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Using a suitable decomposition of the null hypothesis of the sphericity test for several blocks of variables, into a sequence

of conditionally independent null hypotheses, we show that it is possible to obtain the expressions for the likelihood ratio

test statistic, for its h-th null moment and for the characteristic function of its logarithm. The exact distribution of the

logarithm of the likelihood ratio test statistic is obtained in the form of a sum of a Generalized Integer Gamma distribution

with the sum of a given number of independent Logbeta distributions, taking the form of a single Generalized Integer

Gamma distribution when each set of variables has two variables. The development of near-exact distributions arises, from

the previous decomposition of the null hypothesis and from the consequent induced factorization of the characteristic

function, as a natural and practical way to approximate the exact distribution of the test statistic. A measure based on the

exact and approximating characteristic functions, which gives an upper bound on the distance between the corresponding

distribution functions, is used to assess the quality of the near-exact distributions proposed and to compare them with an

as ym ptotic appr oximation b as ed on Box’ s m etho d.
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1. Introduction

The block sphericity test is a very interesting generalization of the standard sphericity test with application in several statistical

studies mainly when it is necessary to test if in a set of p variables, from a multivariate Normal population, we have independence

among all of the variables and if in each of the k groups of variables, the i-th of which with pi variables (i = 1, . . . , k), all the pi

variables have the same variance, that is, the k groups of variables are independent and in each group the sphericity assumption

holds. One example of application is in testing the error structure in Linear and Nonlinear Mixed Models which are becoming

more and more popular tools with applications in areas like Economics, Psychology, Biology, Agronomy, Genetics, Epidemiology

and Medicine.

The normality assumptions under which the l.r.t. (likelihood ratio test) statistic is derived may seem too restrictive. However

we should bear in mind the results in [2], [3], [1], [9] and [10], which show that l.r.t. statistic is the the same when the underlying

distributions for the sample is multivariate elliptically contoured and left orthogonal-invariant distributions.
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We strongly believe that it is now a good time for a fresh and new look into this test. By showing that the null hypothesis of

the test may be decomposed into a sequence of null hypotheses, and that this decomposition

- allows the obtention of the l.r.t. statistic and the expression for the h-th null moment of the l.r.t. statistic,

- induces a factorization on the c.f. (characteristic function) of the logarithm of the l.r.t. statistic which may be used as a

basis to develop very precise approximations to the exact distribution of this statistic (see [7]),

we therefore aim at developing very precise near-exact distributions for the l.r.t. statistic for the block sphericity test. These are

distributions that

- are built using a new technique which combines a decomposition of the exact c.f., most often a factorization, with keeping

most of it unchanged and approximating asymptotically only a smaller part of it, often using the well known matching

moments technique (see Section 4),

- may be used for statistics which have highly complex distributions, being easy to use when decompositions of the null

hypothesis are considered,

- have very good asymptotic properties not only in terms of the sample size but also when other parameters involved, such

as the number of variables, increase their values,

- may be implemented using simple computational resources and therefore may be used in statistical studies for a large

number of practical problems.

2. Another way of looking into the null hypothesis

In this test we consider a sample of size N from a p−variate normal population, Np(µ , Σ) and we want to test the null hypothesis

H0 : Σ = diag
(
σ2i Ipi , i = 1, . . . , k

)
(1)

with 1 ≤ k ≤ p = p1 + p2 + · · ·+ pk .
The null hypothesis in (1) may be decomposed into a sequence of two null hypotheses,

H0 = H0b|0a ◦ H0a (2)

where

H0a : Σi j = 0 for i �= j (i , j = 1, . . . , k) , (3)

is the null hypothesis for testing the independence of k groups of r.v.’s (random variables) and

H0b|0a : Σi i = σ
2
i Ipi , i = 1, . . . , k, (k independent sphericity tests) (4)

assuming that H0a is true

is the null hypothesis for testing sphericity in each of the k groups of r.v.’s.

