection (ω,m) on P . If Γ and Γ′ are rank-2 homotopic

(see Definition 2.11) 2-paths [0, 1]2 → M then
(ω,m)
eΓ (u, t, s) =

(ω,m)
eΓ′ (u, t, s),

whenever u ∈ PΓ(0,0), the fibre of P at Γ(0, 0) = Γ′(0, 0), and for each t, s ∈
[0, 1].

2.6.4 A (dihedral) double groupoid map

Let P be a principal G bundle over M . We define a double groupoid D2(P )
whose set of objects is M , and whose set of morphisms x → y is given by all
right G-equivariant maps a : Px → Py. A 2-morphism is given by a square of
the form:

Pz
d

−−−−→ Pw

c

x f

xb

Px −−−−→
a

Py

(2.27)

where x, y, z, w ∈M and a, b, c, d are right G-equivariant maps. Finally f : Px →
E is a smooth map such that f(ug) = g−1 ⊲ f(u) for each u ∈ Px and g ∈ G,
satisfying (b ◦ a)(u)∂(f(u)) = (d ◦ c)(u), for each u ∈ Px. The horizontal and
vertical compositions are as in 2.5.2. We also have an action of the dihedral
group D4

∼= Z2
2⋊Z2 of the 2-cube given by the horizontal and vertical reversions,

and such that the interchange of coordinates is accomplished by the move f 7→
f−1. As a corollary of the discussion in the last two subsections it follows:

Theorem 2.33 Whenever the principal G-bundle P → M is equipped with a
categorical connection (ω,m), the holonomy and categorical holonomy maps Hω

and
(ω,m)
e define a double groupoid morphism

(ω,m)

H : S2(M) → D2(P ), where
S2(M) is the thin fundamental double groupoid of M . Given a dihedral group
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element r ∈ D4 we have

(ω,m)

H (Γ ◦ r−1) = r

(
(ω,m)

H (Γ)

)
.

3 Cubical G-2-bundles with connection

3.1 Definition of a cubical G-2-bundle

Recall the conventions introduced in 2.1.1 and 2.2.2.
Let M be a smooth manifold. Let U = {Ui}i∈I be an open cover of M .

From this we can define a cubical set C(M,U). For each positive integer n the
set Cn(M,U) of n-cubes of C(M,U) is given by all pairs (x,R), where R is an
assignment of an element URv ∈ U to each vertex of v of Dn, such that the
intersection

UR =
⋂

vertices v of Dn

URv

is non-empty, and x ∈ UR. The face maps ∂±i : Cn(M,U) → Cn−1(M,U) where
i ∈ {1, . . . , n} and n = 1, 2, . . ., are defined by

∂±i (x,R) = (x,R ◦ δ±i ).

Analogously, the degeneracies are given by:

ǫi(x,R) = (x,R ◦ σi).

The cubical set C(M,U) is clearly a cubical object in the category of man-
ifolds, in other words a cubical manifold. Given an x ∈ M , the cubical set
C(M,U, x) is given by all the cubes of C(M,U) whose associated element of M
is x.

Definition 3.1 (Cubical G-2-bundle) Let G = (∂ : E → G, ⊲) be a Lie crossed
module. Let N(G) be the cubical nerve of G; see [BHS] and 2.2.2, which is a cu-
bical manifold. Let M be a smooth manifold and U = {Ui}i∈I be an open cover
of M . A cubical G-2-bundle over (M,U) is given by a map C(M,U) → N(G) of
cubical manifolds.

Unpacking this definition, we see that a cubical G-2-bundle is specified by
smooth maps φij : Ui∩Uj → G, where Ui, Uj ∈ U have a non-empty intersection,
and also by smooth maps ψijkl : Ui ∩Uj ∩Uk ∩Ul → E, where Ui, Uj , Uk, Ul ∈ U

have a non-empty intersection, such that:

1. We have ∂(ψijkl)
−1φijφjl = φikφkl in Uijkl

.
= Ui ∩Uj ∩Uk ∩Ul. In other

words, putting φij = X−
2 (c2), φik = X−

1 (c2), φkl = X+
2 (c2), φjl =

X+
1 (c2) and e(c2) = ψijkl yields a flat G-colouring c2 = (ψ, φ)ijkl of D2,

for each x ∈ Uijkl.

32



i j

i j

k l

i+ j+

k+
l+

i−
j−

k− l−

Figure 1: Label conventions in Definition 3.1.

2. Given i±, j±, k±, l± ∈ I with Ui−j−k−l− ∩ Ui+j+k+l+ 6= ∅, and putting

e±3 (c3) = (ψ, φ)i±j±k±l± , e−1 (c3) = (ψ, φ)i−k−i+k+ , e+1 (c3) = (ψ, φ)j−l−j+l+ ,

e−2 (c3) = (ψ, φ)i−j−i+j+ and e+2 (c3) = (ψ, φ)k−l−k+l+

yields a flat G-colouring c3 of D3 in Ui−j−k−l− ∩ Ui+j+k+l+ .

3. φii = 1G in Ui for all i ∈ I.

4. ψiijj = ψijij = 1E in Uij

See Figure 1 for our conventions in labelling the vertices of D2 and D3.

The previous definition is therefore a cubical counterpart of the simplicial defi-
nition of a G-2-bundle (and non-abelian gerbe) appearing for example in [BrMe,
ACG, BS1, BS2, SW3].

Remark 3.2 Note that in Definition 3.1 the word bundle is used in the same
sense as when one defines a principal bundle in terms of its transition functions,
without reference to a total space; we are following [H, MP, P]. For a discussion
of the concept of total space of a non-abelian gerbe, see [RS, Bar, Wo].

Definition 3.3 (Dihedral cubical G-2-bundles) Recall that the cubical sets
C(M,U) and N(G) are dihedral; see 2.1.1. Therefore we can restrict our defi-
nition of a cubical G-2-bundle and only allow dihedral cubical maps C(M,U) →
N(G) which gives the definition of a dihedral cubical G-2-bundle. Explicitly,
a cubical G-2-bundle is said to be dihedral if the maps φij : Uij → G and
ψijkl : Uijkl → E satisfy the following extra conditions:

1. We have φji = φ−1
ij in Uij for all i, j ∈ I.

2. We have ψikjl = ψ−1
ijkl, ψjilk = φij ⊲ ψ

−1
ijkl and ψklij = φik ⊲ ψ

−1
ijkl in Uijkl.
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3.2 Connections in cubical G-2-bundles

Let G = (∂ : E → G, ⊲) be a Lie crossed module, where ⊲ is a Lie group left action
of G on E by automorphisms. Let also G = (∂ : e → g, ⊲) be the associated
differential crossed module.

Definition 3.4 (Connection in a cubical G-2-bundle) Let M be a smooth
manifold with an open cover U = {Ui}i∈I. A connection in a cubical G-2-bundle
over (M,U) is given by:

• For any i ∈ I a local connection pair (Ai, Bi) defined in Ui; in other words
Ai ∈ A1(Ui, g), Bi ∈ A2(Ui, e) and ∂(Bi) = dAi + 1

2Ai ∧
ad Ai = ΩAi

.

• For any ordered pair (i, j) an e-valued 1-form ηij in Uij.

The conditions that should hold are:

1. For any i ∈ I we have ηii = 0.

2. For any i, j ∈ I we have:

Aj = φ−1
ij (Ai + ∂(ηij))φij + φ−1

ij dφij ,

Bj = φ−1
ij ⊲

(
Bi + dηij +

1

2
ηij ∧

ad ηij +Ai ∧
⊲ ηij

)
.

3. For any i, j, k, l ∈ I we have:

ηik + φik ⊲ ηkl − φikφklφ
−1
jl ⊲ ηjl − φikφklφ

−1
jl φ

−1
ij ⊲ ηij

= ψ−1
ijkldψijkl + ψ−1

ijkl (Ai ∧
⊲ ψijkl) .

The equivalence of cubical G-2-bundles with connection will be dealt with in
subsection 4.3.

