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1 Introduction and preliminaries

LetX1, X2, . . . , Xn be a set of n independent and identically distributed (i.i.d.) random variables

(r.v.’s), from a population with distribution function (d.f.) F . Let us arrange them in ascending

order, to get the order statistics (o.s.) X1:n ≤ X2:n ≤ . . . ≤ Xn:n. Suppose that we are interested

in making inference about extreme values of X. Extreme Value Theory (EVT) provides a

great variety of results that enable us to to deal with alternative approaches in the statistical

analysis of extremes. We shall present a brief review of the most important approaches: the

block maxima method, the peaks-over-threshold (POT) method and the largest observations

method.

The first method is based on the unified version of the possible non-degenerate limit distri-

butions of the normalized maximum, the Extreme Value (EV) distribution,

Gγ(x) =

 exp(−(1 + γx)−1/γ), 1 + γx > 0 if γ 6= 0

exp(− exp(−x)), x ∈ R if γ = 0.
(1.1)

When such a non-degenerate limit exists, we say that F belongs to the max-domain of attraction

of Gγ and denote this by F ∈ DM(Gγ). The shape parameter γ is related with the heaviness of

the right tail F := 1−F and it is often called the extreme value index (EVI). This distribution

unifies the possible non-degenerate limit distributions in Gnedenko (1943): Weibull (γ < 0),

Gumbel (γ = 0) and Fréchet (γ > 0). The block maxima method is of a parametric nature: we

work with the sample of maxima and estimate the parameters (λ, δ, γ) of the EV distribution,

Gγ((x−λ)/δ), λ ∈ R, δ > 0, with Gγ(x) given in (1.1). This method is known to be inefficient,

due to the fact that the loss of information in each block can be catastrophic (the sample of the r

maximum values in each of the r blocks does not necessarily contain the largest r observations

in the sample). If we have access to all observations, and not only to block maxima, other

methods may be more efficient.

In the second approach, the POT method, inference is performed through the use of the

sample of exceedances from i.i.d. sequences over a high threshold u. The limit distribution of

these exceedances is the Generalized Pareto (GP) distribution (Balkema and de Haan, 1974;
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Pickands, 1975) defined by,

GPγ(x) =

 1− (1 + γx)−1/γ , 1 + γx > 0, x > 0 if γ 6= 0

1− exp(−x), x > 0 if γ = 0.
(1.2)

This distribution unifies all possible non-degenerate limit distributions: Beta (γ < 0), Expo-

nential (γ = 0) and Pareto (γ > 0). Note that the high threshold can also be a random value,

leading to the peaks over random threshold (PORT) methodology, a terminology introduced in

Araújo Santos et al. (2006).

The third approach is the one we shall consider in this paper. It uses the largest k obser-

vations to make inference about the right tail F . For heavy-tailed models, i.e., models with a

positive EVI, we assume that F has a Pareto-type tail, i.e., as t → ∞ and with the notation

a(t) ∼ b(t) if and only if a(t)/b(t)→ 1,

F (x) = 1− F (x) ∼ (x/C)−1/γ ⇐⇒ U(t) ∼ C tγ , C, γ > 0, (1.3)

where C is a scale parameter and U(t) := F←(1−1/t), t > 1, with F←(x) := inf{y : F (y) ≥ x}

denoting the generalized inverse function of F . Note that models with a right Pareto-type

tail have a regularly varying right tail with a negative EVI equal to −1/γ and belong to the

max-domain of attraction of Gγ , in (1.1), with γ > 0. More generally, we have, for all x > 0,

F ∈ DM(Gγ>0) ⇔ lim
t→∞

F (tx)
F (t)

= x−1/γ ⇔ lim
t→∞

U(tx)
U(t)

= xγ .

