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1 Introduction

Probability generating functions (PGF) computational techniques are of-
ten used for studying integer valued discrete random variables.

Recently, several works quoted in the references and specifically in
section 4.3, developed interesting applications of these techniques for a
wide range of purposes such as preliminary data analysis, estimation,
tests, etc.

A detailed study of conditions for existence of probability generating
functions for discrete random variables in [3] allows the extension of the
available methods for integer or rational valued discrete random variables
to real valued discrete random variables.

In this work we show that parameter estimation for continuous prob-
ability laws admitting non trivial PGF (such as Gaussian and gamma
laws) may be performed using their PGF. Weaker versions of the results
in this work were presented in [4].

2 PGF for real discrete random variables

In what follows and unless explicitly stated otherwise, X denotes a dis-
crete random variable, (αk)k∈Z being the real valued sequence of its val-
ues. With no generality loss we suppose that αk < 0 for k < 0, α0 = 0 e
αk > 0 for k > 0.

For a sequence of non negative numbers (pk)k∈Z such that
∑+∞

k=−∞ pk =
1, the probabilities, we have that P[X = αk] = pk. The PGF of X is

ψX(t) = E[tX ] =
+∞∑

k=−∞
pkt

αk

for t > 0. The natural domain of this PGF, DX = {t > 0 : ψX(t) < +∞}
is clearly described in the following result (see [3]).

Theorem 2.1. Let X be a random variable and ψX its PGF. We have
then that:

1. If X takes a finite number of real values then

DX =]0,+∞[ .

2. If X takes an infinite number of real values with no accumulation
points then:

∃u0, v0 ∈]−∞, 0] , ]eu0 , e−v0 [⊂ DX ⊂ [eu0 , e−v0 ] . (1)
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3. If X is a random variable with exponentially decaying tails, that is
if for some k, c > 0 we have that P[| X |> x] ≤ ke−cx the we also
have the condition expressed by formula a (1).

The PGF fully characterizes the law of its associated random variable.
In fact, two random variables will have the same distribution if and only if
the correspondent PGF coincide in a neighborhood of 1. We also have for
PGF a result similar to Lévy theorem for characteristic functions. If for
a sequence of random variables (Xn)n∈N the correspondent sequence of
PGF (ψn)n∈N converges to ψX in a neighborhood of 1 then, the sequence
of random variables converges in law to X.

The PGF of a discrete random variable taking integer values is most
useful for the computation of the laws of sums of independent random
variables of this type, mostly because for these random variables we have
pk = ψ

(n)
X (0)/n!. For general discrete random variables (not necessar-

ily taking integer values), the symbolic computational packages allow the
same calculations which were once practically possible only for integer val-
ued random variables. The study of PGF for real valued discrete random
variables is thus fully justified.

Remark 2.1. For a random variable having a continuous law µX it may
happen that the set DX := {t > 0 :

∫
R t

xdµX(x) < +∞} has a non empty
interior. This is the case for Gaussian and gamma random variables. In
this case we will use also the notation ψX(t) = E[tX ], for t ∈ DX .

3 On the empirical estimator of the PGF

In this section we show how to use a sample of a random variable to
estimate the PGF of this random variable. The results presented are
extensions to real valued random variables of the results already known
for integer valued discrete random variables (see again [13]).

Let (Xn)n∈N be a sample of a random variable X having as probability
law µX and PGF ψX(t) = E[tX ] defined for t ∈ DX . Let us define also
the empirical PGF (EPGF) by:

∀t > 0 ψX,n(t) =
1
n

n∑
i=1

tXi . (2)

As we have for all t ∈ DX that E[ψX,n(t)] = ψX(t) then, we have that
(ψX,n(t))n∈N is a sequence of non biased estimators of ψX(t). A trivial
application of the strong law of large numbers shows that we have for
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all t ∈ DX the strong consistency of the estimator, that is, almost surely
limn→+∞ ψX,n(t) = ψX(t).

As a consequence an easy application of the central limit theorem
shows that for all t ∈ DX the sequence (n1/2(ψX,n(t) − ψX(t)))n≥1 con-
verges in distribution to N (0,

√
ψX(t2)− ψX(t)2). We may also get a

uniform law of large numbers and functional central limit theorem as we
will see below.