Definition 3.5 (Dihedral connection) If a cubical G-2-bundle is dihedral,
then a connection in it is said to be dihedral if the following extra condition
holds:

ηji = −φ−1
ij ⊲ ηij , for each i, j ∈ I;

therefore, condition 3 of the previous definition can be written as:

ηik + φik ⊲ ηkl + φikφkl ⊲ ηlj + φikφklφlj ⊲ ηji= ψ−1
ijkldψijkl + ψ−1

ijkl (Ai ∧
⊲ ψijkl) .
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4 Non-abelian integral calculus based on a crossed

module

4.1 Path-ordered exponential and surface-ordered expo-

nential

We continue with the notation and results of subsections 2.5 and 2.6. Alternative
direct derivations of some of the following results appear in [BS1, SW1, SW2,
SW3].

Let M be a manifold, and let G be a Lie group with Lie algebra g. Let
γ : [0, 1] → M be a piecewise smooth map. Let A ∈ A1(M, g) be a g-valued

1-form in M . We define, as is usual, the path ordered exponential
A
gγ(t) =

P exp
(∫ t

0
A
(
d
dt′ γ(t

′)
)
dt′
)

to be the solution of the differential equation:

d

dt

A
gγ(t) =

A
gγ(t)A

(
d

dt
γ(t)

)
,

with initial condition
A
gγ(0) = 1G; see [Ch]. Put

A
gγ

.
=

A
gγ(1) = P exp

(∫ 1

0
A
(
d
dtγ(t)

)
dt
)
.

We immediately get that
A
gγγ′ =

A
gγ

A
gγ′ , and also

A
gγ−1 = (

A
gγ)

−1. Here γ and γ′

are piecewise smooth maps with γ(1) = γ′(0).
Consider the trivial bundle P = M × G over M . Given A ∈ A1(M, g)

there exists a unique connection 1-form ωA in the trivial bundle P for which
A = ζ∗(ωA), where ζ(x) = (x, 1G) for each x ∈M . We then have that:

ζ(γ(t)) = HωA
(γ, t, ζ(γ(0)))P exp

(∫ t

0

A

(
d

dt′
γ(t′)

)
dt′
)
.

Let G = (∂ : E → G, ⊲) be a Lie crossed module and let G = (∂ : e → g, ⊲) be
the associated differential crossed module. As before, if we have B ∈ A2(M, e)
with ∂(B) = ΩA = dA+ 1

2A ∧ad A we define

(A,B)
eΓ (t, s) = S exp

(∫ s

0

∫ t

0

B

(
∂

∂t′
γs′(t

′),
∂

∂s′
γs′(t

′)

)
dt′ds′

)

as being the solution of the differential equation:

∂

∂s

(A,B)
eΓ (t, s) =

(A,B)
eΓ (t, s)

∫ t

0

(
A
gγ0(s)

A
gγs(t′)

)
⊲ B

(
∂

∂t′
γs(t

′),
∂

∂s
γs(t

′)

)
dt′

with initial conditions

(A,B)
eΓ (t, 0) = 1E , for each t ∈ [0, 1].

Put
(A,B)
eΓ =

(A,B)
eΓ (1, 1). We can equivalently define the surface ordered exponen-

tial by the differential equation:

∂

∂t

(A,B)
eΓ (t, s) =

(∫ s

0

(
A
gγ0(t)

A
gγt(s′)

)
⊲ B

(
∂

∂t
γs′(t),

∂

∂s′
γs′(t)

)
ds′
)

(A,B)
eΓ (t, s)
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with initial conditions

(A,B)
eΓ (0, s) = 1E , for each s ∈ [0, 1];

see the proof of Theorem 2.29 and below.
As before, there exists a unique categorical connection (ωA,mA,B) in the

trivial bundle P = M ×G for which A = ζ∗(ωA) and B = ζ∗(mA,B)). We have

that
(A,B)
eΓ (t, s) =

(ωA,mA,B)
eΓ (ζ(Γ(0, 0)), t, s), see 2.5.3. The following follows

immediately from the Non-Abelian Green’s Theorem 2.23.

Theorem 4.1 (Non-abelian Green’s Theorem, elementary form) Consider

a 2-square Γ: [0, 1]2 →M . Put
A

XΓ=
A
gXΓ

,
A

YΓ=
A
gYΓ

,
A

ZΓ=
A
gZΓ

and
A

WΓ=
A
gWΓ

; see
2.5.2 for this notation. We have that:

∂
(

(A,B)
eΓ

)−1 A

XΓ

A

YΓ=
A

ZΓ

A

WΓ .

The following follows from theorems 2.24 and 2.26. See 2.1.1 and subsection
2.3.

Theorem 4.2 Consider the map
(A,B)

H : C2(M) → D2(G) such that:

(A,B)

H (Γ) =

∗
A

WΓ−−−−→ ∗

A

ZΓ

x (A,B)
eΓ

x A

YΓ

∗ −−−−→
A

XΓ

∗

Then
(A,B)

H (Γ◦hΓ′) =
(A,B)

H (Γ)◦h

(A,B)

H (Γ′) and
(A,B)

H (Γ◦vΓ′) =
(A,B)

H (Γ)◦v

(A,B)

H

(Γ′), whenever the compositions of Γ,Γ′ : [0, 1]2 →M are well defined.

Passing to the quotient S2(M) of C2
r (M) under thin homotopy it follows, by

using Theorem 2.31 and Corollary 2.32, that:

Theorem 4.3 The map
(A,B)

H : S2(M) → D2(G) defined in the previous theorem
is a morphism of double groupoids with thin structure.

The following result is a consequence of Theorem 2.33.

Theorem 4.4 (Non-abelian Fubini’s Theorem) The map
(A,B)

H : C2(M) →
D2(G) preserves the action of the dihedral group D4 of the square. Concretely
for any element r of D4 we have

(A,B)

H (Γ ◦ r−1) = r(
(A,B)

H (Γ)),

for each smooth map Γ: [0, 1]2 →M .
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This follows from the fact that
(A,B)

H preserves horizontal and vertical reversions
and moreover interchanges of coordinates, which generate the dihedral group
D4

∼= Z2
2 ⋊ S2 of the square.

We finish this subsection with the following important theorem:

Theorem 4.5 Let (A,B) be a local connection pair in M , by which as usual
we mean A ∈ A1(M, g), B ∈ A2(M, e) and ∂(B) = ΩA = dA + 1

2A ∧ad A. Let
C = dB+A∧⊲B be the 2-curvature 3-form of (A,B) as in 2.4.3 and 2.4.4. Let
J : [0, 1]3 →M be a smooth map such that J∗(C) = 0. Then the colouring T of
D3 such that:

T ◦ δ±i =
(A,B)

H (∂±i J), i = 1, 2, 3

is flat; see 2.2.2 and 2.1.1.

Proof. This follows from the construction in this subsection and Theorem 2.31.
Note the form (2.5) for the homotopy addition equation (2.4).

4.2 1-Gauge transformations

Let M be a smooth manifold. Let (A,B) and (A′, B′) be local connection pairs
defined in M . For the time being we will drop the index i for the open cover
and take A and B to be globally defined on M . We will return to the general
case in the next section. In other words A,A′ ∈ A1(M, g) and B,B′ ∈ A2(M, e)
are such that ∂(B) = ΩA = dA+ 1

2A∧ad A and ∂(B′) = ΩA′ . Let η ∈ A1(M, e)
be such that:

A′ = A+ ∂(η)

and

B′ = B + dη +
1

2
η ∧ad η +A ∧⊲ η.

Given a smooth path γ : [0, 1] →M , define the following 2-square in G:

τ
(1G,η)
A (γ) =

∗
A′

gγ
−−−−→ ∗

1G

x
(A,η)

fγ

x1G

∗ −−−−→
A
gγ

∗

.
=

∗
A′

gγ
−−−−→ ∗

1G

x (Aη,Bη)
eγ×I

x1G

∗ −−−−→
A
gγ

∗

Here Aη = A+ z∂(η) ∈ A1(M × I, g) and

Bη = B + zdη +
1

2
z2η ∧ad η + zA ∧⊲ η + dz ∧ η ∈ A

2(M × I, e),

where I = [0, 1], with coordinate z. It is an easy calculation to prove that
∂(Bη) = ΩAη

. In addition, γ × I : [0, 1]2 → M × I is the map (γ × I)(t, s) =

(γ(t), s), where s, t ∈ [0, 1]. We will see below (Remark 4.7) that
(A,η)

fγ =
(Aη,Bη)
eγ×I

depends only on A, γ and η.
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Let h : M → G be a smooth map. It is well known (and easy to prove) that
if A′′ = h−1A′h+ h−1dh then

τhA′(γ) =

∗
A′′

gγ
−−−−→ ∗

h(γ(0))

x 1E

xh(γ(1))

∗ −−−−→
A′

gγ

∗

is a 2-square in G. This leads us to the following:

Definition 4.6 We say that (A′′, B′′) and (A,B) are related by the 1-gauge
transformation (h, η), when

A′′ = h−1(A+ ∂(η))h+ h−1dh

and

B′′ = h−1 ⊲ (B + dη +A ∧⊲ η +
1

2
η ∧ad η).