To guarantee the consistency of many semi-parametric estimators we usually need to assume

that k is intermediate, i.e., that k is a sequence of integers in [1, n[, such that

k = kn →∞, k/n→ 0, n→∞. (1.4)

To obtain information on the non-degenerate distributional behaviour of semi-parametric esti-

mators of parameters of extreme events, we shall also assume a second order condition,

lim
t→∞

U(tx)/U(t)− xγ

A(t)
= xγ

xρ − 1
ρ

⇐⇒ lim
t→∞

lnU(tx)− lnU(t)− γ lnx
A(t)

=
xρ − 1
ρ

,

(1.5)

for all x > 0, where ρ ≤ 0 is a second order parameter controlling the speed of convergence of

U(tx)/U(t) to xγ , as t→∞. The validity of condition (1.5), with ρ < 0, implies the validity of

condition (1.3).
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1.1 Estimators under study

Under the largest observations framework, and whenever dealing with heavy-tailed models,

the classical semi-parametric EVI and scale estimators are the Hill estimator (Hill, 1975) and

Weissman’s estimator (Weissman, 1978), with functional expressions

γ̂Hn,k :=
1
k

k∑
i=1

(lnXn−i+1:n − lnXn−k:n) , k = 1, 2, . . . , n− 1, (1.6)

and

Ĉ
W |H
n,k = Xn−k:n

(
k

n

)γ̂Hn,k
, k = 1, 2, . . . , n− 1, (1.7)

respectively, which are pseudo-maximum likelihood estimators, consistent for k intermediate in

the whole DM(Gγ), γ > 0. Under the second order framework in (1.5) and for intermediate k,

we can guarantee, for an adequate k, the asymptotic normality of the estimators γ̂Hn,k as well

as ĈW |Hn,k in (1.6) and (1.7), respectively.

Most of the times, this type of estimators exhibits a large variance for small k, a strong

bias for moderate k and sample paths with very short stability regions around the target value.

This has led researchers to search for alternative estimators with smaller mean square error.

Since heavy-tailed models only have mean value if γ < 1, methods based on sample moments

are usually rarely considered when we work with such a type of distributions. But in many

practical fields like in finance or insurance, for example, we usually have an EVI smaller than

one, and even γ < 1/2. In this article we propose the use of a Probability Weighted Moments

(PWM) method based on the largest observations for the estimation of tail parameters.

The PWM method is a generalization of the Method of Moments. It also consists in equat-

ing sample moments with their corresponding theoretical moments, and then solving those

equations in order to obtain estimates of the different parameters under play. The PWM of a

r.v. X are defined by

Mp,r,s := E(Xp(F (X))r(1− F (X))s),

where p, r and s are any real numbers (Greenwood et al., 1979). When r = s = 0, Mp,0,0 are

the usual noncentral moments of order p. Hosking et al. (1985) advise the use of M1,r,s, because

then the relations between parameters and moments have usually a much simpler form. Also,
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when r and s are integers F r(1−F )s can be written as a linear combination of powers of F or

1− F . So it is usual to work with one of the two special cases:

ar := M1,0,r = E(X(1− F (X))r) or br := M1,r,0 = E(X(F (X))r). (1.8)

Given a sample of size n, the unbiased estimators of ar and br in (1.8) are, respectively,

âr =
1
n

n−r∑
i=1

(n− 1− r)!(n− i)!
(n− 1)!(n− i− r)!

Xi:n =
1
n

n∑
i=1

(n− i)(n− i− 1) . . . (n− i− r + 1)
(n− 1)(n− 2) . . . (n− r)

Xi:n,

(1.9)

and

b̂r =
1
n

n∑
i=r+1

(n− 1− r)!(i− 1)!
(n− 1)!(i− r − 1)!

Xi:n =
1
n

n∑
i=1

(i− 1)(i− 2) . . . (i− r)
(n− 1)(n− 2) . . . (n− r)

Xi:n.

For the Pareto d.f., F (x) = 1 − (x/C)−1/γ , x > C, γ > 0, the PWM are Mp,r,s =

CpB(s + 1 − γ p, r + 1), s − γ p > −1, r > −1, where B represents the complete beta

function. In particular, ar = M1,0,r = C/(r + 1− γ), γ < r + 1. Consequently, if we consider

the theoretical moments, a0 = C/(1− γ), the mean of X, and a1 = C/(2− γ), with γ < 1, the

Pareto PWM (PPWM) estimators of γ and C are, respectively,

γ̂
PPWM

= 1−
(

â1

â0 − â1

)
and Ĉ

PPWM
= â0

(
â1

â0 − â1

)
, γ < 1, (1.10)

where â0 and â1 are given in (1.9).

