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Abstract

Considerable attention has been devoted to the statistical analysis of extreme events. Clas-

sical peaks over threshold methods are a popular modelling strategy for extreme value statistics

of stationary data. For nonstationary series a variant of the peaks over threshold analysis is

routinely applied using covariates as a means to overcome the lack of stationarity in the series

of interest. In this paper we concern ourselves with extremes of possibly nonstationary pro-

cesses. Given that our approach is, in some way, linked to the celebrated Box-Jenkins method,

we refer to the procedure proposed and applied herein as Box-Jenkins-Pareto. Our procedure

is particularly appropriate for settings where the parameter covariate model is non-trivial or

when well qualified covariates are simply unavailable. We apply the Box-Jenkins-Pareto ap-

proach to the weekly number of unemployment insurance claims in the US and exploit the

connection between threshold exceedances and the US business cycle.
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1. INTRODUCTION

The statistical analysis of extreme events is of central importance in a wide variety of scenar-

ios. A broad share of this statistical paradigm is founded on Karamata’s regular variation,

which places the methods at an elegant theoretical support (de Haan and Ferreira, 2006;

Resnick, 2007). From the applied stance, the domain of application of extreme value statis-

tics is quite extensive. In effect, modern methods are illustrated by means of problems of

interest which arise in the contexts of hidrology (Padoan et al., 2010), portfolio manage-

ment (Poon et al., 2003, 2004), clean steel production (Bortot et al., 2007), wildfire analysis

(Turkman et al., 2009), records in athletics (Einmahl and Magnus, 2008), among others.

At the crux of extreme value modelling relies the extremal types theorem, a classical result

first established by Fisher and Tippet (1928) and Gnedenko (1943). Roughly speaking, this

cornerstone result proclaims that the properly standardized maxima of a sequence of inde-

pendent and identically distributed random variables, converges to one element of the trinity

composed by the Fréchet, Gumbel and Weibull distributions. The trinity in unity is then

provided by the Generalized Extreme Value Distribution (GEVD), which brings together all

the above mentioned distributions. If only block maxima (say, annual maxima) are available,

a natural modelling approach is to fit a GEVD to the data. However, in cases wherein an

entire series is available restricting the analysis to block maxima is a wasteful of the data.

Under such circumstances, the twin approach of peaks over threshold methods is potentially

more effective given that it collects further information from the tail of the distribution of

interest, considering as extreme all the exceedances above a fixed large threshold. This dual

procedure yields the Generalized Pareto Distribution (GPD) as the limiting distribution of

the threshold exceedances (Balkema and de Haan, 1974; Pickands, 1975). Unfortunately,

by construction both of these approaches fail to cover nonstationarity – a feature routinely
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claimed by the data.

This paper is mainly concerned with the peaks over threshold paradigm for possibly

nonstationary processes. In what regards nonstationary extremes a seminal reference is

Davison and Smith (1990), but as some recent papers put forward, the quest for alternative

modelling approaches is far from being completed (see for example Davison and Ramesh,

2000; Chavez-Demoulin and Davison, 2005; Eastoe and Tawn, 2009). Most of the available

modelling approaches for nonstationary extremes make use of the introduction of covariates

in the parameters of the threshold model as a means to overcome the lack of stationarity

in the series of interest. Even though such approaches are quite appealing some hindrances

should be pointed out. First, from the practical stance, in some circumstances the parameter

covariate model may be non-trivial or well qualified covariates may be simply unavailable.

Second, there is a serious risk of establishing spurious associations linking the parameters

and the corresponding covariate models. In effect, as it is well known, the similitude of

trending mechanisms in the data can easily lead to spurious regressions – a problem which

dates back to Yule (see Phillips, 1998, and references therein). One of the most comical of

such spurious connections led to the identification of an association between the number of

ordained ministers and the rate of alcoholism in Britain (Phillips, 1998). Third, as recently

pinpointed out by Eastoe and Tawn (2009) parameter covariate approaches based on Davison

and Smith (1990) are unable to preserve one of the most notorious features of the GPD

distribution, viz.: threshold stability. In particular this means that, in such models, we are

unable to guarantee that the form of the distribution of the threshold exceedances remains

unchanged if a larger threshold is selected.