We also define 2-squares relating the holonomies along γ with respect to A and
A′′:

τ
(h,η)
A (γ)

.
=

τhA′(γ)

τ
(1G,η)
A (γ)

=

∗
A′′

gγ
−−−−→ ∗

h(γ(0))

x
(A,η)

fγ

xh(γ(1))

∗ −−−−→
A
gγ

∗

(4.1)

and

τ̂
(h,η)
A (γ) = rxy

(
τ

(h,η)
A (γ)

)
=

∗
h(γ(1))

−−−−−−−−→ ∗

A
gγ

x
 

(A,η)

fγ

!

−1 xA′′

gγ

∗ −−−−−−−−→
h(γ(0))

∗

(4.2)

see 2.2.1.

Remark 4.7 By the Non-Abelian Fubini’s Theorem,
(Aη,Bη)
eγ×I =

(Aη,Bη)
eγ×I (1, 1), where

(Aη,Bη)
eγ×I (t, z) can be defined by either of the following differential equations:

∂

∂z

(Aη,Bη)
eγ×I (t, z) = −

(Aη,Bη)
eγ×I (t, z)

∫ t

0

Az
gγ (t′) ⊲ η

(
∂

∂t′
γ(t′)

)
dt′,

where Az = A+ z∂(η) ∈ A1(M, g), or

∂

∂t

(Aη,Bη)
eγ×I (t, z) =

(
−z

A
gγ (t) ⊲ η

(
∂

∂t
γ(t)

))
(Aη,Bη)
eγ×I (t, z)
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with initial conditions:

(Aη,Bη)
eγ×I (ξ, 0) = 1E or

(Aη,Bη)
eγ×I (0, ξ) = 1E , where ξ ∈ [0, 1],

in the first and second case, respectively. Therefore it follows that
(Aη,Bη)
eγ×I de-

pends only on A, η and γ, thus it can be written simply as
(A,η)

fγ .

There is another setting for the 2-cubes τ and τ̂ introduced here, which
will be needed when we return to considering local connection pairs (Ai, Bi)
(Definition 3.4), namely

τ
(φij ,ηij)
Ai

(γ), τ̂
(φij ,ηij)
Ai

(γ)

where γ is a 1-path whose image is contained in Uij . We will refer to these
2-cubes as a transition 2-cubes for the 1-path γ. Note that the relation between
Ai and Aj is identical to that between A and A′′, replacing h by φij and η by
ηij .

4.2.1 The group of 1-gauge transformations

Let M be a smooth manifold. Let also G = (∂ : E → G, ⊲) be a Lie crossed mod-
ule with associated differential crossed module G = (∂ : e → g, ⊲). The group
of 1-gauge transformations in M is the group of pairs (h, η), where h : M → G
is smooth, and η is an e-valued 1-form in M . The product law will be given
by the semidirect product: (h, η)(h′, η′) = (hh′, h ⊲ η′ + η). Recall that a local
connection pair in M is given by a pair of forms A ∈ A1(M, g) and B ∈ A2(M, e)
with ∂(B) = ΩA = dA+ 1

2A ∧ad A. Then defining:

(A,B)⊳(h, η) =

(
h−1Ah+ ∂(h−1 ⊲ η) + h−1dh, h−1 ⊲ (B + dη +A ∧⊲ η +

1

2
η ∧ad η)

)

which is equivalent to saying

(A′′, B′′) = (A,B) ⊳ (h, η)

in terms of Definition 4.6, defines a right action of the group of 1-gauge trans-
formations on the set of local connection pairs.

4.2.2 The coherence law for 1-gauge transformations

The following theorem expresses how the holonomy of a local connection pair
changes under the group of 1-gauge transformations. We recall the notation of
2.1.1, 2.2.2 and 4.2.1. The notion of a flat G-colouring appears in 2.2.2.

Theorem 4.8 (Coherence law for 1-gauge transformations) Let M be a
smooth manifold with a local connection pair (A,B). Let also (h, η) be a 1-
gauge transformation, and let (A′′, B′′) = (A,B) ⊳ (h, η). Let Γ: [0, 1]2 →M be
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a smooth map. Define T
(h,η)
(A,B)(Γ) = T

(h,η)
(A,B) as being the G-colouring of the 3-cube

D3 such that:

T
(h,η)
(A,B) ◦ δ

−
3 =

(A,B)

H (Γ), T
(h,η)
(A,B) ◦ δ

+
3 =

(A′′,B′′)

H (Γ)

and
T

(h,η)
(A,B) ◦ δ

±
i = τ

(h,η)
A (∂±i Γ), i = 1, 2.

(Note that the colourings of the edges of D3 are determined from the colourings

of the faces of it, given that they coincide in their intersections.) Then T
(h,η)
(A,B)

is flat.

Proof. The colouring T
(h,0)
(A′,B′)(Γ) is flat by Lemma 2.28; here (A′, B′) = (A,B)⊳

(1G, η). Let us prove that the colouring T
(1G,η)
(A,B) (Γ) is flat. This follows from

theorems 2.31 or 4.5 and the fact that if Mη = dBη+Aη∧
⊲Bη ∈ A3(M×{z, z ∈

R}, e) is the 2-curvature 3-form of (Aη, Bη) then the contraction of Mη with the
vector field ∂

∂z vanishes. A more intricate calculation of this type appears in
the proof of Theorem 4.20. The theorem follows from the fact that T (G), the
set of flat G-colourings of the 3-cube D3, is a (strict) triple groupoid (see 2.2.2)

and T
(h,η)
(A,B) = T

(1G,η)
(A,B) ◦3 T

(h,0)
(A′,B′), where ◦3 denotes upwards composition.

From remark 4.7 it follows:

Corollary 4.9 Suppose Γ: [0, 1]2 → M is such that Γ(∂[0, 1]2)) = x, where
x ∈M . Given a local connection pair (A,B) in M and a 1-gauge transformation
(h, η) we then have:

(A,B)⊳(h,η)
eΓ = h−1(x)⊲

(A,B)
eΓ .

By construction we have:

Corollary 4.10 Given a local connection pair (A,B) in M and a 1-gauge trans-
formation (h, 0) we then have for any smooth map Γ: [0, 1]2 →M :

(A,B)⊳(h,0)
eΓ = h−1(Γ(0, 0))⊲

(A,B)
eΓ .

Theorem 4.8 may also be interpreted in a different way to give a relation
between the holonomies for a 2-path Γ with image contained in Uij , using local
connection pairs (Ai, Bi) and (Aj , Bj); Definition 3.4. Note that (Aj , Bj) =
(Ai, Bi) ⊳ (φij , ηij).

Theorem 4.11 (Transition 3-cube for a 2-path) Given a connection on a
cubical G-2-bundle over a pair (M,U), let Γ: [0, 1]2 → M be a smooth 2-path

with image contained in Uij. Define T
(φij ,ηij)

(Ai,Bi)
(Γ) = T

(φij ,ηij)

(Ai,Bi)
as being the G-

colouring of the 3-cube D3 such that:

T
(φij ,ηij)

(Ai,Bi)
◦ δ−3 =

(Ai,Bi)

H (Γ), T
(φij ,ηij)

(Ai,Bi)
◦ δ+3 =

(Aj ,Bj)

H (Γ)
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and
T

(φij ,ηij)

(Ai,Bi)
◦ δ±k = τ

(φij ,ηij)
Ai

(∂±i Γ), k = 1, 2.

Then T
(φij ,ηij)

(Ai,Bi)
is flat.

4.2.3 Dihedral symmetry for 1-gauge transformations

Let M be a manifold with a local connection pair (A,B) and a 1-gauge trans-
formation (h, η). Let γ : [0, 1] →M be a smooth map.