We shall consider in this paper, the PPWM estimators for the parameters of a Pareto tail in

(1.3), based on the top k largest o.s. If we work with the sample of the k largest observations,

Xn−k+1:n ≤ Xn−k+2:n ≤ . . . ≤ Xn:n, the estimators â0 and â1 in (1.10) should be replaced by,

â0(k) :=
1
k

k∑
i=1

Xn−i+1:n, and â1(k) :=
1
k

k∑
i=1

i− 1
k − 1

Xn−i+1:n, (1.11)

respectively. The EVI and scale PPWM estimators, based on the largest values are:

γ̂
PPWM

n,k = 1− â1(k)
â0(k)− â1(k)

, Ĉ
PPWM

n,k =
â0(k) â1(k)
â0(k)− â1(k)

(k
n

)γ̂PPWM

n,k
, (1.12)

with k = 1, 2, · · · , n− 1 and γ < 1.
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If we consider the GP distribution with scale parameter δ, i.e, GPγ(x/δ) = 1−(1+γx/δ)−1/γ ,

1 + γx/δ > 0, x > 0, δ > 0 and γ < 1, with GPγ(x) defined in (1.2), the Generalized Pareto

PWM (GPPWM) estimators of γ and δ are

γ̂
GPPWM

= 1− 2â1

â0 − 2â1
, and δ̂

GPPWM
=

2â0â1

â0 − 2â1
, γ < 1, (1.13)

respectively (Hosking and Wallis, 1987). Notice that the GP scale parameter δ is usually

different from C. Since 1 − GPγ(x/δ) = (γx/δ)−1/γ , we have δ = Cγ. An obvious GPPWM

estimator for the scale parameter C, is

Ĉ
GPPWM

=
2â0â1

â0 − 4â1
, γ < 1.

De Haan and Ferreira (2006) considered, also for γ < 1, the previous GPPWM estimators of

γ and δ based on the sample of exceedances over the high random level Xn−k:n. Since we are

more interested in the estimation of the scale parameter C, we shall also consider the GPPWM

estimators of γ and C based on the sample of exceedances over the high random level Xn−k:n,

i.e.,

γ̂
GPPWM

n,k = 1− 2â?1(k)
â?0(k)− 2â?1(k)

, and Ĉ
GPPWM

n,k =
2â?0(k) â?1(k)
â?0(k)− 4â?1(k)

(
k

n

)γ̂GPPWM

n,k

, (1.14)

with k = 1, 2, . . . , n− 1, γ < 1, and

â?s(k) :=
1
k

k∑
i=1

(
i− 1
k − 1

)s
(Xn−i+1:n −Xn−k:n), s = 0, 1.

We shall also study the GPPWM estimators in (1.14) and compare them with the PPWM

estimators in (1.12), based on the largest observations.

Remark 1.1. Note that all EVI estimators here referred are scale invariant. The two GPPWM

estimators, in (1.13) and (1.14), are also shift invariant.

1.2 Scope of the article

In Section 2, after the study of the asymptotic behaviour of two auxiliary statistics, we state

a few results already proved in the literature and a generalization of Proposition 5 in Caeiro
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and Gomes (2009). Next, in Section 3, we derive the asymptotic properties of the PPWM and

GPPWM-estimators of the first-order parameters and proceed to an asymptotic comparison

at their optimal levels of the tail-index estimators under consideration. Finally, in Section 4,

we perform a small-scale Monte-Carlo simulation, in order to compare the behaviour of the

estimators under study for finite samples.

2 Preliminary Asymptotic Properties

2.1 Auxiliary statistics

To study the asymptotic properties of the EVI and scale PPWM and GPPWM estimators

introduced in this paper, we first need to study the behaviour of the statistics,

q̂s(k) :=
1
k

k∑
i=1

(
i− 1
k − 1

)s Xn−i+1:n

Xn−k:n
, s ≥ 0, (2.1)

and

q̂?s(k) :=
1
k

k∑
i=1

(
i− 1
k − 1

)s(Xn−i+1:n

Xn−k:n
− 1
)
, s ≥ 0. (2.2)