Our driving example for illustrating the modelling flaws mentioned above makes use of a

well known economic time series – the weekly number of unemployment insurance claims in
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the US (henceforth initial claims). This series is oftentimes considered as a reference leading

indicator for several key macroeconomic variables of interest being even accredited to be

able to forestall recessions (Montgomery et al., 1998; Choi and Varian, 2009, and references

therein). As it can be observed from the examination of Figure 1, there is a natural procliv-

ity for the number of initial claims to second-guess the unemployment rate. For example,

this is clear at the end of the observation period wherein the initial claims peaked before

the unemployment rate. Hence, from the pratical stance, a peaks over threshold analysis

could be of considerable interest for assessing the risk of entering into an unemployment

surge, given the most recent information available on initial claims. A stylized fact is that

unemployment is known to behave asymmetrically, in the sense that the probability of a

decrease in unemployment, given two previous decreases, is greater than the probability of

an increase conditional on two preceding increases (Milas and Rothman, 2008). It is also

common knowledge that unemployment is supposed to move countercyclically, upward in

slowdowns and contractions and downward in speedups and expansions (Rothman, 2001;

Caporale and Gil-Alana, 2008). Hence, the definition of a suitable dynamic threshold could

be extremely helpful for recognizing the eruption of those surges and ultimately to help coun-

teract them. As the harshness of latest unemployment episode testifies, the understanding

of the law of motion of such thresholds is of real value for policy-making decision support.

In effect, as it will be shown later, threshold exceedances of initial claims can be a valuable

tool for the assessment of the US business cycle.

Classical peaks over threshold methods are by no means a good modelling choice for the

initial claims. In fact, the lack of stationary in the series is clear. This can be definitely

conjectured from the inspection of Figure 1 and easily confirmed with the aid of results (not

reported here) obtained from stationarity and unit root tests. The long-range dependence
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of this type of data is self-evident, as corrobated by Figure 2.

The initial claims series is also representative of the modelling flaws discussed above.

First, the above mentioned leading attributes of this series make parameter covariate based

strategies, to be discussed in Section 2, highly non-trivial. Second, but related, some pru-

dency with spurious associations should also be taken into account. In addition, it is un-

questionably difficult to obtain appropriate covariates which are also released on a weekly

basis, given that most economic data are available on a monthly or quarterly frequency

and moreover released with a noteworthy lag. Third, the application of parameter covariate

models to the initial claims raises problems in model selection, given the lack of threshold

stability.

In this paper we propose a modelling stratagem for dealing with the set of difficulties

mentioned above. More specifically, this paper proposes an approach which can be applied

to integrated processes of order α, with α denoting any real number. Hence, these also

encompass fractionally integrated processes which have their roots in the works of Granger

and Joyeux (1980) and Hosking (1981). We note that if the process is integrated of order

α, then although the series of interest may not be stationary, it can be converted into

a stationary series by differencing α-times. Since after differencing α-times stationarity is

acquired, classical peaks over threshold models can then be applied to the series which results

from such preprocessing step. Binomial series expansions then allow us to naturally build

a dynamic threshold for the original series of interest. Given that our approach is linked

to both the celebrated Box-Jenkins time series method (Box et al., 2008) and the GPD

model, we designate the modelling stratagem proposed herein as the Box-Jenkins-Pareto

approach. This is assuredly not the first occasion wherein concepts borrowed from classical

time series analysis have proven to be useful in modelling statistics of extremes. For example,
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Figure 1: (a) Weekly number of unemployment insurance claims in the US (initial claims). The 2239 weekly

observations are seasonally adjusted and range from 7 January 1967, to 28 November 2009; (b) US monthly

unemployment rate. The 515 monthly observations are seasonally adjusted and range from January 1967 to

November 2009.
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in a context distinct from ours, it was recently proposed by Davis and Mikosch (2009) the

extremogram – a correlogram for extreme events.

The layout of this paper is as follows. The next section overviews the most frequently

applied peaks over threshold approaches for stationary and nonstationary series. Section 3

introduces our modelling stratagem and provides concise guidelines for implementation. In

Section 4 we examine the weekly number of unemployment insurance claims in the US and

exploit the connection between threshold exceedances and the US economy contraction and

expansion periods. The paper closes in Section 5.
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Figure 2: (a) Sample autocorrelation function for the initial claims; (b) Sample autocorrelation function for

the unemployment data.

2. A RUNDOWN ON THRESHOLD MODELS

This section revisits three threshold models of interest. The first model presented here is for

stationary series, while the remainder cover the nonstationary case. In what concerns the

latter, we restrict our attention to linear models; other approaches can be found elsewhere
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(Davison and Ramesh, 2000; Chavez-Demoulin and Davison, 2005).

