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Abstract

The statistical modelling of extreme values has recently received substantial attention in a

broad spectrum of sciences. Given that in a wide variety of scenarios, one is mostly concerned

with explaining tail events (say, an economic recession) than central ones, the need to rely on

statistical methods well qualified for modelling extremes arises. Unfortunately, several classical

tools regularly applied in the analysis of central events, are simply innapropriate for the analysis

of extreme values. In particular, Pearson correlation is not a proper measure for assessing the

level of agreement of two variables when one is concerned with tail events.

This paper explores the comovement of the economic activity of several OECD countries

during periods of large positive and negative growth (right and left tails, respectively). Ex-

tremal measures are here applied as means to assess the degree of cross-country tail dependence

of output growth rates. Our main empirical findings are: (i) the comovement is much stronger

in left tails than in right tails; (ii) asymptotic independence is claimed by the data; (iii) the de-

pendence in the tails is considerably stronger than the one arising from a Gaussian dependence

model. In addition, our results suggest that, among the typical determinants for explaining

international output growth synchronization, only economic specialization similarity seems to

play a role at extreme events.
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1. INTRODUCTION

The increasing need for modelling tail events has heavily contributed to the growing atten-

tion which has been recently devoted to the statistical analysis of extremes. In effect, in a

multiplicity of situations, one may be particularly interested in focusing on rare tail events

(say, a financial crisis), rather than on regular central events. The class of methods per-

taining to the tribe of tail event modelling is frequently known in statistical parlance under

the names of statistics of extremes (Beirlant et al., 2004) or as extreme value theory (De

Haan and Ferreira, 2006). A cornerstone result in extreme value modelling is the extremal

types theorem (see, for instance, Coles, 2001). Just as the central limit theorem plays a

leading role in the large sample modelling of means, the extremal types theorem is a key

result which describes in general terms the asymptotic behavior of the maxima of a sequence

of random variables. Roughly speaking, this result establishes that the limit distribution of

properly standartized maxima converges to the Generalized Extreme Value (GEV) distribu-

tion which is fully characterized by location, scale and shape parameters. An introduction

to the statistical modelling of extreme values can be found, for instance, in Coles (2001). For

a comprehensive overview see, for example, De Haan and Ferreira (2006). Applications are

thriving in many areas with modern methods of extreme value statistics being illustrated

by questions which arise in the fields of Environmetrics (Sang and Gelfand, 2009), Ecol-

ogy (Mendes et al., 2010), Climatology (Ramos and Ledford, 2009), Hidrology (Cooley et

al., 2007), Quality Control (Fougères et al., 2009), Terrorism Risk Analysis (Mohtadi and

Murshid, 2009), as well as in many other contexts wherein there is the need to model con-

sequences of far from average rare events. Although applications of extreme value statistics

are also known in Finance (Longin and Solnik, 2001; Poon et al., 2003, 2004; Straetmans et

al., 2008; Embrechts, 2009a), the number of applications in Economics is still scarce.
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Unfortunately, several classical tools recurrently applied in the analysis of central events,

are simply innapropriate for the analysis of extreme values. In particular, Pearson correla-

tion, which is certainly the most widely used measure for assessing the degree of association

between two variables of interest, is not proper for assessing the level of agreement of two

variables at extreme levels. Applications of Pearson correlation are manifold. For example,

in the growth cycle literature, Pearson correlation coefficient is the most extensively used

measure of synchronization of economic activity. Despite of its broad use in applications, the

price of its simplicity comes at the cost of some important limitations. These are particularly

notorious when one intends to evaluate the comovement of two variables in the tails. Firstly,

Pearson correlation makes no distinction between large positive and negative values. Specif-

ically, in the context of the growth cycle literature, this implies that this measure places the

same weight on positive and negative growth rates. Secondly, Pearson correlation is defined

through an average of departures from the mean, so that its unsuitableness for quantifying

dependence at tail events is self evident. Hence, in particular this measure becomes inap-

propriate for evaluating the strength of the comovement of output growth rates for periods

which are far from average levels, such as during moments for which there is an extremely

sharp decline in economic activity.