Proposition 2.1. Under the second order framework in (1.5), and for intermediate k, i.e.,

whenever (1.4) holds, we can guarantee the asymptotic normality of qs(k). Indeed, we can

write, for s > γ − 1/2,

q̂s(k) d=
1

1 + s− γ
+

σs√
k
W

(s)
k +

A(n/k)(1 + op(1))
(1 + s− γ)(1 + s− γ − ρ)

, (2.3)

and

q̂?s(k) d=
γ

(1 + s− γ)(1 + s)
+

σs√
k
W

(s)
k +

A(n/k)(1 + op(1))
(1 + s− γ)(1 + s− γ − ρ)

, (2.4)

where W (s)
k is an asymptotically standard normal r.v., and

σ2
s :=

γ2

(1 + s− γ)2(1 + 2s− 2γ)
. (2.5)
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Proof. Since U(Xi:n) d= Yi:n, where Y is a standard Pareto r.v. with d.f. FY (y) = 1 − 1/y,

y > 1, Yn−i+1:n/Yn−k:n
d= Yk−i+1:k, and under the second order framework in (1.5),

Xn−i+1:n

Xn−k:n

d=
U(Yn−i+1:n

Yn−k:n
Yn−k:n)

U(Yn−k:n)
d= (Yk−i+1:k)γ

(
1 +

Y ρk−i+1:k−1

ρ A(Yn−k:n)(1 + op(1))
)
.

Consequently, since i−1
k−1 ∼

i
k ,

q̂s(k) d=
1
k

k∑
i=1

(
i

k

)s
(Yk−i+1:k)γ +

1
k

k∑
i=1

(
i

k

)s
(Yk−i+1:k)γ

(Yk−i+1:k)ρ − 1
ρ

A(n/k)(1 + op(1))

d=
1
k

k∑
i=1

(
1− i

k

)s
Y γ
i:k +

1
k

k∑
i=1

(
1− i

k

)s
Y γ
i:k

Y ρ
i:k − 1
ρ

A(n/k)(1 + op(1)).

Using the asymptotic results for linear functions of o.s. (David and Nagaraja, 2003), with the

notation L
(s)
k :=

∑k
i=1 (1− i/k)s Y γ

i:k/k, we have

W
(s)
k :=

√
k
L

(s)
k − µs
σs

d−→
n→∞

N(0, 1), s > γ − 1
2
, (2.6)

with

µs :=
∫ 1

0
(1− u)s−γdu =

1
1 + s− γ

, s > γ − 1, (2.7)

and

σ2
s = 2

∫ ∫
0<u<v<1

u(1− u)s−γ−1(1− v)s−γdudv, s > γ − 1/2,

the value given in (2.5). The covariance, Cov(σsW
(s)
k , σrW

(r)
k ), can also be easily computed

and is equal to

k Cov(L(s)
k , L

(r)
k ) =

gr,s + gs,r
2

=
γ2

(1 + s+ r − 2γ)(1 + s− γ)(1 + r − γ)
, (2.8)

where gr,s := 2γ2
∫ ∫

0<u<v<1

u(1 − u)r−γ−1(1 − v)s−γdudv (Hosking et al., 1985). Consequently,

since L(s)
k

P−→ µs, and

1
k

k∑
i=1

(
1− i

k

)s
Y γ
i:k

Y ρ
i:k − 1
ρ

P−→ 1
(1 + s− γ)(1 + s− γ − ρ)

,

equation (2.3) follows, with σ2
s given in (2.5).
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Next, since

q?s(k) = qs(k)− 1
k

k∑
i=1

(
i− 1
k − 1

)s
and

1
k

k∑
i=1

(
i− 1
k − 1

)s
∼
∫ 1

0
xsdx =

1
1 + s

,

equation (2.4) follows straightforwardly.

We still refer the following:

Proposition 2.2 (Caeiro and Gomes, 2009, Corollary 1). Under the conditions of Proposition

2.1, but with ρ < 0,

Xn−k:n

(n/k)γ
d= C

(
1 +

γ√
k
Bk +

A(n/k)
ρ

+ op(A(n/k))
)
,

with Bk an asymptotically standard normal r.v. and Cov(Br, Bs) =
√
r s(1− s/n)/(s− 1),

r < s.