2.1 Models for Stationary Series

In the sequel suppose that the true series of interest {Yt} is stationary with univariate

marginal survivor function SY . Threshold models consider as extreme the observations

y1, y2, . . . which exceed, by a certain amount y > 0, a fixed threshold u. These observations

are frequently known as exceedances. In order to draw a distinction between exceedances

and non-exceedances, we use δu,t = I(yt < u) to denote a non-exceedance indicator. The

centerpiece of threshold models is based on earlier asymptotic developments (Balkema and

de Haan, 1974; Pickands, 1975). Essentially these establish that for a fixed large threshold

u the conditional survivor of an exceedance by the amount y > 0, follows a GPD, with scale

parameter ϕu > 0 and shape parameter γ, i.e.:

Pr{Y > u+ y |Y > u} =

[
1 +

γy

ϕu

]−1/γ

+

, (1)

where a+ = a ∨ 0. It should be pointed out that for γ = 0, the relation given in (1) should

be interpreted by taking the limit γ → 0, so that under such circumstances it is obtained an

exponential distribution with parameter 1/ϕu, viz.:

Pr{Y > u+ y |Y > u} = exp (−y/ϕu) .

After threshold selection has been executed, parameter estimation should be conducted.

Some comments are in order. We will focus our attention on parameter estimation via

likelihood methods. Let y1, . . . , yn denote a random sample from SY . Then the likelihood of

the model can be written as

L(SY , ϕu, γ) =
n∏
t=1

(1− SY (u))δu,t

(
SY (u)

ϕu

[
1 +

γyt
ϕu

]−1/γ−1

+

)1−δu,t

. (2)
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For the sake of curiosity, observe that this likelihood resembles the case wherein random

censoring is present (Einmahl et al., 2008). Yet, in such case, a non-censoring indicator is

used in lieu of a non-exceedance indicator .

One of the most important measures in risk evaluation is the m-observation return level.

Roughly speaking, the m-observation return level, here denoted by τm, is given by the value

which is expected to be exceeded once in every m observations. This can be easily obtained

from the quantiles of the GPD distribution, that is to say

τm = u+
ϕu
γ

[(mSY (u))γ − 1] . (3)

Again, we remark that for γ = 0, this should be interpreted by taking the limit γ → 0, so

that in such case the m-observation return level is given by

τm = u+ ϕu log(mSY (u)).

2.2 The Parameter Covariate Model Approach

Suppose now that {Yt} is nonstationary, but that some covariates {Xt} are available. Un-

der this scenario, a natural approach entails considering a linear covariate model for the

parameters of the GPD distribution, i.e., to assume that

{Y |X = x} ∼ GPD(ϕu(x), γ(x)). (4)

This modelling approach is due to Davison and Smith (1990) and it is routinely used in

applications wherein stationarity is not claimed by the data. In this case the conditional

survivor of the exceedances of u is given by

Pr{Y > u+ y |Y > u,X = x} =

[
1 +

γ(x)y

ϕu(x)

]−1/γ(x)

+

. (5)
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Typically, in applications, the parameter covariate models for ϕu(x), γ(x), and SY |X=x(u),

are structured through generalized linear models with suitable link functions. The most

natural choices rely upon a log-link, an identity link and a logistic link for the parameter

covariate model of the scale, the shape and the rate of exceedances above the threshold u,

respectively.

The likelihood of this model follows the same lines as (2). The due adjustments are

however necessary

L
(
SY |X=x, ϕu(x

)
, γ(x)) =

n∏
t=1

(1− SY |X=x(u))δu,t

(
SY |X=x(u)

ϕu(x)

[
1 +

γ(x)yt
ϕu(x)

]−1/γ(x)−1

+

)1−δu,t

.

(6)

As discussed above, although this approach is quite appealing some drawbacks should pin-

pointed. In fact, from the practical stance, in a variety of circumstances the parameter

covariate model may be non-trivial or well qualified covariates may be simply unavailable.

