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Abstract

The probability of ruin in continuous and finite time is numerically evaluated in a
classical risk process where the premium can be updated according to credibility models
and therefore change from year to year. A major consideration in the development of
this approach is that it should be easily applicable to large portfolios. Our method uses
as a first tool the model developed by Afonso et al. (2009), which is quite flexible and
allows premiums to change annually. We extend that model by introducing a credibility
approach to experience rating.

We consider a portfolio of risks which satisfy the assumptions of the Bühlmann (1967,
1969) or Bühlmann and Straub (1970) credibility models. We compute finite time ruin
probabilities for different scenarios and compare with those when a fixed premium is
considered.

Keywords: Probability of ruin; finite time ruin probability; credibility premiums;
Bühlmann’s model; Bühlmann-Straub’s model; large portfolios; numerical evaluation.

1 Introduction

We compute finite time ruin probabilities for a continuous time compound Poisson risk model
for a portfolio of risks where the premiums can be updated according to the Bühlmann (1967,
1969) or Bühlmann and Straub (1970) credibility models. We compare these results with
those when the total net premium is fixed.

Our approach is based on the framework developed by Afonso et al. (2009), which uses
a combination of simulation and approximation to calculate the finite and continuous time
ruin probability for a risk model where the premium is updated from year to year but is kept
constant during the year.

The problem of calculating the probability of ruin for a risk process where the premium
is updated according to a credibility model has been considered by various authors, such
as Dubey (1977), Asmussen (1999), Tsai and Parker (2004) and Trufin and Loisel (2009).
The first is an old paper containing some interesting theoretical results, by considering that
the premium is adjusted according to a function of the claims frequency. We go further
by considering the past aggregate amounts and extending the procedure to the Bühlman-
Straub model. The second compares the behaviour of ruin probabilities in the classical and
a modified model with adapted premium rules like past claims statistics. He considers the
Cramér-Lundberg’s asymptotic formula and in his study he separates light-tailed and heavy-
tailed claims behaviour. Tsai and Parker (2004) is a newer work having a target similar to
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ours, based however on the discrete time surplus model, focusing totally on Monte Carlo
simulation, and where the premium is updated according to Bühlmann’s credibility model
only. The latter is a recent paper with a framework similar to Tsai and Parker (2004) and
addresses problems somehow similar to those by Asmussen (1999).

In the next section we set out our basic methodology and introduce assumptions and
definitions.

In Section 3 we describe a portfolio which satisfies the assumptions of Bühlmann’s cred-
ibility model. We show how to calculate the probability of ruin in continuous and finite
time using two approaches to the calculation of the annual premium: a ‘classical’ approach,
where important characteristics of the portfolio are assumed to be known with certainty and
the premium does not change from year to year, and a credibility approach where the net
premium is updated using Bühlmann’s credibility model. Numerical results are presented for
the portfolio.

Section 4 follows a similar pattern to Section 3, but the portfolio is now set up to satisfy
the assumptions of the Bühlmann–Straub credibility model.

The major question of interest is, ‘How is the probability of ruin affected if we update
premiums according to a credibility model?’ We can pose this question in terms of the
portfolio as a whole, or in terms of each individual risk within the portfolio. It is not possible
to give a definitive answer to either question, but our examples provide some insight and the
methodology set out in this paper provides a way of investigating this question further.

2 Basic framework

In this section we summarize briefly our basic framework for the calculation of the probability
of ruin in finite and continuous time. We do this in the context of a single risk, but in our
major applications in Sections 3 and 4 we will extend it to a portfolio of risks. Full details of
the basic methodology for a single risk can be found in Afonso et al. (2009).

Consider the surplus process for a single risk over an n-year period. We denote by S(t)
the aggregate claims up to time t, so that S(0) = 0, and by Yi the aggregate claims in year
i, i = 1, . . . , n, so that Yi = S(i) − S(i − 1). We assume that {Yi}ni=1 is a sequence of i.i.d.
random variables, each with a compound Poisson distribution whose first three moments
exist.