Theorem 4.12 We have:

1. τ
(h,η)
A (γ−1) = τ

(h,η)
A (γ)−h

2. If (A′′, B′′) = (A,B) ⊳ (h, η) then τ
(h,η)−1

A′′ (γ) =
(
τ

(h,η)
A (γ)

)−v

.

Recall e−h = rx(e) and e−v = ry(e), where e ∈ D2(G), denote the horizontal
and vertical inversions of squares in G.

Proof. The first statement is immediate. Let h0 = h(γ(0)), h1 = h(γ(1)) and
η′ = −h−1 ⊲ η. Let also (A′, B′) = (A,B) ⊳ (0, η). The second statement follows
from:

τ
(h,η)−1

A′′ (γ)

τ
(h,η)
A (γ)

=

∗
A
gγ

−−−−−→ ∗

h−1
0

x
(A′′,η′)

fγ

xh−1
1

∗ −−−−−→
A′′

gγ

∗

∗
A′′

gγ
−−−−−→ ∗

h0

x
(A,η)

fγ

xh1

∗ −−−−−→
A
gγ

∗

=

∗
A
gγ

−−−−−−−−−→ ∗

1G

x h⊲
0

(A′′,η′)

fγ

x1G

∗ −−−−−−−−−→
A′

gγ

∗

∗
A′

gγ
−−−−−−−−−→ ∗

1G

x
(A,η)

fγ

x1G

∗ −−−−−−−−−→
A
gγ

∗

Now note

h0⊲
(A′′,η′)

fγ =
(A′,−η)

fγ =

(
(A,η)

fγ

)−1

;

the last equation can be inferred for example from the first equation of Remark
4.7.

4.3 Equivalence of cubical G-2-bundles with connection

Let M be a smooth manifold. Let G = (∂ : E → G, ⊲) be a Lie crossed module
and let G = (∂ : e → g, ⊲) be the associated differential crossed module. We
freely use the material of section 3.
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4.3.1 A crossed module of groupoids of gauge transformations

We define a groupoid M1
G , whose set of objects M0

G is given by the set of local
connection pairs (A,B) in M , in other words A ∈ A1(M, g) and B ∈ A2(M, e)
are smooth forms such that ∂(B) = ΩA = dA+ 1

2A∧adA. The set of morphisms
of M1

G is given by all quadruples of the form (A,B, φ, η) where A and B are as
above, φ : M → G is a smooth map and η ∈ A1(M, e) is an e-valued smooth
1-form in M . The source of (A,B, φ, η) is (A,B) and its target is (A,B)⊳ (φ, η).
The composition is given by the product of 1-gauge transformations; see 4.2.1.
We also define a totally intransitive groupoid M2

G , consisting of all triples of the
form (A,B,ψ), where (A,B) is a local connection pair in M and ψ is a smooth
map M → E. The source and target of (A,B,ψ) each are given by (A,B), and
we define (A,B,ψ)(A,B,ψ′) = (A,B,ψψ′).

The following lemma states that this gives rise to a crossed module of
groupoids, a notion defined in [BH1, BHS, B1], for example. We follow the
conventions of [FMPo].

Lemma 4.13 The map ∂ : M2
G →M1

G such that

(A,B,ψ) 7→
(
A,B, ∂ψ, ψ(dψ−1) + ψ(A ⊲ ψ−1)

)

is a groupoid morphism, and together with the left action:

(A,B, φ, η) ⊲ (A′, B′, ψ) = (A,B, φ ⊲ ψ),

where (A′, B′) = (A,B) ⊳ (φ, η), of the groupoid M1
G on the totally intransitive

groupoid M2
G defines a crossed module of groupoids MG.

Proof. Much of this is straightforward calculations. One complicated bit is to
prove that:

(A,B)⊳
(
∂ψ, ψ(dψ−1) + ψ(A ⊲ ψ−1)

)
= (A,B) (4.3)

It is easy to see that this is true at the level of 1-forms. At the level of the
2-forms we need to prove:

B = (∂ψ)−1⊲
(
B+d(ψ(dψ−1))+d(ψ(A⊲ψ−1))+A∧⊲(ψ(dψ−1))+A∧⊲(ψ(A⊲ψ−1))

+
(ψ(dψ−1) ∧ad (ψ(dψ−1)

2
+

(ψ(A ⊲ ψ−1)) ∧ad (ψ(A ⊲ ψ−1))

2

+ (ψ(dψ−1) ∧ad (ψ(A ⊲ ψ−1))
)
. (4.4)

We can eliminate two terms by using:

d(ψ(dψ−1)) +
(ψ(dψ−1) ∧ad (ψ(dψ−1)

2
= 0,

which follows from the fact dθ = 1
2θ ∧

ad θ, where θ is the Maurer-Cartan form.
By using the Leibnitz rule it follows that:

A∧⊲ (ψ(A⊲ψ−1))+
(ψ(A ⊲ ψ−1)) ∧ad (ψ(A ⊲ ψ−1))

2
= ψ

((
A ∧ad A

2

)
⊲ ψ−1

)
.
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Also we have

d(ψ(A ⊲ ψ−1)) +A ∧⊲ (ψdψ−1)) + ψ(dψ−1) ∧ad (ψ(A ⊲ ψ−1)) = ψ(dA ⊲ ψ−1),

using ψ(A ⊲ ψ−1) = −(A ⊲ ψ)ψ−1 and (dψ)ψ−1 = −ψdψ−1.
Putting everything together, formula (4.4) reduces to:

φ−1⊲

(
B + ψ

((
A ∧ad A

2

)
⊲ ψ−1

)
+ ψ(dA ⊲ ψ−1)

)

= φ−1 ⊲
(
B + ψ

(
∂(B)) ⊲ ψ−1

))

= φ−1 ⊲
(
B + ψBψ−1 −B

)

= B.

We have used the identity ∂(V ) ⊲ e = V e − eV for each V ∈ e and for each
e ∈ E. This follows from the definition of a Lie crossed module.

We now prove the other difficult condition, namely:

∂((A,B, φ, η) ⊲ (A′, B′, ψ)) = (A,B, φ, η)∂((A′, B′, ψ)(A′, B′, φ−1,−φ−1 ⊲ η)

or

(A,B, ∂(φ ⊲ ψ), (φ ⊲ ψ)d(φ ⊲ ψ)−1 + (φ ⊲ ψ)A ⊲ (φ ⊲ ψ−1))

= (A,B, φψφ−1, η+ (φ ⊲ ψ)(φ ⊲ dψ−1) + (φ ⊲ ψ)(φA′ ⊲ ψ−1)− φ∂(ψ)φ−1 ⊲ η)
(4.5)

Now use the fact that A′ = φ−1Aφ+φ−1dφ+∂(φ−1⊲η), and the terms involving
η on the right hand side cancel.

Definition 4.14 The crossed module of groupoids MG of the previous lemma
will be called the crossed module of gauge transformations in M .

A very similar construction appears in [SW2]. Note that the collection of crossed
modules UG , one for each open set U ⊂ M , can naturally be assembled into a
crossed module sheaf MG over M .

4.3.2 Equivalence of cubical G-2-bundles with connection over a pair
(M,U)

Definition 4.15 We continue to fix a smooth manifold M . Given a point
x ∈ M , the crossed module MG(x) of germs of gauge transformations is con-
structed in the following obvious way from the crossed module sheaf MG over M .
The set of objects M0

G(x) of MG(x) is given by the set of all triples (A,B,U),
with (A,B) ∈ U0

G, where U is open and x ∈ U , with the equivalence relation
(A,B,U) ∼= (A′, B′, U ′) if A = A′ and B = B′ in some open neighbourhood of x.
One proceeds analogously to define the morphisms M1

G(x) and the 2-morphisms
M2

G(x) of MG(x).
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Note that the evaluation at x ∈M gives maps

M0
G(x) → Hom(Tx(M), g) × Hom(∧2(Tx), e),

M1
G(x) → G× Hom(Tx(M), e) and M2

G(x) → E.

Therefore the set N(MG(x))n of n-cubes of the cubical nerve N(MG(x)) ofMG(x)
(see [BHS, BHS] and 2.2.2), comes with a a naturally defined map

tx : N(MG(x))n →
(
Hom(Tx(M), g) × Hom(∧2(Tx), e)

)an

× (G× Hom(Tx(M), e))
bn × Ecn ,

where an, bn and cn denote the number of vertices, edges and two dimensional
faces of the n-cube [0, 1]n.