There is also a serious risk of establishment of spurious associations linking the parameter

and the corresponding covariate model. In effect the similitude of trending mechanisms in

the data can lead to spurious regressions – a problem which dates back to Yule (see Phillips,

1998, and references therein). Moreover, as recently pointed out by Eastoe and Tawn (2009)

the parameter covariate approach is unable to preserve one of the most notorious features of

the GPD distribution, viz.: threshold stability. In particular this implies that, in this model,

we are not able to assure that the form of the distribution of the threshold exceedances

remains unaltered if a larger threshold is chosen.

2.3 The Box-Cox-Pareto Method for Nonstationary Series

A more recent approach for modelling nonstationary extremes is due to Eastoe and Tawn

(2009). Given that this modelling strategy is based on the Box-Cox transformation (Box and
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Cox, 1964) we refer to their approach as the Box-Cox-Pareto method. This transformation

is on the basis of the preprocessing approach of the Box-Cox-Pareto wherein, mirabile dictu,

the nonstationary process {Yt} is written through the following Box-Cox location-scale model

Y
λ(xt)
t − 1

λ(xt)
= β1(xt) + β2(xt)Zt, (7)

where {Zt} denotes an approximately stationary series and β1(xt), log β2(xt) and λ(xt) are

linear functions of the covariates. The inference is then conducted through a two step proce-

dure. Firstly, estimate the preprocessing parameters (β1(xt), β2(xt), λ(xt)). For estimating

the preprocessing parameters, one can rely in an approach similar to quasi-likelihood assum-

ing that the data is normally distributed. Secondly, apply the parameter covariate model

approach, proposed in the preceding subsection, to the approximately stationary series {Zt}.

In order to give some intuition on how to interpret {Zt}, suppose that λ(xt) < ε, for ε > 0

sufficiently small. Under such circumstances, transformation (7) can be recasted through

the following rough approximation, via a Taylor expansion

log(Yt) ≈
Y
λ(xt)
t − 1

λ(xt)
= β1(xt) + β2(xt)Zt. (8)

Hence {Zt} can be conceptually thought as a sort of residual of a linear model. Given that

earlier applications of the Box-Cox transformation were meant to ensure that the classical

assumptions of the linear model hold, one can arguably hope that the “residuals” {Zt} are

approximately stationary. The method proposed by Eastoe and Tawn (2009) introduced

some nice modelling advantages into the state-of-the-art. It potentially supports the appli-

cations on a more proper theoretical support and greater efficiency can in effect be achieved.

Nevertheless, given that the second step of this method makes direct use of the parame-

ter covariate model, introduced in the previous subsection, a broad part of the hindrances

mentioned above are also potentially shared by the Box-Cox-Pareto approach.
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3. THE BOX-JENKINS-PARETO APPROACH

This section introduces our modelling stratagem. Given that our approach is, in some way,

based on the celebrated Box-Jenkins time series method (Box et al., 2008), we refer to

the procedure proposed herein as the Box-Jenkins-Pareto approach, in opposition to the

Box-Cox-Pareto method of Eastoe and Tawn (2009).

3.1 The Box-Jenkins-Pareto Method for Possibly Nonstationary

Series

Data preparation techniques can be very convenient for subsequent data analysis. One of the

most common data preparation methods is given by differencing, i.e., to consider the differ-

ences between consecutive observations. The classical Box-Jenkins method is representative

of the advantages that differencing can bring into the analysis.

Suppose that the nonstationary series {Yt} can be converted into a stationary series by

differencing once, i.e.,

(1− L)Yt = Zt, (9)

for some stationary series {Zt} with survivor SZ . Here and below L is the lag operator and

(1−L) ≡ ∆ is the difference operator. A series which verifies (9) is said to be integrated of

order 1 and will be denoted by I(1). In the same spirit, the notation I(0) is used for stationary

series. Given that some series require additional differencing before reaching stationarity a

broader definition is necessary. More generally, the series {Yt} is said to be integrated of

order α (to be denoted by I(α)), for α ∈ R, if

∆αYt = Zt, (10)

for some stationary series {Zt} with survivor SZ . A comprehensive discussion on these series
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can be found in Robinson and Marinucci (2001). This general class encompasses fractionally

integrated processes which have their roots in the seminal works of Granger and Joyeux

(1980) and Hosking (1981). We underscore that the memory parameter α is allowed to be

any real number. This parameter condenses useful information regarding the stationarity of

the sequence: if α ∈ [0; 0.5[ then the series is stationary and mean-reverting; for α ∈ [0.5; 1[

the series is no longer stationary although it is still mean-reverting; finally, if α ≥ 1 the

series is neither stationary nor mean-reverting.