Notwithstanding, Coles et al. (1999) and Poon et al. (2003, 2004) have recently devel-

oped two theoretically rooted extremal dependence measures, along with a set of inference

and estimation methods which can be very handy for practical applications. As it will be

discussed below, these joint tail dependence measures arise thus as natural candidates for

assessing the level of agreement of two variables at extreme levels, and in particular for

modelling synchronization of economic activity at extreme events. A noteworthy feature is

that if the dependence structure is Gaussian, one of the above mentioned extremal measures
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(namely χ) coincides with Pearson correlation ρ. This benchmark case is remarkably useful

for guiding how does the dependence in the tails (as measured by χ) compares with the one

arising from fitting a Gaussian dependence model.

This paper explores the comovement of the economic activity of several OECD countries

during periods of large positive and negative growth. Extremal measures are here employed,

as a means to evaluate the degree of cross-country tail dependence of output growth rates,

over the past 50 years. Our analysis allow us to gaze at the comovements of international

output growth from a completely novel standpoint. In consequence, this endows us with

the means to collect some new stylized facts for cross-country output dynamics. Firstly,

the application of extremal dependence measures, allow us to observe that the comovement

of output growth rates is much stronger in left tails than in right tails. In particular, this

implies that during acute recession periods the economic magnetism synchronizing growth

cycles is much stronger than during the utmost expansionary periods. Secondly, asymptotic

independence is claimed by the data. This is in line with Poon et al. (2003, 2004), who

also find evidence of asymptotic independence in stock markets returns, and who note that

this characterization is not only important for a more comprehensive understanding of the

comovement of the variables during extreme events as it also brings deep implications for

modelling the data. Thirdly, dependence in the tails is shown to be much stronger than the

one arising from a Gaussian dependence model. In particular this implies that if we intend to

use Pearson correlation for measuring synchronization of output growth rates during extreme

scenarios, we will tend to underestimate the dependence in the tails.

The aforementioned caveats of the most predominantly employed measure of synchro-

nization of economic activity motivates a further point of discussion. Are the factors driving

the mechanics of propagation of shocks the same over junctures of sharp variations in out-
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put? Put differently, are the typical determinants of synchronization tenable throughout

moments of exceptional positive and negative growth? As a byproduct of our analysis puts

forward, among some of the most standard determinants for explaining international output

synchronization (see, among others, Baxter and Kouparitsas, 2005; Inklaar et al., 2008), only

economic specialization similarity seems to play a role at extreme events.

The plan of this paper is as follows. The next section introduces measures of extreme

value dependence along with guidelines for estimation and inference. In Section 3 we put

at work these extremal dependence measures in order to explore the comovement of the

economic activity of several OECD countries during periods of extreme positive and negative

growth. Here we also assess if the determinants typically found as relevant for explaining

international output growth sychronization also hold when the focus relies on extreme events.

Concluding remarks are given in Section 4.

2. MEASURING DEPENDENCE IN THE TAILS

2.1 Dual Measures of Joint Tail Dependence

The link between the joint distribution function and its corresponding marginals can pro-

vide helpful information regarding the dependence of two random variables. In statistical

parlance, the function C establishing such connection is defined as a copula (Nelsen, 2006).

A key result in copula modelling is Sklar’s theorem which, in its simplest form, establishes

the existence and unicity of a copula C, for any given set of continuous marginals assigned

to a certain joint distribution (see, for instance, Theorem 1 in Embrechts, 2009b). The most

straightforward example of copula arises when the variables of interest are independent, so

that the joint distribution function can be written as the product of the marginals, and so the
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corresponding copula is simply given by C(u, v) = uv, for (u, v) ∈ [0, 1]2. Other examples of

copulas can be found, for instance, in Granger et al. (2006), and references therein. As we

shall see below, copulas also have a word to say regarding joint tail dependence modelling.

In the sequel we collect a simple inequality from copula literature to be used below, namely

(2u− 1)+ ≤ C(u, u) ≤ u, for 0 < u < 1, (1)

where (.)+ denotes the positive part function.1

Before we are able to measure dependence in the extreme levels of the variables G1 and

G2, here representing the output growth rates of two countries of interest, we first need to

convert the data into an appropriate common scale. Only if the data are transformed into a

unified scale fair comparisons can be made. Output growth rates are known to possess fat

tails (Fagiolo et al., 2008), so that transforming the data into the unit Fréchet scale becomes

the natural choice.2 This can be accomplished by turning the original pair (G1, G2) into