In the proof of the next result, the uniform law of large numbers
for EPGF, we follow the general idea of [10] but instead of applying
Lebesgue’s dominated convergence theorem we apply the inverse Fatou
lemma. A result of this kind, for moment generating function,s may be
found in [5].

Theorem 3.1. Let [a, b] ⊂ DX 6= ∅. Then we have almost surely:

lim
n→+∞

sup
t∈[a,b]

∣∣ψX,n(t)− ψX(t)
∣∣ = 0 .

Proof. By the strong law of large numbers we have that:

∀k ∈ Z pk = lim
n→+∞

1
n

n∑
i=1

1I{Xi=αk} . (3)

Consider now ω0 in this set of full probability. Decomposing the sum and
observing, as agreed, that αk > 0 for k ≥ 1, αk < 0 for k < −1 and
α0 = 0, we get:

sup
t∈[a,b]

∣∣ψX,n(t, ω0)− ψX(t)
∣∣ ≤ sup

t∈[a,b]

+∞∑
k=−∞

tαk

∣∣∣∣∣pk −
1
n

n∑
i=1

1I{Xi=αk}(ω0)

∣∣∣∣∣ =
=

+∞∑
k=1

bαk

∣∣∣∣∣pk −
1
n

n∑
i=1

1I{Xi=αk}(ω0)

∣∣∣∣∣+
∣∣∣∣∣p0 −

1
n

n∑
i=1

1I{Xi=0}(ω0)

∣∣∣∣∣
+

−∞∑
k=−1

aαk

∣∣∣∣∣pk −
1
n

n∑
i=1

1I{Xi=αk}(ω0)

∣∣∣∣∣ .
We will now show that the limit of the sums in the right side of the
formula above is zero when the size of the sample n grows to infinity. We
will deal only with the first sum as for the second term the conclusion
follows trivially from formula 3 and for the second sum the proof is similar
to one we will now present for the first sum.

For this purpose we will use the inverse Fatou lemma.
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Define fn(k) and gn(k) by

fn(k) := bαk

∣∣∣∣∣pk −
1
n

n∑
i=1

1I{Xi=αk}(ω0)

∣∣∣∣∣ ≤
≤ bαk

(
pk +

1
n

n∑
i=1

1I{Xi=αk}(ω0)

)
=: gn(k) .

Observe that for all n ∈ N,

sup
m≥n

1
m

m∑
i=1

1I{Xi=αk}(ω0) ≤ sup
m≥1

1
m

m∑
i=1

1I{Xi=αk}(ω0) ≤

≤

{
pk ou
(1/m1)

∑m1
i=1 1I{Xi=αk}(ω0) ,

where m1 is such that

sup
m≥1

(1/m)
m∑

i=1

1I{Xi=αk}(ω0) = (1/m1)
m1∑
i=1

1I{Xi=αk}(ω0) .

With µc the counting measure over Z, we have for all n ∈ N− {0}:
+∞∑
k=1

sup
m≥n

fm(k) =
∫

N−{0}
sup
m≥n

fm(k)dµc(k) ≤
∫

N−{0}
sup
m≥n

gm(k)dµc(k) ≤

≤
+∞∑
k=1

bαkpk + max

(
+∞∑
k=1

bαkpk,
+∞∑
k=1

(bαk
1
m1

m1∑
i=1

1I{Xi=αk}(ω0))

)
=

= ψX(b) + max

(
ψX(b),

1
m1

m1∑
i=1

bαk(i,ω0)

)
< +∞ ,

noticing that for a given ω0 and i = 1, . . . ,m1 there exists only one
k = k(i, ω0) such that 1I{Xi=αk(i,ω0)}(ω0) 6= 0. We may now apply the
inverse Fatou lemma to conclude that

0 ≤ lim sup
n→+∞

+∞∑
k=1

bαk

∣∣∣∣∣pk −
1
n

n∑
i=1

1I{Xi=αk}(ω0)

∣∣∣∣∣ ≤
≤

+∞∑
k=1

lim sup
n→+∞

∣∣∣∣∣pk −
1
n

n∑
i=1

1I{Xi=αk}(ω0)

∣∣∣∣∣ = 0 ,

as desired
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Remark 3.1. The conclusions of this theorem remain valid under the
weaker hypothesis of (Xn)n∈N being a stationary ergodic sequence as in
this case we still have formula 3.

We also have an invariance principle for the EPGF.