Consider the bundle ∪x∈MN(MG(x)), of cubical sets, which is a itself a cubi-
cal set, where the set of n-cubes is given by ∪x∈MN(MG(x))n, with the obvious
faces and degeneracies. The set of n-cubes of ∪x∈MN(MG(x)) can be turned
into a smooth space [BHo, Ch] by saying that a map f : V → ∪x∈MN(MG(x))n

is smooth if (∪x∈M tx)◦f is smooth, where V is some open set in some Ri. This
upgrades the cubical set ∪x∈UN(MG(x)) to a cubical object in the category of
smooth spaces, a cubical smooth space.

Theorem 4.16 Let U be an open cover of M . A cubical G-2-bundle with con-

nection over (M,U) is given by a cubical map C(M,U, x)
fx
−→ N(MG(x)), the

cubical nerve of the crossed module of groupoids MG(x), for each x ∈ M . This
is to verify the following smoothness condition: The collection

⋃

x∈M

fx : C(M,U, x) →
⋃

x∈M

N(MG(x))

is a map of cubical smooth spaces (recall that C(M,U) is a cubical manifold).

Proof. Easy calculations.

Definition 4.17 We say that two cubical G-2-bundles with connection B and
B′ over a pair (M,U), say (φij , ψijkl, Ai, Bi, ηij) and (φ′ij , ψ

′
ijkl, A

′
i, B

′
i, η

′
ij), are

equivalent (and we write B ∼=U B′) if the associated cubical maps C(M,U, x) →
N(MG(x)), where x ∈ M , are homotopic, through a smooth homotopy (in the
sense above).

The fact that the cubical nerve of a crossed module of groupoids is a Kan cubical
set [BH5, BHS] can be used to prove that this is an equivalence relation.

Explicitly, B ∼=U B′ if there exist smooth maps Φi : Ui → G and Ψij : Uij →
E, as well as smooth forms Ei ∈ A1(Ui, e) such that:

1. We have

∂(Ai, Bi,Ψ
−1
ij )(Ai, Bi,Φi, Ei)(A

′
i, B

′
i, φ

′
ij , η

′
ij) = (Ai, Bi, φij , ηij)(Aj , Bj ,Φj , Ej),

where we suppose (A′
i, B

′
i) = (Ai, Bi) ⊳ (Φi, Ei) and (Aj , Bj) = (Ai, Bi) ⊳

(φij , ηij).
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2. The colouring T of D3 such that ∂−3 (T ) = (φ, ψ)ijkl, ∂+
3 (T ) = (φ′, ψ′)ijkl

(see subsection 4.4), and

T−
1 =

∗
φ′

ij
−−−−→ ∗

Φi

x Ψij

xΦj

∗ −−−−→
φij

∗

, T+
1 =

∗
φ′

kl−−−−→ ∗

Φk

x Ψkl

xΦl

∗ −−−−→
φkl

∗

T−
2 =

∗
φ′

ik−−−−→ ∗

Φi

x Ψik

xΦk

∗ −−−−→
φik

∗

, T+
2 =

∗
φ′

jl
−−−−→ ∗

Φj

x Ψjl

xΦl

∗ −−−−→
φjl

∗

is flat for each x ∈ Uij and any i, j; see 2.2.2. We have put T±
i = T ◦ δ±i =

∂±i (T ).

We can easily see that this defines an equivalence relation on the set of cubical
G-2-bundles over (M,U).

4.3.3 Subdivisions of covers and the equivalence of cubical G-2-bundles
over a manifold

Let U = {Ui}i∈I be an open cover of M . A subdivision V of U is a map i ∈
I 7→ Si, where Si is a set, together with open sets Va ⊂ Ui, for each a ∈ Si such
that Ui = ∪a∈Si

Va. If we are given a cubical G-2-bundle with connection B over
C(M,U), we immediately have another one, BV over V = {Va}a∈Si, i∈I, provided
by the obvious cubical map C(M,V) → C(M,U). Its structure maps are such
that e.g. φab = φij |Va∩Vb

, where a ∈ Si and b ∈ Sj , and analogously for all the
remaining information needed to specify a cubical G-2-bundle with connection.
For the same reason, it is easy to see that if B ∼=U B′ then BV

∼=V B′
V for any

subdivision V of U.
If U = {Ui}i∈I and W = {Wj}j∈J are open covers of M , then U ∩ W is

the open cover {Ui ∩Wj}(i,j)∈I×J. It is a subdivision of both U and W in the
obvious way.

Definition 4.18 (Equivalence of cubical G-2-bundles with connection)
Two cubical G-2-bundles with connection B and B′ over the open covers U =
{Ui}i∈I and W = {Wj}j∈J of M , respectively, are called equivalent if

BU∩W
∼=U∩W B

′
U∩W

The following follows from the previous discussion.

Theorem 4.19 Equivalence of cubical G-2-bundles with connection is an equiv-
alence relation.
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4.4 Coherence law for transition 2-cubes

Let B be a cubical G-2-bundle with connection over (M,U) (Definition 3.4).
Suppose γ is a 1-path whose image is contained in the overlap Uijkl. Recall the
notation in 2.2.1, 2.2.2 and subsection 4.2, in particular the notion of transition
2-cube for the path γ. Recall from Definition 3.1 the 2-cube (for each x ∈M):

(ψ, φ)ijkl =

∗
φkl−−−−→ ∗

φik

x ψijkl

xφjl

∗ −−−−→
φij

∗

(4.6)

Theorem 4.20 (Coherence law for transition 2-cubes) Let γ : [0, 1] → Uijkl ⊂M
be a smooth map. We have:

τ̂
(φik,ηik)
Ai

(γ) τ̂
(φkl,ηkl)
Ak

(γ)
(
τ̂

(φjl,ηjl)
Aj

)−h

(γ)
(
τ̂

(φij ,ηij)
Ai

)−h

(γ)

Φ((ψ, φ)ijkl(γ(0)))

= Φ′
Ai
gγ

((ψ, φ)ijkl(γ(1))), (4.7)

and therefore the G-colouring T of D3 such that:

T ◦ δ−2 = (ψ, φ)ijkl(γ(0)), T ◦ δ+2 = (ψ, φ)ijkl(γ(1))

and

T ◦ δ−1 = τ
(φik,ηik)
Ai

(γ), T ◦ δ+3 = τ̂
(φkl,ηkl)
Ak

(γ),

T ◦ δ+1 = τ
(φjl,ηjl)
Aj

(γ), T ◦ δ−3 = τ̂
(φij ,ηij)
Ai

(γ),

is flat.

Proof. By Theorem 4.12, the left hand side F (γ) of (4.7) is (we omit the γ):

τ̂
(φik,ηik)
Ai

τ̂
(φkl,ηkl)
Ak

τ̂
(φjl,ηjl)

−1

Al
τ̂

(φij ,ηij)
−1

Aj

Φ((ψ, φ)ijkl(γ(0))
,

which can also be written as:


τ̂

(1,ηik)
Ai

τ̂
(1,φik⊲ηkl)
φik⊲Ak

τ̂
(1,−φikφklφ

−1
jl
⊲ηjl)

φikφkl⊲Al
τ̂

(1,−φikφklφ
−1
jl
φ−1

ij ⊲ηij)

φikφklφ
−1
jl
⊲Aj

id


 ◦h


τ̂

φik

φikφklφ
−1
jl
φ−1

ij ⊲Ai
τ̂φkl

φklφ
−1
jl
φ−1

ij ⊲Ai
τ̂
φ−1

jl

φ−1
jl
φ−1

ij ⊲Ai
τ̂
φ−1

ij

φ−1
ij ⊲Ai

Φ((ψ, φ)ijkl(γ(0))



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Here we have put φ ⊲ A = A ⊳ φ−1 = φAφ−1 + φdφ−1. Let γt : [0, 1] → M be
the path γt(t

′) = γ(t′t), where t, t′ ∈ [0, 1]. Let also F ′(γt) ∈ E be the element
assigned to the square F (γt). We then have (by using Remark 4.7):

d

dt
F ′(γt) = F ′(γt)

Ai
gγt

⊲
(
ηik + φik ⊲ ηkl − φikφklφ

−1
jl ⊲ ηjl − φikφklφ

−1
jl φ

−1
ij ⊲ ηij

)
d
dt
γ(t)

= F ′(γt)
Ai
gγt

⊲
(
ψ−1
ijkldψijkl + ψ−1

ijkl (Ai ⊲ ψijkl)
)

d
dt
γ(t)

On the other hand:

d

dt

(
Ai
gγt

⊲ ψijkl(γ(t))
)

=
(
Ai
gγt
Ai ⊲ ψijkl +

Ai
gγt

⊲ dψijkl

)
d
dt
γ(t)

=
(
Ai
gγt

⊲ ψijkl

)(
Ai
gγt

⊲ ψ−1
ijkl

)(
Ai
gγt
Ai ⊲ ψijkl +

Ai
gγt

⊲ dψijkl

)
d
dt
γ(t)

=
(
Ai
gγt

⊲ ψijkl

)
Ai
gγt

⊲
(
ψ−1
ijkldψijkl + ψ−1

ijkl (Ai ⊲ ψijkl)
)

d
dt
γ(t)

.