(Z1, Z2) =
(
−(log FG1)

−1,−(log FG2)
−1

)
. (2)

The marginal distribution functions G1 and G2 are typically unknown so that in practice

the empirical distribution functions F̂G1 and F̂G2 are plugged in (2). After such relocation

has been performed, the order of magnitude of the high quantiles of G1 becomes comparable

with those of G2, so that all differences in the distributions that may persist are simply

due to the dependence between the variables. A natural measure for assessing the degree of

1 Inequality (1) is a ramification of a more general result known as Fréchet-Hoeffding bounds (see, for
example, Nelsen 2006, pg. 11) which states that for any copula C

(u + v − 1)+ ≤ C(u, v) ≤ min{u, v}, for (u, v) ∈ (0, 1)2.

2 Although, we are restricting the exposition to the unit Fréchet scale, it should be pointed out that the
conceptual framework underlying all measures presented here remains unchanged for cases wherein the
variables are transformed into unit Pareto margins as, for instance, in Straetmans et al. (2008). In such case,
in lieu of making use of (2), we would convert the pair (G1, G2) into (Z̃1, Z̃2) =

(
(1− FG1)−1, (1− FG2)−1

)
.
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dependence at an arbitrary high level z, is given by the bivariate tail dependence index χ

(Coles et al., 1999; Poon et al., 2003, 2004), defined as

χ = lim
z→∞

Pr{Z1 > z | Z2 > z}. (3)

Roughly speaking, χ measures the degree of dependence which may eventually prevail in

the limit. Observe that, as it is clear from (3), χ is constrained to live in the interval [0, 1].

If dependence persists as z → ∞, so that 0 < χ ≤ 1, then we say that G1 and G2 are

asymptotically dependent. If the degree of dependence vanishes in the limit, then χ = 0, and

in this case we say that the variables are asymptotically independent.

As discussed by Poon et al. (2003, 2004), this extremal dependence characterization is

not only consequential for a more fine understanding of the comovement of the variables

during extreme events as it also brings deep implications for statistically modelling the data.

In particular, it is important to observe that if the variables are asymptotically indepen-

dent then any naive application of multivariate extreme value distributions will lead to an

overrepresentation of the occurrence of simultaneous extreme events.

Interestingly, it can be shown (Coles et al., 1999), that χ can also be recasted in terms

of a limit of a function of the copula C. More concretely, it holds that

χ = lim
u→1

χ(u), (4)

where

χ(u) = 2− log C(u, u)/log u, for 0 < u < 1. (5)

Hence, the function C not only “couples” the joint distribution function and its correspond-

ing marginals, as it also provides helpful information for modelling joint tail dependence. It

is also worth mentioning that although we focused the discussion above around the measure

χ, the function χ(u) is also important on its own right. In fact, χ(u) can be understood as
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a quantile dependent measure of dependence. Specifically, the sign of χ(u) can be used to

ascertain if the variables are positively or negatively associated at the quantiles u, and as a

consequence of (1), the level of dependence is known to be bounded as follows3

2− log(2u− 1)+/log u ≤ χ(u) ≤ 1, for 0 < u < 1. (6)

It is worth noting that extremal dependence should be measured according to the dependence

structure underlying the variables under analysis. In effect, if the variables are asymptotically

dependent, the measure χ is appropriate for assessing what is the strength of dependence

which links the variables at the extremes. If the variables are asymptotically independent

then χ = 0, so that χ unfairly pools in tandem cases wherein although dependence may

not prevail in the limit, it may persist for relatively large levels of the variables. In order to

measure extremal dependence under asymptotic independence, Coles et al. (1999) introduced

the following measure

χ = lim
z→∞

2 log Pr{Z1 > z}
log Pr{Z1 > z, Z2 > z} − 1, (7)

which takes values on the interval (−1; 1]. The interpretation of χ is to a certain extent

analogous to Pearson correlation, namely: values of χ > 0, χ = 0 and χ < 0, respec-

tively correspond positive association, exact independence and negative association in the

extremes. In effect it follows that if the dependence structure is Gaussian then χ = ρ (Poon

et al., 2003, 2004). This benchmark case is particularly helpful for guiding how does the

dependence in the tails, as measured by χ, compares with the one arising from fitting a

Gaussian dependence model. For a comprehensive inventory for the functional forms of the

extremal measure(s) χ (and χ), over a broad variety of dependence models, see Heffernan

(2000).