Let Pi denote the premium charged in year i and let U(t) denote the insurer’s surplus
at time t, 0 ≤ t ≤ n. We assume premiums are received continuously at a constant rate
throughout each year. The initial surplus, u (= U(0)), and the initial premium, P1, are
known. For i = 2, . . . , n, we assume that Pi is a function of {U(j)}i−1

j=1, the surplus at the
end of each of the preceding years. For any time t, 0 ≤ t ≤ n, U(t) is calculated as follows:

U(t) = u+
i−1∑
j=1

Pj + (t− i+ 1)Pi − S(t) (2.1)

where i is the integer such that t ∈ [i− 1, i), and where
∑0

j=1 Pj = 0.
For i ≥ 2, the surplus level U(i), and hence the premium Pi, are random variables. Where

we wish to refer to a particular realization of these variables, we will use the lower case letters
u(i) and pi, respectively.
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We denote by ψ(u, n) the probability of ruin in continuous time within n years. We also
need the probability of ruin within year i, given the surplus u(i− 1) at the start of the year,
the surplus u(i) at the end of the year and the rate of premium income pi during the year,
where u(i− 1), u(i) ≥ 0; this is denoted ψ(u(i− 1), 1, u(i)). We can calculate, more precisely,
estimate, ψ(u, n), as follows:

(a) We simulate the annual aggregate claims, Y1, Y2, . . . , Yn, N times, approximating the
distribution of each Yi by a translated gamma distribution with matching moments.

(b) Given the values of the annual aggregate claims for simulation j, we can calculate suc-
cessively u(1), p2, u(2), p3, . . . , u(n− 1), pn, u(n). For that simulation we then compute
the probability of ruin, denoted as ψj(u, n).

(c) If u(i) < 0 for any i, we set ψj(u, n) = 1 for that simulation and move to the next
simulation.

(i) If u(i) ≥ 0 for each i, we calculate the probability of ruin ψ(u(i−1), 1, u(i)) within
each year [i − 1, i] conditional on the process starting at u(i − 1) and ending at
u(i). Afonso et al. (2009) show how to approximate it using a translated gamma
process approximation to the continuous time surplus process within the year. For
this simulation, we set

ψj(u, n) = 1−Πn
i=1(1− ψ(u(i− 1), 1, u(i)))

(ii) Our estimate of ψ(u, n) is then the mean of the estimates from each simulation,
{ψj(u, n)}Nj=1, and we can also calculate the standard error of this estimate.

3 Ruin probability with Bühlmann’s credibility model

3.1 Preliminaries

In this section we discuss the effect on the probability of ruin for a portfolio of risks of
updating premiums according to the Bühlmann credibility model. We do this through a
numerical example based on a portfolio of five risks. The portfolio is specified in Section
3.2. In Section 3.3 we show how to calculate the probability of ruin in the case where the
premiums, collective and individual, are not updated annually. This is a ‘classical’ risk theory
approach. In Section 3.4 we show how to calculate the probability of ruin in the case where
the individual premiums, and hence the collective premium, are updated annually using
Bühlmann’s credibility model. The numerical results are discussed in Section 3.5.

3.2 The portfolio

Our portfolio is specified as follows:

• The annual aggregate claims from risk k, k = 1, 2, . . . , 5, in year i, denoted Yki, have
a compound Poisson distribution. The Poisson parameter is λki and individual claim
amounts have a lognormal distribution with parameters θk and 0.97411 (so that, for
example, the mean of a single claim is exp(θk + 0.97411/2).
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Risk k 1 2 3 4 5
θk 0.1 0.1 0.2 0.2 0.4

Table 3.1: Values of the risk parameter, θk.

• For each of the five risks, the parameter θk has the value indicated in Table 3.1.

• The annual aggregate claims from different risks are independent.

• The annual aggregate claims from the same risk in different years are independent.

• We suppose that we already have five years’ data for this portfolio and that we measure
time in years from when the portfolio was first insured, so that ‘now’ is time 5, which
is the start of the sixth year.

• We are interested in the probability of ruin in continuous time over the next 10 years,
that is, between times 5 and 15.

• There is an initial surplus, u, currently available for the whole portfolio. When consid-
ering single risks, we assume an initial surplus u/5 is assigned to each risk.

• We consider two models for the Poisson parameters, λki:

N1 λki is constant and equal to 1 000 each year for each risk. In this case we denote
the common value λ;

N2 λki is a random variable and {{λki}5k=1}ni=1 is a set of i.i.d. random variables, each
with a U(800, 1 200) distribution.