2.2 Asymptotic behaviour of the classical estimators

Proposition 2.3 (de Haan and Peng, 1998). Under the second-order framework in (1.5), and

for intermediate k, the asymptotic distributional representation of γ̂Hn,k, in (1.6), is given by,

γ̂Hn,k
d= γ +

γ√
k
Zk +

A(n/k)
1− ρ

(1 + op(1)),

with Zk =
√
k
(∑k

i=1Ei/k − 1
)

, and {Ei} i.i.d. standard exponential r.v.’s. Consequently, if

we choose k such that
√
k A(n/k)→ λ, finite and not necessarily null, then,

√
k(γ̂Hn,k − γ) d−→ N

(
λ

1− ρ
, γ2

)
, as n→∞.

More generally than Proposition 5 in Caeiro and Gomes (2009), but with a similar proof,

we now state the following proposition.

Proposition 2.4. Under the conditions of Proposition 2.3, let γ̂•n,k be any semi-parametric

estimator of γ, such that, with Z•k asymptotically standard normal, σ• > 0 and b• ∈ R,

γ̂•n,k
d= γ +

σ•Z
•
k√
k

+ b•A(n/k)(1 + op(1)), as n→∞. (2.9)
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Then, with ĈW |•n,k := Xn−k:n(k/n)γ̂
•
n,k , and for ρ < 0,

Ĉ
W |•
n,k

d=C
{

1 + ln
(
k
n

)
(γ̂•n,k − γ)(1 + op(1)) + γ√

k
Bk + A(n/k)(1+op(1))

ρ

}
.

If we further assume that
√
kA(n/k)→ λ, as n→∞,

√
k

ln(k/n)

 ĈW |•n,k

C
− 1

 d−→
n→∞

N
(
λ b•, σ

2
•
)
.

3 Asymptotic behaviour of the PPWM and GPPWM estima-

tors

We can now study the asymptotic behaviour of the semi-parametric PPWM and GPPM esti-

mators in (1.12) and (1.14), respectively.

3.1 Limiting behaviour at k

We next state the main result in this paper:

Theorem 3.1. Under the second order framework in (1.5), with

0 < γ < 1/2, and for intermediate k such that
√
k A(n/k) → λ, finite, we can guarantee

the asymptotic normality of γ̂
PPWM

n,k and γ̂
GPPWM

n,k , in (1.12) and (1.14), respectively. Indeed,

with • denoting either PPWM or GPPWM, the distributional representation in (2.9) holds,

where

σ2
PPWM

:=
γ2(1− γ)(2− γ)2

(1− 2γ)(3− 2γ)
, bPPWM :=

(1− γ)(2− γ)
(1− γ − ρ)(2− γ − ρ)

,

and

σ2
GPPWM

:=
(1− γ + 2γ2)(1− γ)(2− γ)2

(1− 2γ)(3− 2γ)
, bGPPWM :=

(γ + ρ) bPPWM

γ
.

Moreover, with σ2
s , W (s)

k , and µs given in (2.5), (2.6), and (2.7), respectively, and with σs :=

σs/µs

Z
PPWM

k =
(1− γ)(2− γ)(σ0W

(0)
k − σ1W

(1)
k )

σPPWM
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and

Z
GPPWM

k =
(1− γ)(2− γ)(σ0W

(0)
k − 2σ1W

(1)
k )

γ σPPWM

are asymptotically standard Norma r.v.’s. Consequently,

√
k
(
γ̂•n,k − γ

)
d−→

n→∞
N
(
λ b•, σ

2
•
)

(3.1)

and, for ρ < 0,
√
k

ln(k/n)

(
Ĉ•n,k
C
− 1

)
d−→

n→∞
N
(
λ b•, σ•

2
)
. (3.2)

Proof. We can write,

γ̂
PPWM

n,k = 1−
( q̂0(k)
q̂1(k)

− 1
)−1

and γ̂
GPPWM

n,k = 1−
(
q̂?0(k)
2q̂?1(k)

− 1
)−1

,

with q̂s(k) and q̂?s(k), s = 0, 1, defined in (2.1) and (2.2), respectively. Using (2.3) with s = 1

and Taylor’s expansion (1 + x)−1 = 1− x+ o(x), as x→ 0, we get

q̂1(k)−1 d= (2− γ)
{

1− σ1√
k
W

(1)
k − A(n/k)

2− γ − ρ
(1 + op(1))

}
.