Using this decomposition we will be able to derive, in a very simple way, the l.r.t. statistic to test the null hypothesis in (1) as

product of the l.r.t. statistics used to test the null hypotheses in (3) and (4). We have this way, for the modified l.r.t. statistic,

λ∗ =


 |A|n/2

k∏
i=1

|Ai i |n/2




︸ ︷︷ ︸
λ∗a

×
(
k∏
i=1

|Ai i | n2
(tr Ai i)

npi
2

(pi)
npi /2

)
︸ ︷︷ ︸

λ∗
b|a

(5)

=

k∏
i=1

|A|n/(2k)

(tr Ai i)
npi
2

(pi)
npi /2 (6)
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where λ∗a and λ
∗
b|a are modified l.r.t. statistics used to test the null hypotheses in (3) and (4) (see [1]), A is the p × p matrix of

corrected sums of squares and products formed from the sample or alternatively the sample variance-covariance matrix or the

MLE of Σ, n = N − 1 is the number of degrees of freedom of the Wishart distribution of A and Ai i denotes the i-th diagonal
block of order pi of A.

Given the independence of the statistics λ∗a and λ
∗
b|a in (5), under H0, we may use the expression for the h-th null moment of

these statistics (see [1]) to derive the expression for the h-th null moment of λ∗ as

E
[
(λ∗)h

]
=

Γp(
1
2n +

1
2hn)

Γp(
1
2
n)

k∏
i=1

Γpi (
1
2n)

Γpi (
1
2
n + 1

2
hn)︸ ︷︷ ︸

E[(λ∗a)h]

×
k∏
i=1

p
hpi n/2
i

Γ
(
npi
2

)
Γ
(
npi
2 +

pi hn
2

) Γpi ( n2 + nh
2

)
Γpi

(
n
2

)
︸ ︷︷ ︸

E

[(
λ∗
b|a

)h]

(7)

=
Γp(

1
2
n + 1

2
hn)

Γp(
1
2n)

k∏
i=1


phpi n/2i

Γ
(
npi
2

)
Γ
(
npi
2 +

pi hn
2

)

 (8)

where

Γp(z) = π
p(p−1)/4

p∏
j=1

Γ

(
z − j − 1

2

)

is the multivariate Gamma function.

3. The exact distribution of W = − logλ∗ and λ∗

In the complex case, the exact null distribution of the l.r.t. statistic was obtained by [16] as a Beta series or as a chi-square

series and by [15] based on the Meijer’s G-function which is almost impossible to use in practical terms and as a series of Psi

and Zeta functions. However the distribution of the l.r.t. statistic in the complex case is indeed and surprisingly a bit simpler to

handle. For the real case [14] obtained an asymptotic distribution for the multisample block sphericity l.r.t. statistic, however

although giving the expressions for the h-th moment he does not present any expressions for the exact p.d.f. or c.d.f..

In this section we will show that the exact distribution λ∗ in (6) is the same as the distribution of

{
p−1∏
j=1

e−Zj
}{

p+m∗∏
j=1

(Yj)
n/2

}
(9)

where Zj and Yj are all independent, with

Zj ∼ Γ
(
rj ,
n − j
n

)
and Yj with Beta distributions and where p = p1 + p2 + · · ·+ pk , rj given in (21) and

m∗ =
⌊
�

2

⌋
(10)

where � is the number of odd pi , that is the number of sets with an odd number of variables. More precisely, the second product

in (9) should indeed be writen as

{
m∗∏
j=1

(
Y ∗j
)n/2}


k∏
i=1



pi−k∗i∏
j=1

(
Y ∗∗i j

)n/2



pi∏
j=pi−k∗i +1

(
Y ∗∗∗i j

)n/2

 (11)
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where Y ∗j , Y
∗∗
i j and Y

∗∗∗
i j are all independent with

Y ∗j ∼ Beta
(
n−1
2
, 1
2

)
, j = 1, . . . , m∗

Y ∗∗i j ∼ Beta
(
n
2 ,
j−1
pi

)
, i = 1, . . . , k ; j = 1, . . . , pi − k∗i

Y ∗∗∗i j ∼ Beta
(
n+1
2
, j−1
pi
− 1
2

)
, i = 1, . . . , k ; j = pi − k∗i + 1, . . . , pi .