Note that this portfolio has been constructed to satisfy the assumptions of the Bühlmann
credibility model. For scenario N2:

E[Yki|θk] = E[ E[Yki|θk]|λki]
= E[λki] exp(θk + 0.97441/2)
= 1000 exp(θk + 0.97441/2)

V[Xki|θk] = V[E[(Yki|θk)|λki]] + E[V[(Yki|θk)|λki]]
= V[ λki exp(θk + 0.97441/2)] + E[ λki exp(2θk + 0.97441)]
= exp(2θk + 0.97441)(V[ λki] + E[ λki])

=
43 000

3
exp(2θk + 0.97441)

so that both E[Yki|θk] and V[Yki|θk] are some functions of the risk parameter θk, as required.
Note that scenario N1 is a special case of scenario N2 with V[ λki] = 0.

We can simulate the aggregate claims for each of the five risks and for each of the 15
years, 10 in the future and five in the past. It is convenient to do this by assuming each
Yki has a translated gamma distribution, it’s simple and a good fit [see Afonso (2008)]. The
steps in this simulation process are first to simulate a value for λki (if necessary), to calculate
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the parameters of the translated gamma distribution which matches the first three moments
of Yki (given the value of λki) and finally simulating the value of (the translated gamma
approximation to) Yki.

3.3 The classical approach

We now put ourselves in the place of the actuary setting premiums for each of the five risks
for each future year for this portfolio. We assume in this subsection that the actuary knows
(precisely) the expected value of the aggregate claims for the portfolio each year, E[

∑5
k=1 Yki].

The premium charged each year for this portfolio is P , where:

P = (1 + ζ(u))E

[
5∑

k=1

Yki

]
where the premium loading factor, ζ(u), is a function of the initial surplus, u, and is taken
from Table 3.2. Note that since under scenario N2 the expected value of the Poisson parameter
is the same as the constant value for N1, the value of E

[∑5
k=1 Yki

]
is the same under N1

and N2. Hence the premium is the same in both cases. The loading factors, ζ(u), have been
chosen so that the probability of ultimate ruin for the portfolio under N1 is approximately
0.01. This eases the comparison of results for different initial surpluses. See Afonso et al.
(2009). The premium for the portfolio does not change from year to year and is received
continuously at constant rate. Where we require a premium for each individual risk in the
year, we assume this is P/5.

u 250 300 350 400 450
ζ(u) 0.0539 0.0432 0.0359 0.0305 0.0265

Table 3.2: Premium loading factors for Section 3.3.

To calculate/estimate the probability of ruin within 10 years for this portfolio, we simulate
the future aggregate claims a large number of times, 50 000 in our example, and use the
methodology outlined in Section 2 applied to the total aggregate claims for the portfolio each
year. We do this for the two scenarios N1 (fixed λki) and N2 (variable λki). By applying this
methodology to the simulated aggregate claims for each risk, and assuming an initial surplus
u/5 and annual premium P/5, we can estimate the probability of ruin within 10 years for each
risk. The numerical results based on this approach are set out in Table 3.3 in the columns
headed P1 N1 and P1 N2. Note that for the portfolio the values of ψ(u, 10) for P1 are close
to 0.01 as intended.

We refer to the approach in this subsection as the ‘classical approach’ since it has many
elements of classical risk/ruin theory: some properties of the aggregate claims distribution
are known with certainty (the mean in our case), the premiums are constant and any data is
ignored in terms of decision making.

3.4 The credibility approach

In this subsection we assume the actuary takes a different, and more realistic, approach.
The actuary has no specific information about any parameter values. The aggregate annual

5



claims for each of the five risks for each of the past five years are known now and, with each
successive year, the aggregate claims for that year for each risk are known at the end of that
year.

The actuary assumes that these five risks satisfy the assumptions of the Bühlmann credi-
bility model, as set out, for example, in Norberg (1979), Section 3C, and updates the annual
net premium for each of these risks in accordance with this model.