3 As usual, for (2u−1)+ = 0, the lower bound of (6) should be interpreted by taking the limit (2u−1)+ → 0+.
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The concepts of asymptotic dependence and asymptotic independence can also be char-

acterized through χ. More specifically, for asymptotically dependent variables, it holds that

χ = 1, while for asymptotically independent variables χ takes values in (−1, 1). Hence χ

and χ can be seen as dual measures of joint tail dependence: if χ = 1 and 0 < χ ≤ 1, the

variables are asymptotically dependent, and χ assesses the size of dependence within the

class of asymptotically dependent distributions; if −1 ≤ χ < 1 and χ = 0, the variables are

asymptotically independent, and χ evaluates the extent of dependence within the class of

asymptotically independent distributions.

In a similar way to (4), the extremal measure χ can also be written using copulas, viz.

χ = lim
u→1

χ(u), (8)

with

χ(u) =
2 log(1− u)

log(1− 2u + C(u, u))
. (9)

Hence, the function C can provide helpful information for assessing dependence in extremes

both under asymptotic dependence and asymptotic independence. In addition, the function

χ(u) plays an analogous role to χ(u), in the context of asymptotic independence. Thus it

can also be used as quantile dependent measure of dependence, which, as a result of (1), is

known to be bounded by

2 log(1− u)/log(1− 2u)+ − 1 ≤ χ(u) ≤ 1, for 0 < u < 1. (10)

In the next subsection we direct our attention into estimation features of the dual measures

of joint tail dependence χ and χ introduced above.

2.2 Nonparametric Estimation of Extremal Dependence

Although the representations provided above are enlightening from the conceptual stance,

they are not directly well-suited for estimation purposes. Nevertheless, these can be suitably
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reparametrized relying on a result due to Ledford and Tawn (1996, 1998), which establishes

that, under fairly mild assumptions, the univariate variable Z = min{Z1, Z2} has a regularly

varying tail with index −1/η. Formally

Pr{Z > z} ∼ L(z)

z1/η
as z →∞, (11)

where L(z) is used to denote a slowly varying function, i.e., lim
x→∞

L(xz)/L(x) = 1, for every

z > 0. The constant η, which is constrained to the interval (0,1], is the so-called coefficient

of tail dependence. Trivially, the result reported in (11) can be restated as

Pr{Z1 > z, Z2 > z} ∼ L(z)

z1/η
as z →∞. (12)

Hence, if we plug (12) in (7), the following notable reparametrization (Coles et al., 1999) of

χ, in terms of the coefficient of tail dependence η, arises

χ = 2η − 1. (13)

From the practical stance this representation is quite appealing since it only depends on η,

which can be estimated nonparametrically. This can be performed through the well known

Hill tail index estimator (Hill, 1975) defined as

η̂H =
1

k

k∑

i=1

{
logZ(n−k+i) − logZ(n−k)

}
, (14)

and which in this case is also the maximum likelihood estimator of η. Here and below,

we use Z(1) ≤ . . . ≤ Z(n), to denote the order statistics of a random sample {Zi}n
i=1 from

Z = min{Z1, Z2}. Hence, from the discussion given above, the nonparametric estimation of

χ (Poon et al., 2003, 2004) follows naturally as

χ̂ = 2η̂H − 1, (15)
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with corresponding variance

var{χ̂} =
(χ̂ + 1)2

Z(n−k)
. (16)

A remark regarding practicalities. The value of the estimate produced according to (14)

appreciably depends on k, which represents the number of observations used to conduct the

tail index estimation. There is a clear bias-variance tradeoff playing a role here. If too few

observations are elected then the produced estimate is subject to a large variance. On the

other hand, if too many observations are plugged in into the estimation a bias will arise.

In order to select the optimal k", one can make use of a well known iterative subsample

bootstrap procedure proposed by Dańıelsson and De Vries (1997). A brief description of

this method is based on a recursive application of the following stages. In a first step

a Hall subsample bootstrap (Hall, 1990) is employed to subsamples of size n1 to yield a

starting value for k" (say k"
1). In a second step, the Hill estimator (14) is routinely applied

to the subsamples using the starting value k"
1 in order to consistently estimate a first order

parameter α. Lastly, in a third step the estimation of a second order parameter β is conducted

through an estimator proposed in Dańıelsson and De Vries (1997). The optimal value for

k" is then given by properly combining k1 and the first and second order parameters, viz.:

k" = k"
1(n/n1)2β/(2β+α).