The following functional central limit theorem establishes the link between integrated

series and fractional Brownian motion – a continuous stochastic process with known ap-

plications in extreme value modelling (Mikosch et al., 2002; Buchamann and Klüppelberg,

2005). Here we make use of the notations ⇒ and W (x) for denoting weak convergence and

Brownian motion, respectively. In addition, d.e denotes the ceiling function.

Theorem 1 (Sowell, 1990) Let {Yt} be an integrated series of order −1/2 < α < 1/2.

Suppose that Zt ≡ ∆αYt are independent and identically distributed with E{Zt} = 0 and

E{|Zt|r} <∞, for r ≥ {4 ∨ (−8α/(1 + 2α))}. Then

σ−1
n

dnte∑
τ=1

Yτ ⇒ Wα(t),

where σn ≡ V ar{
∑n

τ=1 Yτ} and Wα(t) is fractional Brownian motion, i.e. the stochastic

integral

Wα(t) =
1

Γ(α + 1)

∫ t

0

(t− x)dW (x).

From the extreme value theory stance, one question of interest is the following: Suppose

that the series of interest {Yt} is possibly nonstationary, but that it is I(α) for some real

number α. Is it still possible to build directly a threshold model for {Yt}?
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In order to give an answer to such question, assume by now that the differencing pa-

rameter α is a positive integer; later we let α be any real number. Since {Yt} is I(α), the

exceedances of Z in the amount y > 0, above a fixed high threshold u, can be modelled

through a GPD, i.e.

Pr {Z > u+ y |Z > u} =

[
1 +

γy

ϕu

]−1/γ

, (11)

for every y > 0. Hence, the likelihood of the model is essentially the same as given in (2).

Observe further that for every period t we have

Pr {Zt > u+ y |Zt > u} = Pr {∆αYt > u+ y |∆αYt > u}

= Pr

{(
α∑
i=0

(
α
i

)
(−L)i

)
Yt > u+ y

∣∣∣∣∣
(

α∑
i=0

(
α
i

)
(−L)i

)
Yt > u

}
= Pr {Yt > ũt + y |Yt > ũt} , (12)

where ũt defines the dynamic threshold given by

ũt = u+
α∑
i=1

(
α
i

)
(Yt−iI(i odd)− Yt−iI(i even)) , for t ≥ α + 1, (13)

with
(
α
i

)
= Γ(α + 1)/(Γ(i + 1)Γ(α + i − 1)) denoting the binomial coefficient and I(.) the

indicator function. Here and below, Γ(.) is the gamma function with the customary con-

ventions Γ(0) = ∞ and Γ(0)/Γ(0) = 1. Observe that the dynamic threshold, given in (13),

is composed by a building block (u) and a remainder time-varying part which makes use of

the previous α values of the series. From the practical stance this implies that it will only

be possible to make the dynamic threshold start at the (α + 1)-observation. Nevertheless,

this is not as critical as it might prima facie appear since in general α assumes values with

order of magnitude below 1. This is strengthened by the fact that, as mentioned above, (11)

follows from large sample results, so that (α + 1)/n is negligible in the overall.

In the simplest case where the series is difference-stationary with α = 1, it holds that

ũt = u+ Yt−1, for t ≥ 2. The simple relationship established in (12) suggests a natural way
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for constructing a dynamic threshold of I(1) series, namely: first, obtain u from the first

differences of the series of interest; secondly, sum u to the lagged version of the series.

For the case wherein α is any real number the more general series expansion should be

taken into account

∆α =
∞∑
i=0

〈α〉i
Γ(i+ 1)

(−L)i, (14)

where

〈α〉i =
Γ(α + 1)

Γ(α− i+ 1)
I(α 6= 0) = α(α− 1) . . . (α− i+ 1),

is the Pochhammer’s symbol for the falling factorial. We bring to mind that for any positive

integer α, (14) is tantamount to the classical binomial expansion. Thus, if α is any real

number, similarly to (12) we still have

Pr {Zt > u+ y |Zt > u} = Pr {Yt > ũt + y |Yt > ũt} ,

but now the dynamic threshold ũt is more broadly defined as

ũt = u+
t−1∑
i=1

〈α〉i
Γ(i+ 1)

(Yt−iI(i odd)− Yt−iI(i even)) , for t ≥ 2 + I(α ∈ N0)(α− 1). (15)

Some comments are in order. As a first preliminary observation, note that if α is positive

and integer we recover the threshold given in (13). The more general version of the dy-

namic threshold now obtained is similar to the one obtained in (13) being also composed

by a building block and a remainder time-varying part. Nevertheless, the threshold ũt now

obtained makes potential use of all the previous (t− 1) observations. The pathological case

wherein α = 0 is quite interesting. If α = 0 then {Yt} is stationary so that we would expect

the classical threshold model for stationary series to hold. From the inspection of (15) we

can in fact confirm that this is the case, since we obtain ũt = u, for t ≥ 1.