Let Pki denote the premium calculated for risk k, k = 1, 2, . . . , 5, at the start of year i,
i = 6, 7, . . . , 15. We assume that this premium has a constant loading factor, ζ(u), which
depends on the initial surplus and is the same for each of the risks in each year. We denote
by Πki the corresponding net premium, so that:

Πki = Pki/(1 + ζ(u))

Then the annual net premium is calculated as follows:

Πki = Ẑi−1Y k,i−1 + (1− Ẑi−1)Êi−1,

where:

Y k,i−1 =
i−1∑
j=1

Ykj/(i− 1),

Êi−1 =
5∑

k=1

Y k,i−1/5,

Ẑi−1 = (i− 1)/(i− 1 + σ̂2/τ̂2),

σ̂2 =
1
5

5∑
k=1

1
(i− 2)

i−1∑
j=1

(Ykj − Y k,i−1)2,

τ̂2 = max

(
1
4

5∑
k=1

(Y k − Y )2 − σ̂2

5
, 0

)
.

This is the Bühlmann credibility premium with the usual estimators for the structural pa-
rameters. See, for example, Norberg (1979), Section 3D.

Note that the total net premium for year i,
∑5

k=1 Πki, is equal to
∑5

k=1

∑i−1
j=1 Ykj/(i− 1),

which is the natural estimate of the mean annual aggregate claims for the portfolio based on
the data observed so far.

For each scenario N1 and N2 we calculate/estimate the probability of ruin within 10 years
for this portfolio and also for each risk separately by simulating the past and future annual
aggregate claims 50 000 times. Here we use the methodology outlined in Section 2 with the
annual premiums updated as described above. The numerical results based on this approach
are set out in Table 3.3 in the columns headed P2 N1 and P2 N2.

3.5 Results

Table 3.3 shows numerical results for both the ‘classical’ and credibility approaches under
scenarios N1 and N2. These results are estimates of the probability of ruin, ψ(u, 10), and
the standard deviation of each estimate, SD[ψ(u, 10)], for each individual risk and for the
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portfolio, for different values of the initial surplus, u. The same set of 50 000 simulations of
{Yki} for N1 and N2 were used to calculate the probability of ruin for cases P1 and P2.

We make the following comments on the results in Table 3.3:

(i) The pattern of results in the table, for the portfolio and for the individual risks, is the
same for all values of u.

(ii) Comparing portfolio values for scenarios P1 (classical) and P2 (credibility), we see that
the probability of ruin is higher for P2 – relatively much higher for N1 (fixed Poisson
parameter) than N2 (variable Poisson parameter).

(iii) The portfolio values for scenario P1 N2 are very much higher than for P1 N1. We
would expect this. The extra variability resulting from the variable Poisson parameter
has not been offset by any increase in the premium. The model for a variable Poisson
parameter, based on the uniform distribution, may not be reasonable in practice.
However, the increase in the values from P1 to P2 is a reminder that the ‘classical’
assumption of a fixed (and known) Poisson parameter may be very misleading. See
Daykin et al. (1996), page 329.

(iv) For scenarios P1, the results for individual risks vary widely. This is because the risks
are different – different expected claim amounts – but have been assigned, somewhat
arbitrarily, the same premium, P/5, and initial surplus, u/5. It is noticeable that
under P2, credibility adjusted premiums, the values of ψ(u, 10) are all much closer to
each other. In other words, the credibility adjustment is working quickly to assign an
appropriate premium to each risk.

(v) The standard deviations of ψ(u, 10) are all very small.

A more detailed analysis of those simulations leading to ‘end of year’, rather than ‘within
year’, ruin shows that:

(a) The credibility premium in the year before ruin is always less than the fixed premium,
by about 1%, and that the aggregate claims in the year of ruin are on average 10%
higher than expected. This sheds light on point (ii) above.

(b) The proportion of ψ(u, 10) due to ‘end of year’, rather than ‘within year’, ruin is similar
for P1 and P2 but decreases with the initial surplus, ranging from 0.926 (u = 250) to
0.672 (u = 450) for N1 and from 0.291 (u = 250) to 0.113 (u = 450) for N2.

(c) The average time to ruin increases a little with u but is similar for different combinations
of P1, P2, N1 and N2, ranging from 1 to 1.5 years.

See Afonso (2008) for full details.