Theorem 3.2. The sequence (n1/2(ψX,n(t)−ψX(t))n≥1 of stochastic pro-
cesses converges weakly to a Gaussian process with mean zero and covari-
ance given by ψX(st)−ψX(s)ψX(t), on any closed interval subset of DX/2
and in the space of continuous functions with the uniform norm.

Proof. This result may be deduced directly from theorem 2.3 in [5] where
the result is formulated and proved for the moment generator function,
µ̃X(t) = E[etX ], noticing that ψX(t) = µ̃X(ln(t)).

4 Applications of the PGF

The results of the previous section allow us to consider the study of dis-
crete real valued random variables in the same way as usually done for
integer valued discrete random variables.

4.1 Application to discrete random variables

As a consequence of the results in section 3 we may apply to discrete
random variables taking real values the estimation procedures developed
for discrete random variables taking integer values. See for instance [11]
for a complete review of these techniques and [6], [8], [5], [18], [12], [13],
[2], [17] and finally [16], for detailed studies of some particular statistical
studies. A detailed analysis of these methods for relevant examples of real
valued discrete random variables is yet to be done.

4.2 Application to general random variables

In this subsection we show how the PGF may be used to study the law
of a random variable, not necessarily discrete. The idea behind such an
approximation (see [15, p.131]) is that it is physically possible to observe
only a finite number (an so a discrete set) of values that a random variable
takes. For this, it is appropriate to say that we may only know discrete
random variables.

The empirical measure defined in the usual way from a sample of a
random variable, see [7], approximates the law of this random variable,
on every desirable aspect (uniform strong law, functional central limit
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theorem, etc) in a wide spectrum of situations. This empirical measure
is the adequate tool for random variables taking vectorial values.

The following simple result shows that any probability law in R may
be approximated by a family of laws of discrete random variables, built
as an histogram.

It is well known that any measure in a locally compact space may
be approximated by a sequence of linear combinations of Dirac measures
(see [9, p. 99]).

In a parallel line of thought, a classical result shows that the his-
togram, built over a sample of a given random variable is a random stair
function converging in probability to the density, in each continuity point
of this density (see [14, p. 367]). With these results in mind it is natural
to think that the law of a random variable may be approximated by a
sequence of random measures built over the sample.

Theorem 4.1. Let for each n ∈ N, (In
k )k∈Zbe a partition of the real num-

bers such that, limn→+∞maxk∈N |In
k | = 0 and for each n ∈ N, (αn

k)k∈Z be
the sequence of left extremities of the partition intervals of order n. Let
(Xn)n∈N be a sample of a random variable X having as law µX . Define

µN,n :=
∑
k∈Z

#{i ∈ {1. . . . , N} : Xi ∈ In
k }

N
δαn

k
. (4)

Then, (µN,n)N,n∈N is a family of random probability laws converging nar-
rowly in probability to µX , that is, for every f bounded and continuous

lim
N,n→+∞

µN,n(f) = µX(f) .

Proof. A simple computation shows that for every bounded and continu-
ous f we have

E[µN,n(f)] =
∑
k∈Z

µX(In
k )f(αn

k) ,

V[µN,n(f)] =
1
N

∑
k∈Z

µX(In
k )f2(αn

k)−

(∑
k∈Z

µX(In
k )f(αn

k)

)2
 .

As a consequence, by the definition of Stieltjes integral we have that
limn→+∞ E[µN,n(f)] = µX(f) e limn→+∞N×V[µN,n(f)] = N×(µX(f2)−
µX(f)2) thus proving the result announced.

This result will allow us to study a continuous law by means of a
discrete law approximation, as justified by the next remark.
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Remark 4.1. Let (x1, . . . , xN ) an observation of (Xn)n∈N a sample of
a random variable X having as law µX . Now, for n large enough and
considering for a generic interval of the partition defined above In

k =
[xk, xk+1[, we will have that #{i ∈ {1. . . . , N} : Xi ∈ In

k } = 1 and so,
the observation (x1, . . . , xN ) gives us, with the notations of the theorem
above, that µ is an observation of the random probability law

µN,n =
∑
k∈Z

#{i ∈ {1. . . . , N} : Xi ∈ In
k }

N
δαn

k
=

1
N

N∑
i=1

δXi ,

that converges narrowly in probability to µX . Being so, it is to be expected
that for fixed and adequate t ∈ DX and for all y in a compact interval we
have that

ψX,N (t) =
1
N

N∑
i=1

tXi = µN,n(ty) ≈ µX(ty) ≈ ψX(t) .