In what concerns inference, we can take full advantage of the asymptotic normality of

the Hill estimator (De Haan and Ferreira, 2006, Chapter 3). Hence, if χ̂ is significantly less

than 1, at the α-level, so that

χ̂ < 1− zα

√
var{χ̂} ,

then we infer that the variables are asymptotically independent and take χ = 0. It is

important to underscore that only if there is no significant evidence to reject χ = 1, we

prosecute with χ estimation, which is done under the assumption χ = η = 1.
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Similarly to what was done above, wherein we evidenced how the Hill estimate of η could

be used to estimate χ, here we use the maximum likelihood estimator of the slowly varying

function

L̂(z) = (1− k/n)(Z(n−k))
1/η, (17)

in order proficiently estimate χ (Poon et al., 2003, 2004). Thus, if we introduce (17) in (12),

under the constraint χ̂ = 1, and make use of the definition of the extremal measure χ, the

following estimator arises

χ̂ = (k/n)Z(n−k)

var{χ̂} = k(n− k)/n3(Z(n−k))
2.

The next section puts at work the dual measures of joint tail dependence described above

as well as their corresponding estimation methods .

3. SYNCHRONIZATION AT EXTREMES

3.1 Extremal Dependence in International Output Growth

Our empirical analysis entails 15 OECD countries: Austria, Belgium, Canada, Finland,

France, Germany, Italy, Japan, Netherlands, Norway, Portugal, Spain, Sweden, UK and

US. The main criteria for selecting the aforementioned catalog of nations was the period

for which the first observation was available. In fact, since the methods introduced in the

foregoing section are based on large sample results, there is the need to confine the breadth

of the study to countries for which a longer span of data is at one’s disposal. We use the

first differences of the logarithm of the (seasonally adjusted) Industrial Production (IP)

index, with the time horizon ranging from January 1960 to December 2009, gathered from

Thompson Financial Datastream.4 As mentioned above the presented measures are based

4 There are two exceptions to be noted. Namely for Canada and Spain, the data was only available starting
from January 1961 and 1964, respectively.
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on asymptotic theory, so that other economic activity measures such as the GDP, which is

only available on a quarterly basis and, for most countries, over shorter periods of time, are

not considered. Although we are aware that the index used here is a proxy for measuring

economic activity evolution, it is widely known that the IP is strongly correlated with the

aggregate activity as measured by GDP (see, for instance Fagiolo et al., 2008).

[Insert Table 1 about here]

We start the analysis with Pearson correlation ρ which is reported in Table 1. This

table summarizes correlation between all possible pairs of economies and thus supplies an

important benchmark for comparison with extremal dependence measures in the following

sense. If we believed that a Gaussian dependence model was ruling the mechanics of the

comovement of international output growth then dependence in the left and right tails should

coincide with Pearson correlation coefficient.5 In particular, this would imply that the

degree of association should be alike in periods of extreme declines and increases in economic

activity. As we shall see below this happens not to be the case, as there is an overall proclivity

towards a larger international comovement throughout periods of sharp declines than during

acute increases in output growth. In addition, as it will be discussed in the sequel any naive

estimation based on ρ tends to underestimate the strength of extremal dependence in output

growth comovements.

A short comment regarding notation. In order to draw a distinction between left and

right tails dependence, as measured by χ, we make use of the shorthand notations χL and

χR, respectively.

[Insert Table 2 about here]

5 As discussed above, in a Gaussian dependence model it holds that χ = ρ.
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In Table 2 we outline the results from the examination of joint left-tail dependence in

the comovement of economic output. Some brief remarks regarding the construction of this

table are in order. Firstly, the optimal k" was estimated by dint of the iterative subsample

bootstrap procedure of Dańıelsson and De Vries (1997), for each possible pair of countries.