7



P1 N1 P2 N1 P1 N2 P2 N2
k u ψ(u, 10) SD[ψ(u, 10)] ψ(u, 10) SD[ψ(u, 10)] ψ(u, 10) SD[ψ(u, 10)] ψ(u, 10) SD[ψ(u, 10)]

1 50 0.048 7.94E-08 0.322 2.17E-06 0.181 1.77E-06 0.493 4.12E-06
2 50 0.048 7.77E-08 0.325 2.18E-06 0.183 1.78E-06 0.494 4.13E-06
3 50 0.321 1.83E-06 0.378 2.30E-06 0.540 4.10E-06 0.585 4.03E-06
4 50 0.321 1.82E-06 0.377 2.28E-06 0.541 4.10E-06 0.589 4.02E-06
5 50 1.000 1.60E-08 0.477 2.34E-06 1.000 1.64E-08 0.731 3.24E-06

Port. 250 0.009 3.81E-08 0.013 7.66E-08 0.171 2.38E-06 0.204 2.81E-06
1 60 0.034 6.66E-08 0.334 2.61E-06 0.176 1.90E-06 0.520 4.28E-06
2 60 0.034 6.52E-08 0.337 2.63E-06 0.178 1.92E-06 0.521 4.29E-06
3 60 0.326 2.25E-06 0.394 2.76E-06 0.570 4.23E-06 0.616 4.08E-06
4 60 0.325 2.22E-06 0.393 2.75E-06 0.570 4.22E-06 0.621 4.07E-06
5 60 1.000 1.60E-08 0.501 2.77E-06 1.000 1.60E-08 0.760 3.12E-06

Port. 300 0.010 7.18E-08 0.015 1.40E-07 0.217 3.00E-06 0.251 3.38E-06
1 70 0.024 5.37E-08 0.343 2.95E-06 0.169 1.97E-06 0.536 4.38E-06
2 70 0.023 5.26E-08 0.345 2.97E-06 0.171 1.98E-06 0.540 4.39E-06
3 70 0.327 2.57E-06 0.407 3.12E-06 0.590 4.28E-06 0.637 4.08E-06
4 70 0.326 2.55E-06 0.406 3.11E-06 0.591 4.27E-06 0.642 4.07E-06
5 70 1.000 1.60E-08 0.519 3.10E-06 1.000 1.60E-08 0.778 3.03E-06

Port. 350 0.011 1.06E-07 0.018 2.02E-07 0.254 3.44E-06 0.288 3.78E-06
1 80 0.016 4.21E-08 0.349 3.21E-06 0.162 1.99E-06 0.547 4.44E-06
2 80 0.016 4.14E-08 0.351 3.23E-06 0.164 2.00E-06 0.551 4.46E-06
3 80 0.327 2.82E-06 0.416 3.39E-06 0.604 4.31E-06 0.651 4.07E-06
4 80 0.326 2.80E-06 0.415 3.38E-06 0.606 4.29E-06 0.657 4.05E-06
5 80 1.000 1.60E-08 0.532 3.35E-06 1.000 1.60E-08 0.791 2.95E-06

Port. 400 0.012 1.38E-07 0.020 2.57E-07 0.282 3.73E-06 0.316 4.01E-06
1 90 0.011 3.25E-08 0.352 3.40E-06 0.155 1.98E-06 0.554 4.48E-06
2 90 0.011 3.20E-08 0.354 3.41E-06 0.156 1.99E-06 0.558 4.48E-06
3 90 0.324 3.00E-06 0.422 3.60E-06 0.613 4.33E-06 0.660 4.13E-06
4 90 0.325 2.99E-06 0.421 3.58E-06 0.615 4.31E-06 0.667 4.04E-06
5 90 1.000 1.60E-08 0.542 3.53E-06 1.000 1.60E-08 0.799 2.91E-06

Port. 450 0.013 1.68E-07 0.022 3.04E-07 0.304 3.94E-06 0.337 4.19E-06

Table 3.3: Section 3: estimates and standard deviations of ψ(u, 10).
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4 Ruin Probability with the Bühlmann–Straub credibility model

4.1 The portfolio

In this section we consider the calculation of the probability of ruin, in continuous and finite
time, for a portfolio of risks which satisfy the assumptions of the Bühlmann–Straub credibility
model. Our approach is similar to that used in Section 3 – a numerical study based on a
specified portfolio – except that we will present numerical results only for the portfolio,
and not for the individual risks. We consider the portfolio to be more interesting than the
individual risks. We start by specifying our portfolio.