The first approximation being a consequence of the theorem 5 and the sec-
ond deriving from X having exponentially decaying tails as in theorem 2.1
and remark 2.1.

4.3 Parameter estimation with PGF

We introduce next a PGF based estimation method for parameters of con-
tinuous random variables derived from theorem 3.1 and from remark 4.1.
This is a technique usually considered useful only for discrete random
variables. We will first describe the method, next we present a testing
protocol for the method and finally, in section 5 we prove the consistency
of the estimators in two different particular instances.

1. Consider a random variable X having the law µX(θ) where θ is a
unknown parameter in a certain compact set Θ ⊂ Rp. Suppose
that for every α ∈ Θ the PGF ψX(α) is well defined in a set DX(α)

having a non empty interior.

2. Having observed a sample of X, consider ψX,n the EPGF based on
the sample.

3. Consider a set of points t1, t2, . . . , tM in
⋂

α∈Θ IntDX(α) that we
suppose to be non empty and define the contrast

On(α) :=
M∑
i=1

(
ψX,n(ti)− ψX(α)(ti)

)2
,

8



and the minimum contrast estimator θ̂n of the unknown parameter
θ, such that

O(θ̂n) = min{On(α) : α ∈ Θ} .

In order to test this estimation procedure by simulation we propose
the following protocol.

• Step 1: Choose a value for the unknown parameter θ. Let j = 1.
Choose r the number of repetitions of the simulation.

• Step 2: Simulate a sample of X(θ).

• Step 3: Determine by the method described above θ̂1,j an estimated
value of θ and, by another standard and known method, θ̂2,j another
estimated value for the parameter θ. If j < r increment j and return
to step 2. If j = r go to step 4.

• Step 4: Calculate the mean and standard deviation of the families of
estimated values U = (θ̂1,j)j=1,...,r and V = (θ̂2,j)j=1,...,r and com-
pare the methods comparing the correspondent means and standard
deviations.

We present next an application of this protocol for the test of the algo-
rithm in three distinct situations in the case of a parameter of dimension
one.

For the Gaussian law N (θ, σ), that is, with mean equal to θ and
standard deviation equal to σ we have that the theoretical PGF is given
for t > 0 by ψX(θ,σ)(t) = E[tX ] = tθeσ ln2(t)/2. Given σ = 1, we estimate θ
by the proposed method and also considering for each repetition j of the
simulation, θ2,j given by the average of the sample. The points t1, . . . , tM
were chosen close to 1, more precisely, t1 = .8, t2 = .85, t3 = .9, t4 =
.95, t5 = .98, t6 = 1.05, t7 = 1.08, t8 = 1.09, t9 = 1.1, t10 = 1.2. Results
for objective values θ = 2, σ = 1 and for a sample of dimension 20 are
shown in table 1.

Next, we consider the gamma distribution with parameters λ and α,
having a density given by G(λ, 1

α) = αλ

Γ(λ)e
−αxxλ−1 . It is easy to see that

if X = X(λ, α) ∈ G(λ, 1/α) then, for t ∈ DX(λ,α) =]0, eα[we have that
ψX(λ,α)(t) = E[tX ] = αλ

(α−ln(t))λ As E[X(λ, α)] = λ/α e V[X(λ, α)] =
λ/α2. A natural way to estimate α from a given sample consists in com-
puting E[X(λ, α)]/V[X(λ, α)]. We applied the protocol defined above to
estimate α = 2 with λ = 2.1 and with the points t1, . . . , tM and sample
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r Average U St. Dev. U Average V St. Dev. V
10 1.99842 0.246679 1.99985 0.2467220
50 1.99401 0.149717 1.99484 0.1498410
100 2.00760 0.099236 2.00748 0.0996039
500 1.99908 0.052912 1.99890 0.0520873
1000 2.00133 0.032009 2.00124 0.0319557

Table 1: Results for the Gaussian law.

r Average U St. Dev.U Average V St. Dev.V
10 2.14098 0.5723900 2.95111 1.946780
50 2.00263 0.2076540 2.12457 0.561632
100 2.02520 0.1251470 2.17005 0.334930
500 1.99878 0.0606117 2.03207 0.190385
1000 1.99331 0.0470203 1.99880 0.123071

Table 2: Results for the gamma distribution..

dimension chosen as in the previous example. The results are presented
in table 2.