From (7) above we may obtain a factorization of the c.f. of the r.v. W = − logλ∗,

ΦW (t) = E
[
eit(− logλ

∗)
]
= E

[
(λ∗)−it

]
=

Γp(
1
2n − 1

2 itn)

Γp(
1
2
n)

k∏
i=1

Γpi (
1
2n)

Γpi (
1
2
n − 1

2
itn)︸ ︷︷ ︸

Φ− logλ∗a (t)

×
k∏
i=1

p
−itpi n/2
i

Γ
(
npi
2

)
Γ
(
npi
2 − pi itn

2

) Γpi ( n2 − nit
2

)
Γpi

(
n
2

)
︸ ︷︷ ︸

Φ− logλ∗
b|a
(t)

, (12)

where Φ− logλ∗a(t) is the c.f. of − logλ∗a and Φ− logλ∗b|a(t) is the c.f. of − logλ
∗
b|a. In the next Subsection we will introduce new

factorizations of the above c.f.’s which will be fundamental for the development of near-exact distributions for the l.r.t. statistic.

3.1. The c.f.’s of − logλ∗a and of − logλ∗b|a – the general case

According to [6] and [13], the c.f. Φ− logλ∗a(t) in (12) may be written as

Φ− logλ∗a(t) =

{
p−1∏
j=2

(
n − j
n

)zj (n − j
n
− it

)−zj}
︸ ︷︷ ︸

Φ1,1(t)

×
{
Γ
(
n
2

)
Γ
(
n
2 − 1

2 − n
2 it

)
Γ
(
n
2
− n
2
it
)
Γ
(
n
2
− 1
2

)}m
∗

︸ ︷︷ ︸
Φ1,2(t)

(13)

with m∗ given by (10) and

zj =




0 j = 2

h1 −m∗ j = 3

h2 +m
∗ j = 4

zj−2 + hj−2 j = 5, . . . , p

(14)

with

hj = (# of pi (i = 1, . . . , k) ≥ j)− 1 , j = 1, . . . , p − 2 . (15)

The c.f. Φ1,1(t) in (13) corresponds to the sum of p − 2 independent r.v.’s with Gamma distribution and integer shape parameters
zj given by (14), that is a GIG (Generalized Integer Gamma) distribution of depth p − 2 (see [5] and Appendix A), while Φ1,2(t)
is the c.f. of the sum of m∗ independent r.v.’s with Logbeta distribution with parameters (n − 1)/2 and 1/2, multiplied by n/2.
Given the independence, under H0a in (3), of the k sphericity tests in (4), the c.f. of − logλ∗b|a for λ∗b|a in (5) may be obtained

as the product of k c.f.’s of the negative logarithm of the l.r.t. statistics to test each of the k sphericity hypotheses in (4).

Near-exact distributions for the l.r.t. statistic to test sphericity were developed by [12] and [8]. In [8], the authors show that for

a group of pi variables the c.f. of the negative logarithm of the l.r.t. statistic is given by

Φ∗i (t) =

pi−1∏
j=1

(
n − j
n

)⌊
pi−j+1
2

⌋ (
n − j
n
− it

)−⌊pi−j+12 ⌋

︸ ︷︷ ︸
Φ∗2,1(t)

×
pi∏

j=pi−k∗i +1

Γ
(
n
2
+ j−1
pi

)
Γ
(
n+1
2
− n
2
it
)

Γ
(
n+1
2

)
Γ
(
n
2+

j−1
pi
− n
2 it

) pi−k∗i∏
j=1

Γ
(
n
2
+ j−1
pi

)
Γ
(
n
2
− n
2
it
)

Γ
(
n
2

)
Γ
(
n
2+

j−1
pi
− n
2 it

)
︸ ︷︷ ︸

Φ∗2,2(t)

(16)

where k∗i = �pi/2�. In (16) above, Φ∗2,1(t) is the c.f. of a GIG distribution of depth pi − 1, with rate parameters (n − j)/n and
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shape parameters
⌊
pi−j+1
2