Consequently, using again the previous Taylor expansion,(
q̂0(k)
q̂1(k)

− 1
)−1

d= (1−γ)
{

1−(2− γ)√
k

(
σ0W

(0)
k −σ1W

(1)
k

)
− (2− γ)A(n/k)

(1− γ − ρ)(2− γ − ρ)
(1+op(1))

}
,

(3.3)

and (2.9) as well as (3.1) follow easily for • = PPWM.

Analogously, we have

(2q̂?1(k))−1 d=
(2− γ)
γ

{
1− 2 σ1√

k γ
W

(1)
k − 2A(n/k)

γ(2− γ − ρ)
(1 + op(1))

}
.

Consequently,(
q̂?0(k)
2q̂?1(k)

− 1
)−1

d= (1− γ)
{

1− (2− γ)√
k γ

(
σ0W

(0)
k − 2σ1W

(1)
k

)
− (2− γ)(γ + ρ)A(n/k)
γ(1− γ − ρ)(2− γ − ρ)

(1 + op(1))
}
,
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and (2.9) as well as (3.1) follow easily, now for • = GPPWM.

The asymptotic normality of Z
PPWM

k and Z
GPPWM

k follows from (2.6) and (2.8).

For the scale parameter estimator, we can easily derive that, both for the PPWM and the

GPPWM scale-estimators

Ĉ
•
n,k = Ĉ

W |•
n,k

(
1 + op

(
ln(k/n)√

k

))
,

with Ĉ
W |H
n,k defined in (1.7).

Then, using the results in Proposition 2.4, (3.2) follows.

Remark 3.1. In Figure 1, we provide a picture of the asymptotic variances of the EVI esti-

mators given in Propositions 2.3 and 3.1.

0

0.5

1

1.5

2

0 0.1 0.2 0.3 0.4 0.5

Hill PPWM GPPWM

Figure 1: Asymptotic variances of
√
k(γ̂Hn,k − γ),

√
k(γ̂PPWM

n,k − γ) and
√
k(γ̂GPPWM

n,k − γ).

It is obvious that σ2
H := γ2 < σ2

PPWM
< σ2

GPPWM
, for every 0 < γ < 1/2.

Remark 3.2. For levels such that
√
kA(n/k) → λ and for γ + ρ = 0, both γ̂

GPPWM

n,k and

Ĉ
GPPWM

n,k are asymptotically unbiased.

Remark 3.3. The asymptotic dominant behaviour of Ĉ
•
n,k is determined by the asymptotic

behaviour of γ̂
•
n,k.

3.2 Asymptotic comparison of the EVI estimators at optimal levels

We now proceed to an asymptotic comparison of the EVI estimators at their optimal levels in

the lines of de Haan and Peng (1998), Gomes and Martins (2001), Gomes et al. (2005, 2007)
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and Gomes and Neves (2008). Similar results holds for the scale estimators, at their optimal

levels, since they have the same asymptotic behaviour as the EVI estimators, although with

a slower convergence rate. For details see Proposition 2.4 and Theorem 3.1. Suppose that

γ̂•n,k is a general semi-parametric estimator of the tail index γ, such that the distributional

representation (2.9) holds. Then we have,

√
k(γ̂•n,k − γ) d−→ N(λb•, σ2

•), as n→∞,

provided k is such that
√
k A(n/k)→ λ, finite, as n→∞.

The Asymptotic Mean Square Error (AMSE) is given by

AMSE(γ̂•n,k) :=
σ2
•
k

+ b2•A
2(n/k),

where Bias∞(γ̂•n,k) := b•A(n/k) and V ar∞(γ̂•n,k) := σ2
•/k.