This proves that F ′(γt) =
Ai
gγt

⊲ ψijkl(γ(t)), which by taking t = 1 finishes the
proof.

5 Wilson spheres and tori

5.1 Holonomy for an arbitrary 2-path in a smooth mani-

fold

We recall the notation of subsections 4.1, 4.2 and 4.4.

5.1.1 Patching together local holonomies and transition functions

Let M be a smooth manifold. Let also G = (∂ : E → G, ⊲) be a Lie crossed
module with associated differential crossed module G = (∂ : e → g, ⊲). Let U =
{Ui}i∈I be an open cover of M . Let B be a cubical G-2-bundle over (M,U) with
connection, given by {φij , ψijkl}i,j,k,l∈I (Definition 3.1) and {Ai, Bi, ηij}i,j∈I

(Definition 3.4).
Let Γ: [0, 1]2 → M be a 2-path. Let Q denote a subdivision of [0, 1]2 into

rectangles {QR}R∈R, where R is some index set, by means of partitions of each
[0, 1] factor, together with an assignment, to each R ∈ R, of iR ∈ I, such that
Γ(QR) ⊂ UiR . Such subdivisions with open set assignments (partitions Q of Γ)
do exist because of the Lebesgue Covering Lemma.

For each R ∈ R, let ΓR : [0, 1]2 → M denote the restriction of Γ to QR,
rescaled and reparametrized to be a 2-path [0, 1]2 → M . We reparametrize
again to introduce additional 2-paths, which are thickened 1-paths, constant
horizontally (e.g. γ̂ij in Figure 2 or constant vertically (e.g. γik in Figure 2), or
thickened points, constant both horizontally and vertically (pijkl in Figure 2).
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i j

k l

Γk γ̂kl Γl

γik pijkl γjl

Γi γ̂ij Γj

Figure 2: Decomposition of Γ for the definition of the holonomy of (Γ,Q)

To each 2-path in this array we assign a 2-cube of the double groupoid D2(G),
see 2.2.1, as follows:

Γi 7→ H(Γi)
.
=

(Ai,Bi)

H (Γi)

γ̂ij 7→ τ̂(γ̂ij)
.
= τ̂

(φij ,ηij)
Ai

(Γi|{1}×[0,1]) or γik 7→ τ(γik)
.
= τ

(φik,ηik)
Ai

(Γi|[0,1]×{1})

pijkl 7→ ψ(x)ijkl
.
= (ψ, φ)ijkl(x)

where x ∈ M is the image of the constant 2-path pijkl. See Theorem 4.2 and
equations (4.1), (4.2) and (4.6) for the definitions.

Definition 5.1 Given a 2-path Γ: [0, 1]2 → M and a partition Q of Γ, the
holonomy of (Γ,Q) for the cubical G-2-bundle with connection B, written

B

H (Γ,Q),

or simply H(Γ,Q) if the cubical G-2-bundle with connection is clear from the
context, is the composition of the 2-cubes of D2(G) obtained from the above
assignments. This is well defined due to the associativity and interchange law
for the composition of squares in G, which make up a double groupoid; see 2.2.1.

In the remainder of this chapter we will see that the 2-dimensional holonomy
of Definition 5.1 does not depend (up to rather simple transformations) on
the chosen partition of Γ, the chosen coordinate neighbourhoods, the choice of
cubical G-2-bundle with connection within the same equivalence class, or the
choice of Γ within the same thin homotopy equivalence class. Furthermore,
in the final section we will see how it can be associated to oriented embedded
2-spheres in a manifold, therefore defining Wilson 2-Sphere observables.

5.1.2 Independence under subdividing partitions

Proposition 5.2 Suppose we introduce an extra point in one of the partitions
underlying Q, so as to subdivide one of the rows or columns of the partition of
[0, 1]2. For this new subdivision, suppose we assign each of its rectangles to the
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same open set as that assigned by Q to the rectangle in which it is contained,
and call this new subdivision and assignment Q′. Then

H(Γ,Q′) = H(Γ,Q)

Proof. (For the case of subdividing a row). The only change in the holonomy
for Q′ is in the contributions along the subdivided row, where the open set as-
signments look like Figure 2 with i = k and j = l. Since τ(γii) and ψijij(p) are
thin elements of D2(G) (from Definition 3.4 and Section 4.2, and from Definition
3.1 respectively), the composition of the three rows of rectangles after subdivid-
ing equals the composition of the original row of rectangles before subdividing.

5.1.3 The case of paths

Let γ : [0, 1] →M be a path. Let Q denote a subdivision of [0, 1] into subintervals
{qr}r=1,....s, together with an assignment, for each r, of ir ∈ I, such that γ(qr) ⊂
Uir . For each r, let γr : [0, 1] → M denote the restriction of γ to qr, rescaled
and reparametrized to be a 1-path [0, 1] → M . As for the case of 2-paths,
we reparametrize again to introduce constant 1-paths pr,r+1 with image xr =
γr(1) = γr+1(0) between γr and γr+1. To each of these 1-paths we assign an
element of G as follows:

γr 7→
Air
gγr

pr,r+1 7→ φirir+1
(xr)

Definition 5.3 The holonomy of (γ,Q) for the cubical G-2-bundle with connec-
tion B, written

B

H (γ,Q),

or simply H(γ,Q) if the cubical G-2-bundle with connection is clear from the
context, is the composition of the 1-cubes of D1(G) obtained from the above
assignments. Concretely, we have the formula:

B

H (γ,Q) =
Ai1
gγ1 φi1i2(x1)

Ai2
gγ2 φi2i3(x2) . . .

Ais
gγs

.

Let γ be a 1-path, and let Q, Q′ be based on the same subdivision of [0, 1]
into subintervals {qr}r=1,....s, but with different assignments ir and i′r to each
qr. As in Definition 5.1, we replace γ by a product of 2-paths which are con-
stant vertically, corresponding to γr, or constant horizontally and vertically,
corresponding to xr. We introduce the notation:

B
τ (γ,Q,Q′)

.
= τ((γ1)i1i′1)ψ(x1)i1i2i′1i′2τ((γ2)i2i′2) . . . τ((γs)isi′s). (5.1)

When B is understood we will drop it from the notation. In particular, this
denotes the evaluation of a row of the holonomy formula of Definition 5.1, with
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γ being the restriction of Γ to one of the horizontal lines in the partition of
[0, 1]2. We have:

∂dτ(γ,Q,Q
′) = H(γ,Q) and ∂uτ(γ,Q,Q

′) = H(γ,Q′),

with B understood everywhere.

5.1.4 The dependence of the holonomy on the partition Q

We want to study the effect on the holonomy of substituting the subdivision
with open set assignments Q by Q′. Since by the previous proposition, the
holonomy is unaffected by subdividing the partition of [0, 1]2, we can assume
that the underlying subdivision of [0, 1]2 is the same for Q and Q′, thus that Q

and Q′ differ only with respect to the open set assignments.