⌋
(j = 1, . . . , pi − 1) and Φ∗2,2(t) is the c.f. of the sum of pi independent Logbeta r.v.’s, k∗i of which

with parameters (n + 1)/2 and (j − 1)/pi − 1/2 (j = pi − k∗i + 1, . . . , pi) and the remaining pi − k∗i with parameters n/2 and
(j − 1)/pi (j = 1, . . . , pi − k∗i ). The c.f. of − logλ∗b|a may thus be given by

Φ− logλ∗
b|a(t) =

k∏
i=1

Φ∗i (t)

=




k∏
i=1

pi−1∏
j=1

(
n − j
n

)⌊
pi−j+1
2

⌋ (
n − j
n
− it

)−⌊pi−j+12 ⌋


×



k∏
i=1

pi∏
j=pi−k∗i +1

Γ
(
n
2+

j−1
pi

)
Γ
(
n+1
2 − n

2 it
)

Γ
(
n+1
2

)
Γ
(
n
2
+ j−1
pi
− n
2
it
) pi−k∗i∏

j=1

Γ
(
n
2+

j−1
pi

)
Γ
(
n
2 − n

2 it
)

Γ
(
n
2

)
Γ
(
n
2
+ j−1
pi
− n
2
it
)



=

{
p−1∏
j=1

(
n − j
n

)r∗j (n − j
n
− it

)−r∗j }
︸ ︷︷ ︸

Φ2,1(t)

×



k∏
i=1

pi∏
j=pi−k∗i +1

Γ
(
n
2
+ j−1
pi

)
Γ
(
n+1
2
− n
2
it
)

Γ
(
n+1
2

)
Γ
(
n
2+

j−1
pi
− n
2 it

) pi−k∗i∏
j=1

Γ
(
n
2
+ j−1
pi

)
Γ
(
n
2
− n
2
it
)

Γ
(
n
2

)
Γ
(
n
2+

j−1
pi
− n
2 it

)

︸ ︷︷ ︸

Φ2,2(t)

(17)

with r ∗j given by

r ∗j =




∑k
i=1 r

∗∗
i ,j j = 1 . . . , pmax − 1

0 j = pmax , . . . , p − 1
(18)

where, for i = 1, . . . , k

r ∗∗i ,j =




⌊
pi−j+1
2

⌋
j = 1, . . . , pi

0 j = pi + 1, . . . , pmax − 1 (19)

with pmax = max{p1, . . . , pk}.
The c.f.’s in (13) and (17) show that both the exact distribution of − logλ∗a and − logλ∗b|a may be seen as the sum of

independent Gamma r.v.’s with shape parameters integers with the sum of independent Logbeta r.v.’s multiplied by n/2.

We have thus the c.f. of W = − logλ∗ = −(logλ∗a + logλ∗b|a) given by the following theorem.

Theorem 3.1

The c.f. of W = − logλ∗ may be written as

ΦW (t) =

{
p−1∏
j=1

(
n − j
n

)rj (n − j
n
− it

)−rj}
︸ ︷︷ ︸

ΦW1
(t)

×Φ1,2(t) × Φ2,2(t)︸ ︷︷ ︸
ΦW2

(t)

(20)

with Φ1,2(t) and Φ2,2(t) given by (13) and (17) respectively, and where rj are given by

rj =

{
r ∗j j = 1

r ∗j + zp−j j = 2, . . . , p − 1 , (21)

with zj given by (14) and r
∗
j given by (18).

Proof

Since W = − logλ∗ = −(logλ∗a + logλ∗b|a) we have ΦW (t) = Φ− logλ∗a(t)×Φ− logλ∗b|a(t) with Φ− logλ∗a(t) given by (13) and

Φ− logλ∗
b|a(t) given by (17). �

5
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From Theorem 3.1 we may say that the exact distribution of λ∗ may be seen as the distribution of the product of two

independent r.v.’s, e−W1 and e−W2 , where W1 has the distribution of the sum of p − 1 independent Gamma r.v.’s with shape
integer parameters and W2 has the distribution of the sum of p +m

∗ independent Logbeta r.v.’s multiplied by n/2 (see (9)).