For the sake of completeness we discuss below how the dynamic threshold proposed above
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can be used for return level modelling. In addition, for the sake of generality we also discuss

the case for integrated series with a polynomial trend.

3.2 Path Return Level with Dynamic Threshold

Consider again the case wherein the series {Yt} is I(α). Given that we are considering that

{Yt} is I(α), the exceedances of Z, in the amount y > 0, above a fixed high threshold u, can

be modelled through a GPD(ϕu, γ). Using the dynamic threshold given above, the following

return level can be easily obtained

τ̃m(t) = ũt +
ϕu
γ

[(mSYt(ũt))
γ − 1] . (16)

We refer to this time-varying level as m-observation path return level. Just as the return

level, presented in (3), yields the fixed level τm which is expected to be beat once in every

m observations, the path return level defines a route level expected to be exceeded once in

every m observations. Again, the case for γ = 0 should be interpreted by taking the limit

γ → 0, so that under those circumstances the m-observation return level is given as

τm(t) = ũt + ϕu log(mSYt(ũt)). (17)

3.3 The Box-Jenkins-Pareto Approach for Series with a Polyno-

mial Trend

The foregoing subsections were devoted to the threshold modelling for nonstationary series.

In applications one is also frequently confronted with the need to model a nonstationary

series with a deterministic time trend. Formally, a process {Yt} is said to be integrated of

order α, for α ∈ R, with a polynomial time trend of degree β ∈ R, if

∆αYt − λtβ = Zt, (18)
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for some stationary series {Zt} with survivor SZ . These processes will be denoted by

IT(α, β), where the “T” is used to denote trend. Of course the chief interest relies in the

unexplored case of β 6= 0, since the remainder case was examined in a preceding subsection.

Observe that for any real number α it holds that

Pr {Zt > u+ y |Zt > u} = Pr {Yt > ũt + y |Yt > ũt} ,

with the dynamic threshold ũt now defined as

ũt = u+ λtβ +
t−1∑
i=1

〈α〉i
Γ(i+ 1)

(Yt−iI(i odd)− Yt−iI(i even)) , (19)

for t ≥ 2 + I(α ∈ N0)(α− 1). This roughly means the following: the polynomial time trend

enters additively into the dynamic threshold. Note that as expected the dynamic threshold

is now composed by two time-varying components: one due to the trend; the remainder

due to the memory of the series. The case wherein α = 0 is again quite interesting. In

fact, under such conditions the process is trend stationary and we now obtain the threshold

ũt = u+λtβ, for t ≥ 1. This simple observation provides guidance for a simple alternative, to

the parameter covariate model introduced above, for trend stationary processes. Thus, (19)

suggests estimating the trend and computing the dynamic threshold in lieu of considering

ϕu(t) = exp(λtβ) and/or γ = λtβ and estimating the model via (6). For testing if the

process is trend-stationary one can consider the stationarity test of Kwiatkowski et al. (1992).

This procedure is very popular and easily accessible in several statistical packages. A more

complete portrait of this literature, including more avant-garde and powerful tests, can be

found, for example, in Cavaliere and Taylor (2008).
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4. THE INITIAL CLAIMS AND THE US BUSINESS CYCLE

In this section we model initial claims using the proposed Box-Jenkins-Pareto approach. We

intend to examine what connection may the resulting threshold exceedances have with the US

economy contraction and expansion periods dated by the Business Cycle Dating Committee

of the National Bureau of Economic Research (hereinafter NBER). Given the hardship

which results from economic contractions we are chiefly interested in recessive periods and

thus focus the analysis on right tail corresponding threshold exceedances of the initial claims.

The period under analysis for the weekly number of unemployment insurance claims in the

US (initial claims) ranges from 7 January 1967, to 28 November 2009. The 2239 observations

from this seasonally adjusted series were gathered from the United States Department of

Labor – Employment & Training Administration and can be easily downloaded from the web

site: http://www.ows.doleta.gov. The R code developed during the implementation of

this application is available from the authors upon request.