Theorem 5.4 (Coherence law for 2-holonomy) Let Γ: [0, 1]2 → M be a
smooth map. Suppose Q and Q′ are given by the same subdivision of [0, 1]2 into
rectangles {QR}R∈R, and assignments iR and i′R respectively to each rectangle
QR such that Γ(QR) ⊂ UiR ∩ Ui′

R
. Then the respective holonomies of Γ are

related by the homotopy addition equation (2.4) for T ∈ D3, where T is given
by:

T ◦ δ−3 = H(Γ,Q) and T ◦ δ+3 = H(Γ,Q′)

and
T ◦ δ±i = τ(∂±i (Γ), ∂±i Q, ∂±i Q

′), i = 1, 2;

where ∂±i Q and ∂±i Q′ are the restrictions of Q and Q′ to the corresponding faces.
In other words the colouring T of D3 is flat.

Proof. Analogously to the procedure in Definition 5.1, but now in three
dimensions, we take the 3-path Γ × id[0,1], with its domain [0, 1]3 partitioned
into rectangular solids by the partition of the domain of Γ underlying Q and Q′.
We then reparametrize to replace the vertical surfaces and lines of the partition
by 3-paths that are constant horizontally or vertically, or both horizontally and
vertically. The flat cube T ∈ T3(G) is the composition of elementary flat cubes
of the following types.

To each 2-path ΓR, we assign (see Theorem 4.11)

T (ΓR,Q,Q
′) = T

(φiRi′R
,ηiRi′R

)

(AiR
,BiR

)

To each γ̂RS = ∂+
1 ΓR = ∂−1 ΓS we assign a version of the flat cube of Theorem

4.20, namely T (γ̂RS ,Q,Q
′) given by





∂−3 T (γ̂RS ,Q,Q
′) = τ̂(γiRiS ), ∂+

3 T (γ̂RS ,Q,Q
′) = τ̂(γi′Ri′S

)

∂−1 T (γ̂RS ,Q,Q
′) = τ(γiRi′R

), ∂+
1 T (γ̂RS ,Q,Q

′) = τ(γiSi′S
)

∂−2 T (γ̂RS ,Q,Q
′) = ψ(γ(0)iRiSi′Ri′S

), ∂+
2 T (γ̂RS ,Q,Q

′) = ψ(γ(1)iRiSi′Ri′S
)
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To each γRS = ∂+
2 ΓR = ∂−2 ΓS we assign a version of the flat cube of Theorem

4.20, namely T (γRS ,Q,Q
′) given by





∂−3 T (γRS ,Q,Q
′) = τ(γiRiS ), ∂+

3 T (γRS ,Q,Q
′) = τ(γi′Ri′S

)

∂−2 T (γRS ,Q,Q
′) = τ(γiRi′R

), ∂+
2 T (γRS ,Q,Q

′) = τ(γiSi′S
)

∂−1 T (γRS ,Q,Q
′) = ψ(γ(0)iRiSi′Ri′S

), ∂+
1 T (γRS ,Q,Q

′) = ψ(γ(1)iRiSi′Ri′S
)

Finally, to each pRSTU = ∂+
2 ∂

+
1 ΓR = ∂+

2 ∂
−
1 ΓS = ∂−2 ∂

+
1 ΓT = ∂−2 ∂

−
1 ΓU , we

assign the flat cube of Definition 3.1 (2) with open set indices iR, iS , iT , iU and
i′R, i

′
S , i

′
T , i

′
U . The result follows from the fact that the set of flat 3-cubes in

G can be turned into a strict triple groupoid; see 2.2.2.
As an immediate consequence we have the following non-trivial result:

Corollary 5.5 Let Γ, Q, Q′ be as in Theorem 5.4. If the open set assignments
iR and i′R agree on the rectangles along the boundary of [0, 1]2, then H(Γ, Q) =
H(Γ,Q′).

Proof. If we use condition 4 of Definition 3.1 and condition 1 of Definition
3.4 in equation (5.1) we can see that T ◦ δ±i each are identity 2-cubes in G for
i = 1, 2. Now compare with the homotopy addition equation (2.4).

Analogously it follows:

Corollary 5.6 Let Γ, Q, Q′ be as in Theorem 5.4. Suppose Γ(∂[0, 1]2) = x,
for some x ∈M , and that the open set assignments for all rectangles along the
boundary of [0, 1]2 are chosen to be the same, i.e. all equal to ix for Q and all
equal to i′x for Q′. Then we have:

H(Γ,Q) = (φixi′x
(x))

−1
⊲H(Γ,Q).

5.1.5 Invariance under (free) thin homotopy

Let M be a manifold with a local connection pair (A,B). It follows from The-

orem 4.5 that the two dimensional holonomy
(A,B)

H (Γ), where Γ: [0, 1]2 → M
is a smooth path, is invariant under thin homotopy. Now suppose that M is
equipped with a cubical G-2-bundle connection. In this subsection we will study
how H(Γ) varies under thin homotopy. We will consider a slightly more gen-
eral definition of thin homotopy (a generality that is needed to define Wilson
spheres).

Definition 5.7 Two smooth maps Γ,Γ′ : [0, 1]2 → M are said to be freely
thin homotopic if there exists a smooth map J : [0, 1]2 × [0, 1] → M such that
Rank(DvJ) ≤ 2, for each v ∈ [0, 1]3, and such that ∂−3 J = Γ and ∂+

3 J = Γ′.

Note that J is, in general, not a rank-2 homotopy since it does not satisfy the
conditions 1 and 2 of its definition; see 2.3.2.
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Theorem 5.8 (Invariance under free thin homotopy) Consider a free thin
homotopy J : [0, 1]3 → M with ∂−3 J = Γ and ∂+

3 J = Γ′. Let Q denote a sub-
division of [0, 1]3 into rectangular solids {QR}R∈R, using partitions of the three
[0, 1] factors, together with an assignment for each R ∈ R of iR ∈ I such that
J(QR) ⊂ UiR . Such subdivisions exist because of the Lebesgue Covering Lemma.
Then Q naturally induces subdivisions and open set assignments on each face of
[0, 1]3, denoted ∂±i Q, i = 1, 2, 3.

Then the holonomies H(Γ, ∂−3 Q) and H(Γ′, ∂+
3 Q), with respect to a fixed cubi-

cal G-2-bundle with connection B, are related by the homotopy addition equation
(2.4) for T (J,Q), where:

∂±i T (J,Q) = H(∂±i J, ∂
±
i Q), i = 1, 2, 3.

Proof. The proof is very similar to the proof of Theorem 5.4. By analogy
with the definition of holonomy, we reparametrize J to introduce additional 3-
paths for each face separating the rectangular solids, for each edge separating
these faces and for each point separating these edges. The additional 3-paths are
constant in one, two or all three of the directions (horizontal, vertical, upwards).
The cube T (J,Q) is the composition of flat cubes of various types which, for
the most part, we have already encountered in the proof of Theorem 5.4, or are
analogous versions of these obtained by rotation. The remaining flat cubes are
of the type appearing in Theorem 4.5, corresponding to JR, the restriction of J
to QR, reparametrized to be a 3-path, with the local connection pair (AiR , BiR),
for each R ∈ R. Note that the curvature 3-form vanishes, since J is thin.

The following analogue of Corollary 5.6 holds.

Corollary 5.9 Under the conditions of Theorem 5.8, suppose J is such that
J(∂[0, 1]2 ×{t}) = q(t), for some smooth map q : [0, 1] →M , with q(0) = x and
q(1) = x′. Suppose also that the open set assignments for the rectangular solids
along ∂[0, 1]2 × [0, 1] only depend on the upwards direction, i.e. they are given
by fixing ∂−1 ∂

−
2 Q. Then

H(Γ, ∂+
3 Q) =

(
H(q, ∂−1 ∂

−
2 Q)

)−1
⊲H(Γ, ∂−3 Q),

where H(q, ∂−1 ∂
−
2 Q) is defined in Definition 5.3.

5.1.6 Dihedral symmetry for the holonomy of general squares

Suppose that B is a dihedral cubical G-2-bundle over (M,U), with a dihedral
cubical connection (see definitions 3.3 and 3.5). Let (Γ,Q) be as in Definition
5.1, and let r be some element of the dihedral group D4 of the square. Then we
define Qr to be the subdivision of [0, 1]2 with open set assignments induced on
Γ ◦ r−1 by Q.

Theorem 5.10 We have:

H(Γ ◦ r−1,Qr) = r(H(Γ,Q)).
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Proof. This follows from theorems 4.4 and 4.12 and the definition of a dihedral
cubical G-2-bundle with a dihedral connection; definitions 3.3 and 3.5. Note
that the action of r in D2(G) is a double-groupoid morphism (see 2.2.1), so that
it is enough to check the equation for all the 2-paths appearing in the definition
of H(Γ,Q) and the corresponding 2-cubes of D2(G) - see Definition 5.1.