3.2. Particular cases of interest

3.2.1. When at most one of the pi is odd

In the case where at most one of the pi is odd, m
∗ in (10) is equal to zero and so the c.f. W is given by

ΦW (t) =

{
p−1∏
j=1

(
n − j
n

)rj (n − j
n
− it

)−rj}
︸ ︷︷ ︸

ΦW1
(t)

× Φ2,2(t)︸ ︷︷ ︸
ΦW2

(t)

(22)

with Φ2,2(t) given by (17).

3.2.2. When all pi = 2

For pi = 2, i = 1, . . . , k, we have Φ2,2(t) = 1 , ∀ t ∈ R and also m∗ in (10) equal to zero, so that Φ1,2(t) in (13) vanishes

and thus the c.f. of W is, in this case, given by

ΦW (t) =

2k−1∏
j=1

(
n − j
n

)rj (n − j
n
− it

)−rj
,

with

rj =

{
k j = 1

k − 1− ⌊
j−2
2

⌋
j = 2, . . . , 2k − 1 . (23)

In this case, we have a single GIG distribution as the exact distribution of W and from the expression of the p.d.f (probability

density function) and c.d.f. (cumulative distribution function) of W = − logλ∗ we may obtain, by simple transformation, the
p.d.f and c.d.f. of λ∗. Thus, a distribution with c.d.f. (using the notation in Appendix A)

1− F GIG
(
− log x |r1, . . . , r2k−1; n − 1

n
, . . . ,

n − (2k − 1)
n

)
,

and p.d.f

f GIG
(
− log x |r1, . . . , r2k−1; n − 1

n
, . . . ,

n − (2k − 1)
n

)1
x
,

where the shape parameters rj , j = 1, . . . , 2k − 1 are given by (23), and 0 < x < 1 represents the running value of the statistic
λ∗ = e−W , is the exact distribution for λ∗, when pi = 2 for all i = 1, . . . , k.

In the Figure 1 we present examples of p.d.f.’s and c.d.f.’s considering different sample sizes and for pi = 2 for all i = 1, 2, 3.
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Figure 1. Plots of the p.d.f’s and c.d.f’s for GIG distributions when pi = 2 for all i = 1, 2, 3
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In the next Section we will obtain near-exact distributions for λ∗ that have very good asymptotic properties not only in terms

of sample size but also in terms of the number of variables and the number of sets of variables involved.

4. Near-exact distributions for W and λ∗

The near-exact distributions we will develop in this paper will have c.f.’s of the form

ΦW ∗(t) = ΦW1(t)︸ ︷︷ ︸
GIG distribution

×ΦW ∗2 (t) (24)

where ΦW1(t) is the same as in (20) above and ΦW ∗2 (t) is the c.f. that we will use to approximate the c.f. ΦW2(t) in (20).

We propose that ΦW ∗2 (t) may be either the c.f. of a single Gamma distribution or of a mixture of two or three Gamma

distributions, depending on the number of exact moments we want to match. The c.f. ΦW ∗2 (t) will indeed have, accordingly, the

same 2, 4 or 6 first derivatives (with respect to t at t = 0) as the part of the exact c.f. of W that will be replaced, that is,

ΦW2(t) in (20). In other words, we will have

d j

dt j
ΦW ∗2 (t)

∣∣∣∣
t=0

=
d j

dt j
ΦW2(t)

∣∣∣∣
t=0

, j = 1, . . . , h (25)

for h = 2, 4 or 6, according to the case of ΦW ∗2 (t) being the c.f. of a single Gamma distribution, or the c.f. of a mixture of 2 or

3 Gamma distributions with the same rate parameter, that is,

ΦW ∗2 (t) =

h/2∑
k=1

pk λ
sk (λ− it)−sk , (26)

with weights pk > 0 (k = 1, . . . , h/2 with h = 2, 4 or 6) and
∑h/2
k=1 pk = 1.