We have a portfolio of five risks, for each of which we have five years’ past claims data.
Time is (again) measured in years from when the data were collected so ‘now’ is time 5. For
risk k, k = 1, 2, . . . , 5, claims data for year i, i = 1, 2, . . ., consists of the total aggregate
claims, Yki, and an associated ‘risk volume’, or weight, wki. The scaled aggregate claims,
Yki/wki, is denoted Xki. We assume that the risk volumes for future years, i = 6, 7, . . ., are
non–random and known at the start of the relevant year.

We assume:

• The annual aggregate claims from risk k, k = 1, 2, . . . , 5, in year i, Yki, have a compound
Poisson distribution. The Poisson parameter is wkiλki and individual claim amounts
have a lognormal distribution with parameters θk and 0.97411.

• The parameters λki are constant and equal to 10 for all risks and all years.

• For each of the five risks, the parameter θk has the value indicated in Table 3.1.

• The annual aggregate claims from different risks are independent.

• The annual aggregate claims from the same risk in different years are independent.

• There is an initial surplus, u, currently available for the whole portfolio.

• We are interested in the probability of ruin in continuous time over the next 10 years,
ψ(u, 10).

• We consider three cases for the risk volume, see Table 4.1 for values.

W1 w1,i = 30, w2,i = 250, w3,i = 60, w4,i = 120, w5,i = 40. The risk volumes vary
among the risks but are constant for each year. The ‘dominant’ risk, risk 2, has a
small risk parameter, θk.

W2 w1,i = 30, w2,i = 40, w3,i = 60, w4,i = 120, w5,i = 250. The risk volumes vary
among the risks but are constant for each year. The ‘dominant’ risk, risk 5, has a
large risk parameter, θk.

W3 For this case, the risk volumes have been generated by assuming

wk,i = U(0.5w1
k,i, 1.5w

1
k,i)

where w1
k,i is the risk volume of case W1.
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Risk
Risk Volume Year 1 2 3 4 5 Total

W1 1, · · · , 15 30 250 60 120 40 500
W2 1, · · · , 15 30 40 60 120 250 500

1 44 277 34 66 33 454
2 20 298 67 170 24 579
3 17 217 90 171 45 540
4 16 287 62 157 22 544
5 15 153 77 168 50 463
6 30 250 60 120 40 500
7 20 337 71 76 28 532

W3 8 31 354 71 117 38 611
9 25 288 52 105 38 508
10 30 203 62 144 35 474
11 29 313 88 104 42 576
12 43 148 37 101 41 370
13 42 289 56 91 31 509
14 20 318 87 157 43 625
15 15 360 69 105 59 608

Table 4.1: Section 4: Risk volumes, wki, by case, risk and year.
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Note that this portfolio has been constructed to satisfy the assumptions of the Bühlmann–
Straub credibility model, since:

E[Xki|θk] =
E[Yki|θk]
wki

= λki exp(θk + 0.97441/2)
= 10 exp(θk + 0.97441/2)

V[Xki|θk] =
wkiλki exp(2θk + 0.97441)

w2
ki

= 10 exp(2θk + 0.97441)/wki

so that both E[Xki|θk] and wkiV[Xki|θk] are some functions of the risk parameter θk, as
required.

Throughout Section 4 we will assume that the premium loading factor applied to annual
net premiums calculated for the portfolio is always 10%.

As in Section 3, we will calculate ψ(u, 10) using different approaches to the calculation of
the annual premium for the portfolio. In this section we will use a ‘classical’ approach, where
the actuary knows the expected value of the aggregate annual claims for each of the five risks,
an ‘intermediate’ approach, where the actuary knows the structure of the portfolio, and a
credibility approach, where the net premium is updated at the start of each year according
to the Bühlmann–Straub credibility model. These approaches are described in Sections 4.2
4.3 and 4.4, respectively. An important distinction between these approaches is that for
the ‘classical’ and ‘intermediate’ approaches the actuary has some prior information about
the portfolio and takes no account of the data. For the credibility approach, the actuary´s
only information about the portfolio comes from the data itself. The numerical results are
presented and discussed in Section 4.5.