Finally we consider a uniform distribution on an interval [θ, θ + 1].
For this law the PGF is given by ψ(θ,1)(t) = (t − 1)tθ/ ln(t). The usual
estimator of θ is the minimum of the sample. The objective value is θ = π
and all the other conditions for the protocol are the same as in the two
previous examples.

r Average U St. Dev. U Average V St. Dev. V
10 3.15507 0.028903 3.19542 0.0336867
50 3.13799 0.059152 3.19380 0.043032
100 3.14248 0.062015 3.18861 0.0469901
500 3.13868 0.065901 3.19004 0.0481087
1000 3.14091 0.065709 3.19062 0.0465327

Table 3: Results for the uniform law.

We may propose a preliminary conclusion. With the simulation pro-
tocol considered, the PGF estimator introduced behaves similarly as the
usual estimator of the mean in the Gaussian case and has a better be-
havior than the moment estimator for the parameter α of the gamma law
given by the ratio of the mean over the variance of the sample and also a
better behavior than the minimum estimator for the θ parameter of the
uniform law above.
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Remark 4.2. The set of points used to define the minimum contrast
estimator will deserve some attention in future work. It is conjectured
that the speed of convergence will depend on the number and distribution
around 1 of these points (see the remarks in the text after theorem 2.1).

5 On PGF based minimum contrast estimators

Under sufficiently general hypothesis it is possible to show that the min-
imum contrast estimator used in the examples in this work is consistent.
For the reader convenience we quote here some notations and a general
and useful result from [1, p. 93]) that will allow us to prove the consis-
tency of the estimators presented above.

Let (Ω,F , (Pθ)θ∈Θ) be a statistical model, that is, (Ω,F) is a mea-
surable space and (Pθ)θ∈Θ is a family of probability laws depending on a
parameter θ ∈ Θ ⊂ Rp. For θ0 ∈ Θ fixed, we consider a contrast function
K(θ0,α) to be some measurable real valued function defined for α ∈ Θ
having a strict minimum for α = θ0. Supposing that the experiments are
described by a filtration F = (Fn)n≥0, a contrast process for θ0 and K is
a family of stochastic processes (Un(α))n≥0,α∈Θ, independent of θ0 such
that:

• For each α ∈ Θ the process (Un(α))n≥0 is F adapted.

• For each α ∈ Θ, limn→+∞ Un(α) = K(θ0,α) in Pθ0 probability.

A minimum contrast estimator associated with U is a F adapted estima-
tor (θ̂n)n≥1 such that for all n ≥ 1 we have:

Un(θn) = inf{Un(α)) : α ∈ Θ} .

With these notations and definitions we now have the following result.

Theorem 5.1 (Dacunha-Castelle & Duflo 1983). Suppose that Θ is com-
pact and that the real valued functions defined for α ∈ Θ by K(θ0, α) and
Un(α) are continuous. Define for any η > 0

w(n, η) := sup{|Un(α)− Un(β)| : |α− β| ≤ η}

and suppose that for a sequence (εk)k≥1, decreasing to zero, we have

lim
n→+∞

Pθ0

[
w

(
n,

1
k

)
≥ εk

]
= 0 .

Then, any minimum contrast estimator (θ̂n)n≥1 is consistent on θ0.
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Using this result it is now possible to show that for a class of statistical
models we have consistency of the minimum contrast estimators based on
PGF.

Theorem 5.2. Let Θ ⊂ Rp be a compact set and for every θ ∈ Θ let
fθ be the density of the law Pθ with respect to the Lebesgue measure. We
will suppose that for all α,β ∈ Θ, there is some strictly positive constants
a1, . . . , aN and some α1, . . . ,αN ∈ Θ such that for all t ∈ ∩α∈ΘDX(α) we
have that, for some real function g(t) not depending on θ ∈ Θ,

∣∣ψX(β)(t)− ψX(α)(t)
∣∣ ≤ g(t) |α− β|

N∑
k=1

akψX(αk)(t) . (5)

Let (Xn)n∈N be a sample of X having law Pθ0 and

ψX,n(t) =
1
n

n∑
i=1

tXi

defined for t > 0. Define for some M ≥ 1 and t1, . . . , tM in the set
∩α∈ΘDX(α) 6= ∅, the contrast process by:

On(θ0,α) :=
M∑
i=1

(ψX,n(ti)− ψX(α)(ti))
2

and (θ̂n)n∈N a sequence of of minimum contrast estimators of θ0, that is,
verifying for all n ∈ N

On(θ0, θ̂n) := min{On(θ0,α) : α ∈ Θ} .