5.1.7 Dependence of the surface holonomy on the cubical G-2-bundle
with connection equivalence class

Let B be a cubical G-2-bundle with connection over (M,U), and recall from
subsection 4.3 the cubical G-2-bundle with connection BV obtained from B and

a subdivision V of the cover U. Consider the holonomy
B

H (Γ,Q) of Definition
5.1. Let QV denote the same subdivision of [0, 1]2 into rectangles {QR}R∈R as
Q, with assignments R 7→ aR such that Γ(QR) ⊂ VaR

, where aR ∈ SiR (using
the notation at the end of subsection 4.3). Then it is clear from Definition 5.1
and Proposition 5.2 that we have:

BV

H (Γ,QV) =
B

H (Γ,Q).

Thus we will only consider equivalences of cubical G-2-bundles with connection
with respect to a fixed cover U of M .

Suppose that B and B′ are equivalent cubical G-2-bundles with connection,
with the equivalence given by the triple (Φi, Ei,Ψij) of subsection 4.3.2. Note
that condition (1) of the equivalence, in view of equation (4.3), may be rewritten
as the following equations:

(A′
i, B

′
i) = (Ai, Bi) ⊳ (Φi, Ei) (A′

j , B
′
j) = (A′

i, B
′
i) ⊳ (φ′ij , η

′
ij)

(Aj , Bj) = (Ai, Bi) ⊳ (φij , ηij) (A′
j , B

′
j) = (Aj , Bj) ⊳ (Φj , Ej)

We now proceed analogously to equation (5.1). Let γ be a 1-path, and let
Q, be a subdivision of [0, 1] into subintervals {qr}r=1,...,s, with an assignment
r 7→ ir ∈ I, such that γ(qr) ⊂ Uir . Let γr denote the restriction of γ to qr,
rescaled and reparametrized to be a 1-path, and denote the points separating
the images of γr by xr. We define:

(B,B′)
s (γ,Q)

.
= τ

(Φi1
,Ei1

)

Ai1
(γ1)(Ψ,Φ)i1i2(x1)τ

(Φi2
,Ei2

)

Ai2
(γ2)(Ψ,Φ)i2i3(x2) . . . τ

(Φis ,Eis )
Ais

(γs).

(5.2)
Then the proof of Theorem 5.4 can be reformulated to give the dependence of
the holonomy on changing B within the same equivalence class.

Theorem 5.11 (Behaviour under cubical G-2-bundle equivalences) Let
B and B′ be equivalent cubical G-2-bundles with connection, with the equivalence
given by the triple (Φi, Ei,Ψij). Let Γ: [0, 1]2 → M be a smooth map and sup-
pose Q is a subdivision of [0, 1]2 into rectangles Q = {QR}R∈R, together with
assignments R 7→ iR such that Γ(QR) ⊂ UiR . Then the holonomies of (Γ,Q)
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with respect to B and B′ are related by the homotopy addition equation (2.4) for
T ∈ D3, where T is given by:

T ◦ δ−3 =
B

H (Γ,Q) and T ◦ δ+3 =
B

′

H (Γ,Q)

and

T ◦ δ±i =
(B,B′)
s (∂±i (Γ), ∂±i Q).

We have the following analogue of Corollary 5.6.

Corollary 5.12 Given the conditions of Theorem 5.11, suppose Γ(∂[0, 1]2) = x,
for some x ∈M , and that the open set assignments for all rectangles along the
boundary of [0, 1]2 are chosen to be the same, say ix. Then

B
′

H (Γ,Q) = (Φix(x))
−1
⊲

B

H (Γ,Q).

5.2 Two types of Wilson surfaces

Let B be a cubical G-2-bundle with connection over (M,U). Let Γ: [0, 1]2 →M
be a 2-path such that Γ(∂[0, 1]2) = x for some x ∈ M . Thus Γ factors through
a map f : S2 → M . We say that Γ and Γ′ are equivalent if the corresponding
maps f and f ′ from S2 to M are related by f ′ = f ◦g where g is an orientation-
preserving diffeomorphism of S2.

Let Q be a subdivision of [0, 1]2 into rectangles {QR}R∈R with open set as-
signments R 7→ iR such that Γ(QR) ⊂ UiR , and suppose that these assignments
are the same, say ix, for all rectangles along the boundary of [0, 1]2.

Definition 5.13 With B, Γ and Q as above, we define the Wilson sphere func-
tional to be

WB(Γ,Q) =
B

H (Γ,Q) ∈ ker ∂ ⊂ E.

Theorem 5.14 Up to acting by elements of G, the Wilson sphere functional
WB(Γ,Q) is independent of the choice of Q, the choice of Γ within the same
equivalence class, and the choice of B within the same equivalence class. For B

a dihedral bundle with dihedral connection and r ∈ D4 an orientation reversing
element, we have, following the notation of Theorem 5.10,

WB(Γ ◦ r−1,Qr) = (WB(Γ,Q))
−1
.

Proof. The statement for Q follows from subsection 5.1.2 and Corollary 5.6.
Since the mapping class group of S2 is {±1}, when Γ and Γ′ are equivalent, then
they are isotopic. Thus there exists a thin free homotopy J : [0, 1]3 → M of
the type appearing in Corollary 5.9 (J is thin since it factors through a smooth
family of diffeomorphisms of S2), and satisfying ∂−3 J = Γ and ∂+

3 J = Γ′. Thus
the statement for Γ follows from Corollary 5.9. The statement for B follows
from Corollary 5.12. The final statement, when the bundle and connection are
dihedral, is an immediate consequence of Theorem 5.10.
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If the image of Γ is an embedded sphere Σ in M , then any two orientation-
preserving parametrizations of Σ are equivalent. In this case we may state the
result as follows:

Theorem 5.15 (Embedded Wilson Spheres) The holonomy of an oriented
embedded sphere Σ does not depend on the chosen parametrization of Σ up to
acting by elements of G. We denote it by WB(Σ).

This may have applications in 2-knot theory, c.f. [W, CR].
With B as before, suppose now that Γ is such that ∂uΓ = ∂dΓ and ∂lΓ = ∂rΓ.

Then the 2-path Γ factors through a map f from the torus T 2 to M . We say
that Γ and Γ′ are equivalent if the corresponding maps f and f ′ from T 2 to M
are related by f ′ = f ◦ g where g is an automorphism of T 2 which is isotopic to
the identity (note that the mapping class group of the torus is GL(2,Z)).

Let Q be a subdivision of [0, 1]2 into rectangles {QR}R∈R with open set as-
signments R 7→ iR such that Γ(QR) ⊂ UiR , and suppose that these assignments
are such that they match along the upper and lower boundary of [0, 1]2, and
along the left and right boundary of [0, 1]2, i.e. ∂uQ = ∂dQ and ∂lQ = ∂rQ.

Definition 5.16 With B, Γ and Q as above, we define the Wilson torus func-
tional to be

WB(Γ,Q) =
B

H (Γ,Q) ∈ ∂−1(G(1)) ⊂ E,

where G(1) is the commutator subgroup of G.

Note that the value of the Wilson torus functional indeed belongs to ∂−1
(
G(1)

)
,

since

∂(
B

H (Γ,Q)) = [
B

H (∂dΓ, ∂dQ)),
B

H (∂rΓ, ∂rQ))].

Analogous arguments to the proof of Theorem 5.14, now using Theorem 5.4,
Theorem 5.8 and Theorem 5.11, give:

Theorem 5.17 The Wilson torus functional WB(Γ,Q) is independent of the
choice of Q, the choice of Γ within the same equivalence class , and the choice
of B within the same equivalence class, up to changes of the form of the following
simultaneous horizontal and vertical conjugation:

WB(Γ,Q) 7→
p e−v

2 q

e1 WB(Γ,Q) e−h
1

x e2 y

.

Remark 5.18 If the image of Γ is an embedded torus Σ in M , then unlike
in the case of the sphere, the holonomy of Σ will in general depend on the
mapping class of Γ and not just on the oriented embedded surface itself. This is
a consequence of the fact that the mapping class group of the torus is GL(2,Z)
rather than {±1}, which is the case of the sphere.
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