The calculation of ψ(u, 10) proceeds as in Section 3. For each year i, i = 6, 7, . . . , 15, and
risk k, k = 1, . . . , 5, we simulate Yki by simulating from a translated gamma distribution with
the same first three moments. The surplus at the start of the year, u(i− 1), the values of the
corresponding risk volumes, wki, and the total gross premium to be charged in the year, pi,
are all known at the start of the year. The surplus at the end of the year is u(i), where:

u(i) = u(i− 1) + pi −
5∑

k=1

Yki.

If u(i − 1) is negative, ruin has occurred. If u(i) is non–negative, we can calculate the
probability of ruin within the year, ψ(u(i− 1), 1, u(i)), by approximating the distribution of
the total aggregate claims in year i,

∑5
k=1 Yki, by a translated gamma distribution with the

same first three moments. We can then calculate ψ(u, 10) as in Section 2.

4.2 The classical approach

For the classical approach we assume our actuary knows precisely the values of the expected
unscaled annual aggregate claims for each of the five risks, E[Xk�]. This is a slightly stronger
assumption than in Section 3.3, where we assumed that only the expected annual aggregate
claims for the whole portfolio was known.
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The gross annual premium for the whole portfolio in year i, i = 6, 7, . . . , 15, is given by:

(1 + 0.1)
5∑

k=1

wkiE[Xki].

4.3 The intermediate approach

For the intermediate approach we assume the actuary knows the structure of the portfolio in
the sense that (s)he knows that

• The underlying Poisson parameter for all risks in all years, before scaling by the risk
volume, is 10.

• 40% of the risks have expected claim amount exp(0.1 + 0.97441/2).

• 40% of the risks have expected claim amount exp(0.2 + 0.97441/2).

• 20% of the risks have expected claim amount exp(0.4 + 0.97441/2).

However, the actuary does not know which risk has which expected claim amount (and
does not learn by looking at the data).

Hence, in year i, the total premium charged is pi, where:

pi = (1+0.1)

(
5∑

k=1

10wki

)
(0.4[exp(0.1 + 0.97441/2) + exp(0.2 + 0.97441/2)] + 0.2 exp(0.4 + 0.97441/2)) .

4.4 The credibility approach

For the credibility approach, we assume the actuary knows only the past aggregate claims
and corresponding risk volumes for each of the five risks (as well as the risk volumes at the
start of each future year). In particular, the actuary does not know the risk parameter, θk,
for risk k. The actuary assumes the risks satisfy all the conditions for the Bühlmann–Straub
credibility model, and updates each year the net premium for each risk accordingly.

The gross annual premium for the whole portfolio in year i, i = 6, 7, . . . , 15, is given by:

(1 + 0.1)
5∑

k=1

wki P
C
ki

where PC
ki is the net credibility premium for risk k in year i. This premium is calculated as
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follows:

PC
ki = ẑkXk + (1− ẑk)µ̂

Xk =
i−1∑
j=1

wkj

wk�
Xkj

wk� =
i−1∑
l=1

wkl

ẑk =
i−1∑
l=1

wkl/

(
i−1∑
l=1

wkl +
σ̂2

τ̂2

)

µ̂ =
5∑

k=1

zk
z�
Xk

z� =
5∑

k=1

zk

σ̂2 =
1
5

5∑
k=1

1
(i− 2)

i−1∑
j=1

wkj(Xkj −Xk)2

τ̂2 = max

(
c

{
5
4

5∑
k=1

wk�

w��
(Xk −X)2 − rσ̂2

w��

}
, 0

)

c =
4
5

{
5∑

k=1

wk�

w��

(
1− wk�

w��

)}−1

X =
5∑

k=1

wk�

w��
Xk

w�� =
5∑

k=1

wk�

It can be seen that we are using the usual estimators within the Bühlmann–Straub model.
See, for example, Bühlmann and Gisler (2005), Theorem 4.2 and Section 4.8.

4.5 Numerical results

Table 4.2 shows (estimated) values of ψ(u, 10), together with the corresponding standard
errors of the estimates, for selected values of the initial surplus, u, and for:

• Three cases for the risk volumes, W1, W2 and W3.