Then, (θ̂n)n∈N converges in probability to θ0.

Proof. We will apply theorem 5.1. Accordingly, we have to prove that the
contrast function K(θ0,α), which is well defined as a consequence of the
law of large numbers, for instance in theorem 3.1, by:

K(θ0,α) = lim
n→+∞

On(θ0, θ̂n) =
M∑
i=1

(ψX(θ0)(ti)− ψX(α)(ti))
2 ,

is a continuous function of the variable α in Θ. This is in fact true
not only for K(θ,α) but also for On(θ,α) by the uniform convergence,
as ψX(α)(t), for fixed t, is a continuous function of α. It is clear that
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K(θ0,α) ≥ 0 and that K(θ0,θ) = 0. We may then conclude that for all
n ∈ N the minimum contrast θ̂n exists. Define now

∀k ≥ 1 w(n, k) := sup
{
|On(θ0,α)−On(θ0,β)| : |α− β| < 1

k

}
.

In order to have the consistency, we will verify that there exists a se-
quence (εk)k≥1, decreasing to zero, and such that for all k ≥ 1 we have
limn→+∞ Pθ0 [w(n, k) ≥ εk] = 0. For that purpose, observe that

On(θ0,α)−On(θ0,β) =

=
M∑
i=1

[2ψX,n(ti)
(
ψX(β)(ti)− ψX(α)(ti)

)
+
(
ψX(α)(ti)

2 − ψX(β)(ti)
2
)
]

and that, if we define

∀k ≥ 1 v(k) := max
1≤i≤M

sup
{∣∣ψX(β)(ti)− ψX(α)(ti)

∣∣ : |α− β| < 1
k

}
and

∀k ≥ 1 u(k) := max
1≤i≤M

sup
{∣∣ψX(β)(ti)

2 − ψX(α)(ti)
2
∣∣ : |α− β| < 1

k

}
the sequences (vk)k≥1 and (uk)k≥1 are decreasing and so we have

w(n, k) ≤ (uk + vk)

[
M∑
i=1

(1 + 2ψX,n(ti))

]
. (6)

Considering now wk := uk + vk, the fact that the sequence (wk)k≥1 is de-
creasing and the facts that E[M+2

∑M
i=1 ψX,n(ti)] = M+2

∑M
i=1 ψX(θ0)(ti)

and also

V[M + 2
M∑
i=1

ψX,n(ti)] =
4
n

M∑
i,j=1

(ψX(θ0)(titj)−ψX(θ0)(ti)ψX(θ0)(tj)) ,

13



we have the following chain of inequalities for all c > 0,

P

[
w(n, k) ≥ wk

(
(M + 2

M∑
i=1

ψX(θ0)(ti) + c

)]
≤(a)

≤(a) P

[
M∑
i=1

ψX,n(ti) ≥
M∑
i=1

ψX(θ0)(ti) +
c

2

]
≤

≤ P

[∣∣∣∣∣(
M∑
i=1

ψX,n(ti))−
M∑
i=1

ψX(θ0)(ti)

∣∣∣∣∣ ≥ c

2

]
≤

≤ 4
c2

V

[
M + 2

M∑
i=1

ψX,n(ti)

]
=

=
16
nc2

M∑
i,j=1

(
ψX(θ0)(titj)− ψX(θ0)(ti)ψX(θ0)(tj)

)
−−−−−→
n→+∞

0 ,

where inequality (a) results from formula 6. Defining now εk := wk(M +
2
∑M

i=1 ψX(θ0)(ti) + c) the proof will be finished as soon as we show that
limk→+∞ uk = 0 = limk→+∞ vk. But this, for vk, is a straightforward
consequence of formula (5). The conclusion limk→+∞ uk = 0 also follows
as we have, as a consequence of the hypothesis given by formula (5), that
choosing some fixed θ ∈ Θ, we get for all α ∈ Θ:

ψX(α)(t) ≤ ψX(θ)(t) + g(t) |α− θ|
N∑

k=1

akψX(αk)(t) .

thus showing that for some strictly positive constants a′1, . . . , a′N+1 and
some α′

1, . . . ,α
′
N+1 ∈ Θ we have for all t ∈ ∩α∈ΘDX(α) and with h(t) =

2 max(g(t), 1):

∣∣ψX(β)(t)
2 − ψX(α)(t)

2
∣∣ ≤ h(t)

(
N+1∑
k=1

a′kψX(α′
k)(t)

)∣∣ψX(β)(t)− ψX(α)(t)
∣∣

allowing us to apply the same reasoning as we did for vk. We must
remark that only a finite number of points t ∈ ∩α∈ΘDX(α) intervene in
the definitions of vk e uk.

5.1 Examples

We now present applications of the method introduced in this work to
the estimation of parameters of some distributions.
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Theorem 5.3 (PGF estimation of the mean a Gaussian distribution).
Let X = X(θ) ∈ N (θ, σ) such that σ is given and where θ ∈ Θ ⊂ R with
Θ a compact set . We then have that for all α, β ∈ [θ−, θ+] and for any
small ε > 0 that, with θ∗ := min(|θ+| , |θ−|),∣∣ψX(β)(t)− ψX(α)(t)

∣∣ ≤
≤ |α− β|

σ

(
(|α|+ |β|)

[
e

θ2
+−θ2

∗
2σ ψX(θ+)(t) + e

θ2
−−θ2

∗
2σ ψX(θ−)(t)

]
+

σ

εe

[
e

ε2+2εθ+
2σ

+
θ2
+−θ2

∗
2σ ψX(θ++ε)(t) + e

ε2−2εθ−
2σ

+
θ2
−−θ2

∗
2σ ψX(θ−−ε)(t)

])
.

(7)

And so, the PGF based estimator of the mean of a Gaussian random
variable given by theorem 5.2 is consistent.

Proof. Let fθ denote the density of X = X(θ) ∈ N (θ, σ). We have that
by the mean value theorem:

ψX(β)(t)− ψX(α)(t) =
∫

R
tx(fβ(x)− fα(x))dx =

=
∫

R
tx(β − α)

[
∂

∂θ
fθ(x)

]
θx:=λxα+(1−λx)β

dx .
(8)

As a consequence we will have that∣∣ψX(β)(t)− ψX(α)(t)
∣∣ ≤ |α− β|

σ
√

2πσ

∫
R
tx(|x|+ |α|+ |β|)e

−(x−θx)2

2σ dx (9)

The proof of inequality (7) will be completed by the estimation of two
integrals. As for the simplest one, we have that:∫

R
txe

−(x−θx)2

2σ dx ≤ e−
θ2
∗

2σ

(∫
R
txe−

x2

2σ
+ 2xθx

2σ dx

)
≤

≤ e−
θ2
∗

2σ

(∫
R+

txe−
x2

2σ
+

2xθ+
2σ dx+

∫
R−

txe−
x2

2σ
+

2xθ−
2σ dx

)
=

= e−
θ2
∗

2σ

(
e+

θ2
+

2σ

∫
R+

txe−
x2

2σ
+

2xθ+
2σ

−
θ2
+

2σ dx +

+ e+
θ2
−

2σ

∫
R−

txe−
x2

2σ
+

2xθ−
2σ

−
θ2
−

2σ dx

)
=

= e
θ2
+−θ2

∗
2σ

∫
R+

txe−
(x−θ+)2

2σ dx+ e
θ2
−−θ2

∗
2σ

∫
R−

txe−
(x−θ−)2

2σ dx ≤

≤
√

2πσ
(
e

θ2
+−θ2

∗
2σ ψX(θ+)(t) + e

θ2
+−θ2

∗
2σ ψX(θ−)(t)

)
15



We now deal with the second integral. For that we will compensate the
additional factor |x| by some exponential term. Starting as in the first
integral we will have to evaluate an integral of the form:∫

R+

txxe−
x2

2σ
+

2xθ+
2σ

−
θ2
+

2σ dx =

=
∫

R+

tx
(
xe−

2xε
2σ

)
e−

x2

2σ
+

2xθ+
2σ

−
θ2
+

2σ
+ 2xε

2σ dx ≤

≤ σ

εe

∫
R+

txe−
x2

2σ
+

2x(θ++ε)