One could think of using the exceedances resulting from the dynamic threshold scheme

introduced above, as an indicator of whether an economy is entering or crossing a recession

period. Notwithstanding, several reasons anticipate the difficulties with such an inquiry.

For example one of such complications lies in the data itself. In effect, as pointed by the

Business Cycle Dating Committee of the NBER (see Frequently Asked Questions NBER,

2008), there is a marked week-to-week noise in the initial claims. Moreover, it should be

stressed that it is not our point here to design an ideal alarm mechanism, but merely to

provide some insight on how to ponder over the dynamic threshold proposed above, in the

current context. For optimal alarm systems see, for example, Antunes et al. (2003) and

references therein.

In order to apply the Box-Jenkins-Pareto approach we first need to be apprised of the
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order of differentiation α to be used in the analysis. Here we make use of the well known GPH

estimator proposed by Geweke et al. (1983). This yields α̂GPH = 0.9643 with corresponding

standard error 0.1069. For the sake of exposition, in the sequel we consider the memory

parameter α to be equal to 1 and hence the first differences of the initial claims are examined

below.† The construction of the dynamic threshold, defined according to either (13) or (15),

was as made as follows. Firstly, the time varying part is simply given by the one week lagged

initial claims. Secondly, the fixed part of the dynamic threshold (u) was obtained from the

first differences of the initial claims. As usual, the selection of threshold is a debatable

step. Quoting Davis and Mikosch (2009) “the choice of threshold is always a thorny issue in

extreme value theory,” entailing a balance between bias and variance. If a too low threshold

is selected then the asymptotic rationale of the model is not justified and bias is generated.

On the other hand, if a too high threshold is chosen few exceedances are available so that

higher variance is obtained. Detailed recommendations on threshold selection can be found,

for instance, in Bermudez et al. (2001). As guidance, we made use of the mean residual

life plot and plotted parameter estimates of the peaks over threshold model, of the first

differences of initial claims, at a variety of thresholds. Estimation results, not reported

here, confirmed the graphical suggestion that the tail index estimate is quite stable if small

perturbations are induced in the fixed threshold of u+ = 48. The corresponding tail index

estimate is γ̂ = 0.0717, with standard error 0.1649. The analysis was supplemented by

probability plots, quantile plots, and density plots. In Figure 3 we depict the dynamic

threshold obtained.

In order to give some flavor to the sequence of exceedances generated by the dynamic

threshold presented in Figure 3, we introduce in the subsequent figures shaded areas rep-

† The case wherein the exact value of the estimate α̂GPH was used is available from the authors upon
request. Not surprisingly, the results are similar in the overall.
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Figure 3: The dynamic threshold for the weekly number of unemployment insurance claims in the US.

resenting the US economic activity contractions dated by the Business Cycle Dating Com-

mittee of the NBER. Seven peak (P) to trough (T) movements occured from January

1967 to November 2009. Thus during the period under analysis seven contractions were

acknowledged by the NBER Business Cycle Dating Committee, viz.: i) December 1969 –

November 1970; ii) November 1973 – March 1975; iii) January 1980 – July 1980; iv) July

1981 – November 1982; v) July 1990 – March 1991; vi) March 2001 – November 2001; vii)

December 2007. Note that in the latest contraction episode the trough was not yet deter-

mined by NBER. Observe further that there is some lag in the identification of peaks by

NBER. For example, the economic activity peak of December 2007 was only determined in

December 2008 (NBER, 2008).

Figure 4 represents the threshold exceedances and the original series. In the sequel we
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Figure 4: (a) Threshold exceedances; (b) Weekly number of unemployment insurance claims in the US
(inital claims). Shaded areas represent the US economic activity contractions dated by the Business Cycle
Dating Committee of the NBER.
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assess the information content that the threshold exceedances of the initial claims possess

for tracking contraction periods. From the inspection of Figure 4 we can ascertain that

among the 2239 weekly observations such mechanism would have been activated only 37

times. It is somehow enthusiastic that such naive mechanism is consistent with several

contraction episodes and particularly with the eruption of the latest economic activity peak

determined by NBER. This is reinforced by the fact that in only 22.6% of the period under

analysis contractions ocurred, so that it is substantially more difficult to spot recessive

periods simply by chance. Nevertheless, the analysis of Figure 4 also reveals that several

exceedances occured during expansions. As argued above, it is recognized by the NBER (See

Frequently Asked Questions NBER, 2008) that there is a noticeable week-to-week noise in

the initial claims series which difficults its analysis. In effect, as it can be observed in Figure

4 the larger exceedances in (a) correspond to isolated spikes in (b) so that they are most

probably due to week-to-week noise. In the overall, these spikes are immediately reverted in

the following week. Therefore, one possible way to sieve plausible exceedances from noisy

ones is to inspect which exceedances were followed in the next week by a left tail exceedance.