• Three approaches to the calculation of the net premiums: the classical approach, la-
belled P3, the intermediate approach, labelled P4, and the credibility approach, labelled
P5.
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P3 P4 P5
RiskVolume u ψ(u, 10) SD[ψ(u, 10)] ψ(u, 10) SD[ψ(u, 10)] ψ(u, 10) SD[ψ(u, 10)]

80 0.0597 4.53E-08 0.0206 5.00E-09 0.0624 6.03E-08
90 0.0429 3.11E-08 0.0131 2.67E-09 0.0452 4.29E-08

100 0.0308 2.11E-08 0.0083 1.41E-09 0.0329 3.02E-08
W1 110 0.0221 1.42E-08 0.0053 7.33E-10 0.0239 2.12E-08

120 0.0159 9.47E-09 0.0034 3.80E-10 0.0174 1.49E-08
130 0.0114 6.30E-09 0.0021 1.96E-10 0.0127 1.04E-08
80 0.0838 6.38E-08 0.7710 1.70E-06 0.0865 8.17E-08
90 0.0628 4.66E-08 0.7477 1.94E-06 0.0653 6.12E-08

100 0.0470 3.34E-08 0.7250 2.16E-06 0.0493 4.51E-08
W2 110 0.0352 2.37E-08 0.7031 2.37E-06 0.0373 3.30E-08

120 0.0264 1.66E-08 0.6817 2.57E-06 0.0282 2.39E-08
130 0.0197 1.16E-08 0.6609 2.75E-06 0.0213 1.73E-08
80 0.0569 4.56E-08 0.0197 5.07E-09 0.0595 6.02E-08
90 0.0409 3.06E-08 0.0125 2.64E-09 0.0431 4.21E-08

100 0.0294 2.03E-08 0.0079 1.36E-09 0.0313 2.93E-08
W3 110 0.0211 1.34E-08 0.0050 6.99E-10 0.0228 2.04E-08

120 0.0151 8.78E-09 0.0032 3.56E-10 0.0166 1.42E-08
130 0.0109 5.74E-09 0.0020 1.80E-10 0.0121 9.93E-09

Table 4.2: Section 4: Estimates and standard deviations of ψ(u, 10).

All the values are based on the same set of 50 000 simulations of the scaled aggregate
annual claims.

It can be seen from Table 4.1 that the risk volumes for scenario W3 are broadly similar
to, but more variable than, those for W1. From Table 4.2 we can see that this variability of
the risk volumes has a negligible effect on the probability of ruin. The results in Table 4.2
have very small standard errors, as was the case in Section 3.

One difference between the results in Table 3.3 and those in Table 4.2 is that in Section
3 we chose the premium loading factors so that, for a given initial surplus, the probability
of ruin in the classical case with fixed Poisson parameter was approximately 0.01. This is
not the case in Section 4, where the premium loading factor is always 10%. Consequently, in
Table 4.2 ψ(u, 10) is always a decreasing function of u.

The important features of the results in Table 4.2 are:

(i) The results for the intermediate case, P4, are good for W1 and W3, but poor for W2.
This because in this case the actuary is lucky that both W1 and W2 give higher weights
to the risks with lower expected claim amounts – recall that our actuary does not know
the expected claim amount for the individual risks and does not learn from the data.

(ii) The results for the classical and credibility cases are very similar, with the credibility
case always giving a slightly higher ruin probability. For the classical case, our actuary
has precise knowledge of the expected claim amounts for each of the risks. For the
credibility case, the five years of data are sufficient to allow our actuary to calculate
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appropriate premiums.

More detailed analysis of the simulations which lead to end of year ruin show that for all
scenarios:

(a) End of year ruin occurs almost always within the first two years.

(b) The average aggregate claims in the year of ruin is higher than the overall expected
aggregate claims.

(c) For the credibility case, P5, the average net premium in the year of ruin is lower than
the overall expected aggregate claims. This implies that in these cases ruin occurs when
a ‘bad’ year (higher than expected claims) follows one or more ‘good’ years.

See Afonso (2008) for more details relating to cases P4 and P5.

5 Concluding remark

One of our objectives has been to devise a methodology which can be used to calculate the
probability of ruin for large portfolios. See Afonso et al. (2009). To ease the presentation
we have illustrated our methodology using portfolios with just five risks. Increasing the
number of risks would increase the time needed to produce results, but only linearly. On the
other hand, increasing the size of the portfolios by increasing the Poisson parameter for the
expected number of claims would have no effect on calculation time.
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