2σ
−

θ2
+

2σ dx =

=
σ

εe
e

ε2+2εθ+
2σ

∫
R+

txe−
x2

2σ
+ 2x

2σ
(θ++ε)− (θ++ε)2

2σ dx =

=
σ

εe
e

ε2+2εθ+
2σ

∫
R+

txe−
(x−(θ++ε))2

2σ dx ≤
√

2πσ
σ

εe
e

ε2+2εθ+
2σ ψX(θ++ε)(t)

With the same reasoning:∫
R−

tx(−x)e−
x2

2σ
+

2xθ−
2σ

−
θ2
−

2σ dx =

=
∫

R−

tx
(
−xe

2xε
2σ

)
e−

x2

2σ
+

2xθ−
2σ

−
θ2
−

2σ
− 2xε

2σ dx ≤

≤ σ

εe

∫
R−

txe−
x2

2σ
+

2x(θ−−ε)

2σ
−

θ2
−

2σ dx =

=
σ

εe
e

ε2−2εθ−
2σ

∫
R−

txe−
x2

2σ
+ 2x

2σ
(θ−−ε)− (θ−−ε)2

2σ dx =

=
σ

εe
e

ε2−2εθ−
2σ

∫
R−

txe−
(x−(θ−−ε))2

2σ dx ≤
√

2πσ
σ

εe
e

ε2−2εθ−
2σ ψX(θ−−ε)(t)

Formula 7 shows that the hypothesis of theorem 5.2, namely formula (5)
are verified. The result now follows.

We will now deal with the gamma distribution with shape parameter
λ and rate parameter θ, that is an element of G(λ, θ). Such a distribution
has a density given by

f(λ,′θ)(x) =
θλ

Γ(λ)
e−θxxλ−11I]0,+∞[

See also section 4.3 for further notation.
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Theorem 5.4 (PGF estimation of the rate parameter of a gamma dis-
tribution). Let X = X(λ, θ) ∈ G(λ, θ) such that the shape parameter λ
is given and the unknown parameter verifies θ ∈ Θ = [θ−, θ+] ⊂ R, with
[θ−, θ+] a compact interval. We have that for all α, β ∈ [θ−, θ+] and
t ∈]0, eθ− [:

∣∣ψX(λ,β)(t)− ψX(λ,α)(t)
∣∣ ≤ |α− β|

(
λθλ−1

+

θλ
−

ψX(θ−,λ)(t) +

+
λθλ

+

θλ+1
−

ψX(θ−,λ+1)(t)

)
,

(10)

Then, the PGF minimum contrast estimator of the parameter θ given by
theorem 5.2 is consistent.

Proof. The proof of inequality (10) goes exactly as the proof of the cor-
respondent inequality for the Gaussian distribution above, although in a
simpler manner.

For the uniform distribution the result is even simpler.

Theorem 5.5 (PGF estimation of the lower parameter of a uniform
distribution). Let X = X(θ, σ) ∈ U(θ, σ) such that the σ is given and
the unknown parameter θ verifies θ ∈ Θ = [θ−, θ+] ⊂ R, with [θ−, θ+] a
compact interval. We have that for all α, β ∈ [θ−, θ+] and t > 0:∣∣ψX(α,1)(t)− ψX(β,1)(t)

∣∣ ≤ |ln(t)| |α− β|
(
ψX(θ+,1)(t) + ψX(θ−,1)(t)

)
(11)

Then, the PGF minimum contrast estimator of the parameter θ given by
theorem 5.2 is consistent.

Proof. The proof of formula 11 goes along similar lines as the previous
proofs in this section. In fact, with the computation of the PGF of the
uniform law mentioned above, we have that:∣∣ψX(α,1)(t)− ψX(β,1)(t)

∣∣ = ∣∣∣∣ t− 1
ln(t)

∣∣∣∣ ∣∣∣tα − tβ
∣∣∣ = ∣∣∣∣ t− 1

ln(t)

∣∣∣∣ ∣∣∣∣∫ β

α
ln(t)txdx

∣∣∣∣
As we now have that:

sup
x∈[α,β]

tx ≤ sup
x∈[θ−,θ+]

tx ≤

{
tθ+ for t ≥ 1
tθ− for t ≤ 1

= tθ+1I{t≥1} + tθ−1I{t≤1} ,

the result follows at once.
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