Secondly, the corresponding estimates of the coefficient of tail dependence η are obtained

through (14). Finally, in order to work out the estimates of χL, the Hill estimates obtained

in the latter step are introduced in (15).6

From the inspection of Table 2 we can ascertain that in the overall, the reported results

are considerably higher than the corresponding counterparts reported in Table 1. To be

more precise, in 90.48% of the cases it is verified that the estimated value of χL lies above

ρ. The lesson here is the following: the strength of economic activity comovement is much

stronger during sharp declines than a Pearson correlation would foretell. Additionally, there

is strong evidence to support the hypothesis of asymptotic independence in left tails. In

fact, in 96 pairs, out of a total of 105 =
(
15
2

)
, we are not able to reject the null of asymptotic

independence at the α-level of 5%. Moreover, the percentage of non-rejections increases into

97.1%, with only 3 pairs suggesting asymptotic dependence, if we consider an α-level of 10%.

Such pairs are (Japan, Germany), (Canada, Spain) and (UK, Canada), with corresponding

χ values given by 0.3090, 0.3160 and 0.3173, respectively.

[Insert Table 3 about here]

Table 3 sums up an analogous exercise to the one reported in Table 2, but now focusing

on right tails. Likewise, there is also a general evidence for the estimated values of χR to be

larger than their corresponding correlations, as measured by ρ, although the strength of the

6 All the R (R Development Core Team, 2007) codes developed to implement these procedures are available
from the authors upon request.
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dominance is here markedly lower. More specifically, in 71.90% of the cases the computed

values of χR remain above Pearson correlation. Particularly, this implies that the extent of

the synchronization is manifestly larger during periods of sharp increases in the economic

activity growth than a naive estimate of ρ would predict. Furthermore, the statistical ev-

idence in favor of the hypothesis of asymptotic independence is also here remarkably clear

with all pairs supporting the null at the α-level of 10%. The comparison of Tables 2 and 3

also brings an enlightening point into the discussion: in the overall left-tail dependence is

markedly stronger than right-tail dependence. To be more specific, in 78.57% of the cases

the estimated value of χL dominates χR. The message here is the following: dependence

is more pronounced in periods of sharp declines than during epochs of steep increases in

economic activity growth.

[Insert Figure 1 about here]

To make a long story short, we depict in Figure 1 the average values per country for χL,

χR and for ρ. This figure wraps up the discussion given above concerning the relative ordering

between these measures. On one hand, Figure 1 highlights that in average χL dominates χR,

which is consistent with the observations made above vis-à-vis the dominance of left tails

over right tails. On the other hand, it is also clear from the inspection of this figure that, in

average, χL and χR lie above ρ. This complies with the aforementioned discussion regarding

the supremacy of the dependence in the tails in comparison with the one which would arise

from a Gaussian dependence model.

3.2 Do Typical Determinants of Comovement Hold in the Tails?

In this section, we assess if the determinants typically found as important in explaining

international output synchronization are tenable when one focus on extremal dependence.
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Among the several variables deemed to influence output synchronization, the foremost candi-

dates are trade variables. Although it has long been acknowledged that trade is an important

linkage between economies, theory is ambiguous whether intensified trade relations result in

more or in less output comovement. From one point of view, comparative advantage trade

theories postulate that increasing trade leads to a higher degree of production specialization

and consequently to a lower comovement (see, for example, Krugman 1992). From another

point of view, according to a wide range of theoretical models of international trade, with

either technology or monetary shocks, increasing trade often results in higher comovement.

For instance, Frankel and Rose (1998) assert that closer trade links lead to higher output

synchronization as an outcome. The underlying issue is whether bilateral trade is mainly

intra-industry or inter-industry driven. In the former case one would expect higher comove-

ment whereas in the latter lower comovement would be predicted. Hence, along with the

role of bilateral trade, one should also take into account the relative trade specialization.

Another potential determinant often considered in the literature is the similarity of the

production composition. The intuition here is that countries with similar economic struc-

ture should be in like manner affected by sector-specific shocks which may induce an higher

output comovement (see, for example, Imbs 2004). The existence of other similarity mech-

anisms paralleling in the economies is also reckoned among the conceivable determinants of

synchronization. For example, the implementation of coordinated policies may also have an

effect in synchronization. If two countries adopt similar policies, either monetary or fiscal,

an higher synchronization may be induced (see, for example, Inklaar et al. 2008).