This way we will be able to write the near-exact c.f. of the negative logarithm of the l.r.t. statistic for the one sample

block sphericity test in the form in (24) where ΦW ∗2 (t) is either the c.f. of a Gamma distribution or the c.f. of a mixture of 2

or 3 Gamma distributions, being thus the near-exact distributions obtained in this way, correspondingly a GNIG (Generalized

Near-Integer Gamma) distribution (see [6] and Appendix A) of depth p, or a mixture of two or three GNIG distributions of the

same depth, which have very manageable expressions, allowing this way for an easy computation of very accurate near-exact

quantiles. From the near-exact distributions obtained for W , a GNIG distribution or a mixture of two or three GNIG distributions

of depth p (for h = 2, 4 or 6), by a simple transformation we may obtain the expressions for the near-exact distributions for λ∗

with p.d.f.’s and c.d.f.’s given in the next theorem (using the notation in Appendix A)

Theorem 4.1

The near-exact distributions for λ∗ are either a exponential GNIG distribution or a mixture of two or three exponential GNIG

distributions of depth p and for h = 2, 4 or 6 with p.d.f. for λ∗ given by

h/2∑
ν=1

pν f
GNIG

(
− logw |r1, . . . , rp−1, sν ; n − 1

n
, . . . ,

n − p + 1
n

, λ ; p
) 1
w

and c.d.f. for λ∗ given by

1−
h/2∑
ν=1

pν F
GNIG

(
− logw |r1, . . . , rp−1, sν ; n − 1

n
, . . . ,

n − p + 1
n

, λ ; p
)

7
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with rj given by (21), and where for h = 2

λ =
m1

m2 −m21
and s1 =

m21
m2 −m21

(27)

with

mj = i
−j ∂

j

∂t j
ΦW2(t)

∣∣∣∣
t=0

, j = 1, 2 ,

and for h = 4 or h = 6 (according to the case of ΦW ∗2 (t) being the c.f. of a mixture of 2 or 3 Gamma distributions with the

same rate parameter) the values of pν , sν and λ are obtained from the numerical solution of the system of equations in (25),

that is
d j

dt j
ΦW ∗2 (t)

∣∣∣∣
t=0

=
d j

dt j
ΦW2(t)

∣∣∣∣
t=0

, j = 1, . . . , h

with

ph/2 = 1−
h/2−1∑
k=1

pk .

Proof

See Appendix B. �

Some authors use different versions of this statistic. For example, instead of the l.r.t. statistic use could have used (λ∗)N/n.

However, we may note that we can easily obtain both the distribution and quantiles of different powers of λ∗ from the ones for

λ∗.

5. Numerical studies

In order to evaluate the quality of the near-exact distributions proposed in this work we will use a measure of proximity between

c.f.’s which is also a measure of proximity between c.d.f.’s. This measure is,

∆ =
1

2π

∫ ∞

−∞

∣∣∣∣ΦW (t)−ΦW ∗(t)t

∣∣∣∣ dt , (28)

where ΦW (t) represents the exact c.f. of the negative logarithm of the modified l.r.t. statistic and ΦW ∗(t) represents an

approximate c.f. for the same statistic. We have that, taking S for the support of W ,

max
y∈S
|FW (y)− FW ∗(y)| ≤ ∆ , (29)

where FW (y) represents the exact c.d.f. of W and FW ∗(y) represents the c.d.f. corresponding to W
∗. For more details on the

measure see for example [12].

We intend to assess the performance of the near-exact approximations developed in this paper by computing the values of the

measure ∆ between the exact distribution of W = − log λ∗ and the three proposed near-exact approximations. In the calculations
we use the exact c.f. in (12) and the near-exact c.f.’s corresponding to the near-exact distributions in Theorem 4.1 and given

by (24) and (26) for h = 2, 4 and 6. We will denote respectively by GNIG, M2GNIG and M3GNIG the near-exact distributions

corresponding to the c.f.’s in (24) and (26) with h = 2, 4 and 6. In order to better assess the quality of the new near-exact

distributions proposed in this paper, we will also use the asymptotic approximation presented by [16] based on [4] method, that

we will denote by Box .