This involves performing an analogous threshold analysis as performed above for the right

tail of the first differences of the initial claims. The same approach now yields, for the left

tail, a fixed threshold u− = −38. For simplicity, we refer to the exceedances which result

from the the latter analysis as left tail exceedances, and to the exceedances depicted in

Figure 4 as right tail exceedances, or simply as exceedances whenever there is no possibility

of confusion.

Figure 5 depicts the right and left tail exceedances – a representation which we denom-

inate below as mirror plot. The analogy here is that the lines correspoding to noisy ex-

ceedances should be immediately followed by left tail exceedances creating the visual effect
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Figure 5: Mirror plot.

of a mirror image. The mirror plot can then be thought as an exploratory tool for exam-

ining which right tail exceedances are followed by left tail exceedances in the next week.

Observe that the filtering procedure suggested by the mirror plot is certainly congruous

with the earlier discussed dynamic asymmetry, according to which unemployment exhibits

abrupt increases in opposition to longer and gradual declines (Milas and Rothman, 2008).

In particular this implies that right tail exceedances are not expected to be straightaway

followed by left tail exceedances. The right tail exceedances which are not followed by a left

tail exceedance in the upcoming week are represented in Figure 6 and are here denominated

as mirror filtered exceedances.

The number of mirror filtered exceedances is 22, from which 13 occured during contraction

periods and 9 during expansion periods. Some comments are in order. We bring to mind

that it is important to note in only circa 5/22 of the period under analysis contractions

ocurred. Roughly speaking, this implies that it is much more difficult to randomly spot
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Figure 6: Mirror filtered exceedances.

contraction periods, so that a proportion of 13/22 is considerably satisfying. It should also

be pointed out that two of mirror filtered exceedances which occurred out of contraction

periods are only a few weeks apart from the trough, and among the remainder only 5 are

clearly distant from any contraction period.

The obtained results are encouraging, evidencing the information content that the intial

claims exceedances possess for tracking contraction periods in the US business cycle.

5. SUMMARY AND CONCLUSIONS

The statistical modelling of extreme events is a subject of noteworthy significance both at the

theoretical and practical levels. Unfortunately, the classical approaches are unable cope with

nonstationarity – a feature routinely claimed by the data. For dealing with this problem most

popular modelling approaches make use of the introduction of covariates in the parameters

of the threshold model in order to overcome the lack of stationarity in the series of interest.
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As argued above, in diverse contexts of interest, several modelling hindrances may arise

with the application of these methods. In effect, there is a wide variety of scenarios wherein

the covariate model may not be trivial so that impelling the introduction of covariates may

lead to spurious associations which can seriously prejudice the analysis. Further, in some

cases well suited covariates may be simply unavailable or only at one’s disposal at undesirable

frequencies or horizons. The lack of threshold stability of these methods is also an important

modelling issue with obvious practical implications.

This paper suggests an alternative approach for modelling possibly nonstationary ex-

tremes which circumvents the difficulties discussed above. The modelling stratagem pro-

posed herein can be applied to integrated processes of order α, with α denoting any real

number. Given that our procedure is linked to both the celebrated Box-Jenkins time series

method and the GPD model, we designate the modelling stratagem proposed in this paper

as the Box-Jenkins-Pareto approach. The application enclosed herein examines the weekly

number of unemployment insurance claims in the US and exploits the connection between

the threshold exceedances and the US business cycle. During the course of the analysis we

resorted to what we call the mirror plot as a means to deal with the week-to-week noise which

is well known to be present in the initial claims. This exploratory tool suggests a natural

filtering approach which has shown to be very effective in this empirical application. Our re-

sults put forward that the mirror filtered exceedances resulting from the Box-Jenkins-Pareto

analysis are strongly related with the US business cycle.
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