Let k•0 ≡ k•0(n):=arg mink AMSE(γ̂•n,k) be the so-called optimal level for the estimation of

γ through γ̂•n,k, i.e., the level associated to a minimum asymptotic mean square error, and let us

denote γ̂•n0 := γ̂•n,k•0
, the estimator computed at its optimal level. The use of regular variation

theory (Bingham et al. 1987) enabled Dekkers and de Haan (1993) to prove that, whenever

b• 6= 0, there exists a function ϕ(n) = ϕ(n; ρ, γ), dependent only on the underlying model, and

not on the estimator, such that

lim
n→∞

ϕ(n)AMSE(γ̂•n0) =
2ρ− 1
ρ

(
σ2
•
)− 2ρ

1−2ρ
(
b2•
) 1

1−2ρ =: LMSE(γ̂•n0). (3.4)

It is then sensible to consider the following:

Definition 3.1. Given two biased estimators γ̂
(1)
n,k and γ̂

(2)
n,k, for which distributional repre-

sentations of the type (2.9) hold with constants (σ1, b1) and (σ2, b2), b1, b2 6= 0, respectively,

both computed at their optimal levels, k(1)
0 and k(2)

0 , the Asymptotic Root Efficiency (AREFF )

indicator is defined as

AREFF1|2 :=
√
LMSE

(
γ̂

(2)
n0

)
/LMSE

(
γ̂

(1)
n0

)
,

with LMSE given in (3.4), γ̂(1)
n0 = γ̂•

n,k
(1)
0

and γ̂(2)
n0 = γ̂•

n,k
(2)
0

.

13



Remark 3.4. Note that this measure was devised so that the higher the AREFF indicator is,

the better the first estimator is.

The indicator AREFFPPWM |GPPWM is presented in Figure 1, and in Figure 2 we provide

an indication of the best estimator at optimal levels, with H, P and G standing for the Hill,

the PPWM and the GPPWM estimators, respectively. For ρ = 0, the estimators H, P and G

are asymptotically equivalent at optimal levels.
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Figure 2: Asymptotic relative efficiency of γ̂PPWM
n0 relatively to γ̂GPPWM

n0 .

As can be seen, the gain in efficiency for the PPWM-estimator (comparatively with the

GPPWM-estimator) happens for a large region of values of (γ, ρ) such that γ + ρ < 0. In the

region γ + ρ = 0, the GPPWM estimator is a second-order reduced-bias tail index estimator

and consequently outperforms the PPWM estimator. These results claim now, not for a semi-

parametric test of the hypothesis H0 : η = γ + ρ = 0 as in Gomes and Henriques-Rodrigues

(2009), but for a semi-parametric test of the hypothesis H0 : η = γ + ρ < 0, a topic out of the

scope of this paper.
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Figure 3: Best estimator at optimal levels.

4 Simulated behaviour of the EVI estimators

In this section, we have implemented a multi-sample Monte Carlo simulation experiment of

size 5000 × 10, to obtain the distributional behaviour of the EVI estimators γ̂Hn,k, γ̂
PPWM
n,k

and γ̂GPPWM
n,k in (1.6), (1.12) and (1.14), respectively, for the following underlying par-

ents: Student’s t with ν = 4 degrees of freedom (γ = 0.25, ρ = −0.5, C = 4
√

3), the

Fréchet parent, with d.f. F (x) = exp(−x−1/γ), x > 0, γ > 0 with γ = 0.25 (ρ = −1,

C = 1) and the Burr parent, with d.f. F (x) = 1 − (1 + x−ρ/γ)1/ρ, x > 0, with (γ, ρ) ∈

{(0.25,−0.2), (0.25,−0.75), (0.25,−1.5), (0.5,−0.5), (0.75,−1.5)} (C = 1). Notice that the Burr

model with ρ = −γ is the GPγ distribution, in (1.2).

To ilustraste the finite sample behaviour of the EVI estimators, we present, in Figures 4, 5,

6, 7, 8, 9 and 10, the simulated mean values (E) and root mean square errors (RMSE) patterns

of γ̂Hn,k, γ̂
PPWM
n,k and γ̂GPPWM

n,k , as functions of k, the number of top o.s. used, for a sample size

n = 1000.