We may observe from Tables 1, 2 and 3 that the near-exact approximations present in every case considered much better

results than the approximation given in [16] at the same time the near-exact distributions reveal good asymptotic properties for

increasing sample sizes (see Table 2) and also for increasing number of variables (see Tables 1 and 3).
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Table 1. Values of ∆ for the approximating distributions for W =− logλ∗,
for increasing number of variables (p), with n = p + 2

Measure ∆

p pi k n GNIG M2GNIG M3GNIG Box

10 {3,3,4} 3 12 7.9× 10−7 4.2× 10−11 4.4× 10−13 1.5× 10−1
12 {5,5,2} 3 14 3.9× 10−7 1.7× 10−11 1.5× 10−14 2.0× 10−1
14 {5,5,4} 3 16 2.2× 10−7 6.7× 10−12 2.2× 10−15 2.6× 10−1
20 {7,7,6} 3 22 5.3× 10−8 6.9× 10−13 5.4× 10−17 4.5× 10−1
50 {15,15,20} 3 52 1.0× 10−9 9.5× 10−16 2.4× 10−21 1.4× 10 0

Table 2. Values of ∆ for the approximating distributions for W =− logλ∗,
for increasing sample size (n)

Measure ∆

p pi k n GNIG M2GNIG M3GNIG Box

10 {3,3,4} 3 12 7.9× 10−7 4.2× 10−11 4.4× 10−13 1.5× 10−1
10 {3,3,4} 3 20 5.8× 10−7 4.5× 10−11 2.6× 10−13 4.2× 10−2
10 {3,3,4} 3 50 1.3× 10−7 6.4× 10−12 5.1× 10−15 1.3× 10−2
10 {3,3,4} 3 100 3.5× 10−8 9.7× 10−13 3.5× 10−16 6.1× 10−3

Table 3. Values of ∆ for the approximating distributions for W =− logλ∗,
for increasing k and p

Measure ∆

p pi k n GNIG M2GNIG M3GNIG Box

9 {4,5} 2 11 1.3× 10−6 5.1× 10−10 9.1× 10−14 1.3× 10−1
10 {4,4,2} 3 12 6.8× 10−7 5.0× 10−11 1.2× 10−14 1.5× 10−1
15 {5,4,4,2} 4 17 1.1× 10−7 5.7× 10−12 7.9× 10−16 2.9× 10−1
20 {6,4,4,4,2} 5 22 3.4× 10−8 4.2× 10−13 3.8× 10−17 4.5× 10−1
50 {30,6,4,4,4,2} 6 52 1.5× 10−10 1.8× 10−16 5.7× 10−21 1.4× 10 0

6. Conclusions

The decomposition of the null hypothesis for testing block sphericity in a sequence of null hypotheses, is a practical and effective

tool not only to derive the l.r.t. statistic but also the expression of the h-th null moment. But, yet more important, the induced

factorization on the c.f. of the logarithm of the test statistic can be used to obtain very well fit near-exact distributions. Numerical

studies show that these near-exact approximations are very accurate and at the same time reveal very good asymptotic properties

both for increasing sample sizes and number of variables.
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A. Appendix

The GIG and GNIG distributions

We will use this Appendix to establish some notation concerning distributions used in the paper, as well as to give the

expressions for the p.d.f.’s (probability density functions) and c.d.f.’s (cumulative distribution functions) of the GIG (Generalized

Integer Gamma) and GNIG (Generalized Near-Integer Gamma) distributions.

We will say that the r.v. X has a Gamma distribution with rate parameter λ > 0 and shape parameter r > 0, if its p.d.f. may

be written as

fX(x) =
λr

Γ(r )
e−λx x r−1 , (x > 0)

and we will denote this fact by

X ∼ Γ(r, λ) .

Let

Xj ∼ Γ(rj , λj ) j = 1, . . . , p

be p independent r.v.’s with Gamma distributions with shape parameters rj ∈ IN and rate parameters λj > 0, with λj �= λj ′ , for
all j, j ′ ∈ {1, . . . , p}. We will say that then the r.v.

Y =

p∑
j=1

Xj

has a GIG distribution of depth p, with shape parameters rj and rate parameters λj , (j = 1, . . . , p), and we will denote this fact

by

Y ∼ GIG(rj , λj ; p) .