In Table 1 we present the simulated mean values of the above mentioned EVI estimators,

at their simulated optimal levels k0. Again, with • denoting either PPWM or GPPWM, Table
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Figure 4: Student’s t parent with ν = 4 degrees of freedom, (γ, ρ) = (0.25,−0.5).
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Figure 5: Fréchet(0.25) parent with (γ, ρ) = (0.25,−1).
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Figure 6: Burr parent with (γ, ρ) = (0.25,−0.2).
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Figure 7: Burr parent with (γ, ρ) = (0.25,−0.75).
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Figure 8: Burr parent with (γ, ρ) = (0.25,−1.5).
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Figure 9: Burr parent with (γ, ρ) = (0.5,−0.5).
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Figure 10: Burr parent with (γ, ρ) = (0.75,−1.5).

2 has the simulated relative efficiencies of γ̂•n,k comparatively with the Hill estimator, whenever

computed at their simulated optimal levels, i.e., the simulated values of

REFF•|H =
RMSE

[
γ̂H
n,kH0

]
RMSE

[
γ̂•n,k•0

] .

Some remarks:

1. For Burr models with γ + ρ ≥ 0, or equivalently, GPγ models, γ̂GPPWM
n,k is the best EVI

estimator at its optimal level, unless n is small. In all other cases it shows a quite bad

performance, essentialy due its high variance.

2. The EVI estimator γ̂PPWM
n,k can be used as an alternative to the Hill estimator, specially

for small to moderate sample sizes, but also for large samples. All the figures suggest that

its RMSE is never much bigger than Hill’s estimator RMSE and it has smaller bias than

the Hill estimator. At their optimal levels and for small sample sizes, γ̂PPWM
n,k is usually

much more efficient than Hill’s estimator.

3. The asymptotic properties of new extreme value index estimators do not hold for the Burr

model with (γ, ρ) = (0.75,−1.5). But even in this example, the PPWM EVI estimator

is more efficient than the Hill estimator at their simulated optimal levels, for small to

moderate sample sizes.
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Table 1: Simulated mean values of EVI estimators under study, at their simulated optimal

levels

n 50 100 200 500 1000 2000 5000 10000 20000

Student-t4

H 0.388 0.361 0.338 0.316 0.305 0.296 0.286 0.279 0.275

PPWM 0.325 0.308 0.304 0.297 0.292 0.287 0.280 0.276 0.272

GPPWM −0.077 0.007 0.059 0.110 0.136 0.155 0.179 0.192 0.200

Fréchet(0.25)

H 0.283 0.275 0.270 0.265 0.262 0.260 0.257 0.256 0.255

PPWM 0.274 0.270 0.267 0.264 0.261 0.259 0.257 0.256 0.255

GPPWM 0.089 0.132 0.160 0.187 0.203 0.213 0.223 0.229 0.234

Burr(0.25,−0.2)

H 0.511 0.467 0.434 0.401 0.381 0.364 0.344 0.334 0.325

PPWM 0.356 0.350 0.348 0.337 0.333 0.327 0.320 0.316 0.310

GPPWM 0.353 0.342 0.333 0.320 0.313 0.304 0.296 0.291 0.287

Burr(0.25,−0.75)

H 0.310 0.298 0.287 0.279 0.274 0.268 0.264 0.261 0.259

PPWM 0.292 0.286 0.281 0.274 0.271 0.267 0.263 0.261 0.259

GPPWM 0.032 0.087 0.125 0.159 0.178 0.193 0.208 0.216 0.222

Burr(0.25,−1.5)

H 0.280 0.272 0.268 0.263 0.260 0.258 0.255 0.254 0.253

PPWM 0.273 0.269 0.266 0.262 0.260 0.258 0.255 0.254 0.253

GPPWM 0.085 0.131 0.164 0.193 0.207 0.219 0.228 0.233 0.237

Burr(0.5,−0.5)

H 0.686 0.650 0.622 0.594 0.579 0.564 0.550 0.542 0.535

PPWM 0.558 0.553 0.550 0.546 0.543 0.540 0.535 0.532 0.528

GPPWM 0.428 0.456 0.474 0.486 0.492 0.495 0.498 0.499 0.499

Burr(0.75,−1.5)

H 0.839 0.816 0.805 0.789 0.779 0.773 0.766 0.762 0.760

PPWM 0.749 0.765 0.769 0.766 0.764 0.762 0.761 0.759 0.758

GPPWM 1.000 1.000 0.605 0.645 0.667 0.684 0.700 0.709 0.717

References
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