The p.d.f. and c.d.f. (cumulative distribution function) of Y are respectively given by (Coelho, 1998)

f GIG(y |r1, . . . , rp;λ1, . . . , λp; p) = K
p∑
j=1

Pj (y) e
−λj y , (y > 0) (30)

and

F GIG(y |r1, . . . , rj ;λ1, . . . , λp; p) = 1−K
p∑
j=1

P ∗j (y) e
−λj y , (y > 0) (31)

where

K =

p∏
j=1

λ
rj
j , Pj (y) =

rj∑
k=1

cj,k y
k−1 (32)

and

P ∗j (y) =
rj∑
k=1

cj,k (k − 1)!
k−1∑
i=0

y i

i!λk−ij

with

cj,rj =
1

(rj − 1)!
p∏
i=1
i �=j

(λi − λj)−ri , j = 1, . . . , p , (33)

and

cj,rj−k =
1

k

k∑
i=1

(rj − k + i − 1)!
(rj − k − 1)! R(i , j, p) cj,rj−(k−i) ,

(k = 1, . . . , rj − 1; j = 1, . . . , p)
(34)

where

R(i , j, p) =

p∑
k=1
k �=j

rk (λj − λk)−i (i = 1, . . . , rj − 1) . (35)

10
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The GNIG (Generalized Near-Integer Gamma) distribution of depth p + 1 (Coelho, 2004) is the distribution of the r.v.

Z = Y1 + Y2

where Y1 and Y2 are independent, Y1 having a GIG distribution of depth p and Y2 with a Gamma distribution with a non-integer

shape parameter r and a rate parameter λ �= λj (j = 1, . . . , p). The p.d.f. (probability density function) of Z is given by

f GNIG(z |r1, . . . , rp, r ; λ1, . . . , λp, λ; p + 1) =

Kλr
p∑
j=1

e−λj z
rj∑
k=1

{
cj,k

Γ(k)

Γ(k+r )
zk+r−11F1(r, k+r,−(λ−λj )z)

}
,

(z > 0)

(36)

and the c.d.f. (cumulative distribution function) given by

F GNIG(z |r1, ... , rp, r ; λ1, ... , λp, λ; p+1) = λr z r

Γ(r+1)
1F1(r, r+1,−λz)

−Kλr
p∑
j=1

e−λj z
rj∑
k=1

c∗j,k

k−1∑
i=0

z r+iλij
Γ(r+1+i)

1F1(r, r+1+i ,−(λ− λj)z)
(z > 0)

(37)

where

c∗j,k =
cj,k

λkj
Γ(k)

with cj,k given by (33) through (35) above. In the above expressions 1F1(a, b; z) is the Kummer confluent hypergeometric

function. This function typically has very good convergence properties and is nowadays easily handled by a number of software

packages.

B. Appendix

Proof of Theorem 4.1

Proof

In this proof we will consider only the case of h = 6, since the cases h = 2 and h = 4 are derived in a similar way.

If in the c.f. of W in (20) we replace ΦW2 (t) by

Φ∗W2(t) =
3∑
k=1

pk λ
sk (λ− it)−sk ,

we obtain

ΦW (t) ≈ ΦW1 ×
3∑
k=1

pk λ
sk (λ− it)−sk

︸ ︷︷ ︸
Φ∗
W3
(t)

≈
3∑
k=1

pk ΦW1︸︷︷︸
GIG distribution

× λsk (λ− it)−sk︸ ︷︷ ︸
Gamma distribution︸ ︷︷ ︸

GNIG distribution

11



F. J. Marques and C. A. Coelho

that is the c.f. of the mixture of three GNIG distributions of depth p as a near-exact distribution for W with the p.d.f and c.d.f.

for the GNIG distribution given in the Appendix A. Having in mind the general relation

Fλ∗(w) = 1− FW (− logw)

we obtain the c.d.f. and also the p.d.f. of λ∗ given in (27) and (27) respectively. The parameters pν, sν and λ are defined in

such a way that the first six moments of W ∗2 match the first six exact moments of W2, that is, in such a way that

d j

dt j
Φ∗W2(t)

∣∣∣∣
t=0

=
d j

dt j
ΦW2(t)

∣∣∣∣
t=0

, j = 1, . . . , 6

what gives rise to the evaluation of these parameters as the numerical solution of the correspondent system of equations. �
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