As in theory, many factors may potentially underlie output synchronization, identifying

the determinants of comovement becomes an empirical matter. Among the variables that

have been pointed out in the literature as possible explanatory determinants of international
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output comovement (for a comprehensive overview see, for example, Inklaar et al. 2008, and

references therein), we concern ourselves with the variables that have been found robust in

related work.7 Two influential papers in this respect are Baxter and Kouparitsas (2005)

and Inklaar et al. (2008). On one hand, Baxter and Kouparitsas (2005) consider over one

hundred countries and the variables under analysis are: bilateral trade between countries;

total trade in each country; sectoral structure; similarity in export and import baskets; factor

endowments; and gravity variables. On the other hand, Inklaar et al. (2008) considered an

even larger assortment of potential variables for 21 OECD countries. The results of the

latter suggest that besides bilateral trade between countries (as in Baxter and Kouparitsas

2005), variables capturing similarity of monetary and fiscal policies, as well as specialization

measures are robust determinants of international output comovement.

As Inklaar et al. (2008) also consider the monthly IP as a measure of economic activity

and the set of countries is closer to our case, we will draw heavily on their findings vis-à-vis

the selection of the variables to be examined in the remaining analysis. Thus, we consider as

possible determinants of output comovement the following variables: (i) the bilateral trade

between countries; (ii) three specialization indicators; (iii) a similarity measure of monetary

policy stance; and (iv) a similarity measure of fiscal policy stance. Some specific comments,

about the meaning and computation of each of these yardsticks, will be provided in the

sequel. For the ease of exposition in the following we make use of some simplifying conven-

tions regarding notation. The indices i and j are reserved to represent countries, whereas

t is taken to denote time. Hence in cases where the respective meaning of these indices is

clear from the context they may be ommited. In addition, capital letters are intended to

7 Recent work makes use of extreme bounds analysis, suggested by Leamer (1983) and developed by Levine
and Renelt (1992) and Sala-i-Martin (1997), to ascertain the ‘robustness’ of the determinants. Here the word
‘robust’ should be understood in Leamer’s terminology, and hence it applies to variables whose statistical
significance does not depend on the information set.
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represent ‘totals’ of the corresponding indices (for instance, T should be understood as the

total number of time t periods).

Starting with the first variable mentioned above, here we make use of bilateral trade

intensity, for the pair of countries (i, j), which is given by

1

T

T∑

t=1

xijt + mijt + xjit + mjit

xit + mit + xjt + mjt
. (18)

Here xijt and mijt respectively denote exports and imports from country i to country j, while

xit and mit respectively represent total exports and imports of country i. This basically

corresponds to the preferred measure of Baxter and Kouparitsas (2005). All data regarding

trade flows is taken from the CHELEM International Trade Database and covers the period

from 1967 up to 2008.

As mentioned earlier three indicators of specialization measure are here calculated. More

specifically the computed indicators are: industrial similarity; export similarity; and intra-

industry trade. The industrial similarity, proposed by Imbs (2004), can be written as

1

T

T∑

t=1

(
1− 1

L

L∑

l=1

|silt − sjlt|
)

, (19)

where silt denotes the production share of industry l in country i. As in Inklaar et al. (2008),

we resort to the 60-Industry Database of the Groningen Growth and Development Centre,

which has data mainly at the 2-digit ISIC detail level and the sample period ranges from

1979 up to 2003. By its turn, export similarity, suggested by Baxter and Kouparitsas (2005),

is computed as

1

T

T∑

t=1

(
1− 1

P

P∑

p=1

|sipt − sjpt|
)

, (20)

where sipt is product p’s share of country i’s total exports. Likewise Baxter and Kouparitsas

(2005), export shares are obtained using trade data by commodity at the 2-digit ISIC detail
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level for all country pairs. Finally, the measure of intra-industry trade is given by

1

T

T∑

t=1

(
1−

∑
p |xijpt −mijpt|∑
p(xijpt + mijpt)

)
, (21)

where xijpt and mijpt respectively denote the exports and imports of product p from country

i to country j. Again, trade data by commodity at the 2-digit ISIC detail level is used.

Concerning the similarity measure of monetary policy stance, we follow Inklaar et al.

(2008) and compute the correlation for all country pairs of the monthly short-term interest

rates taken from the OECD Main Economic Indicators database, using the available data up

to December 2009. Regarding the measure of fiscal policy stance, we compute the correlation

for all country pairs of the cyclically adjusted government primary balance, as a percentage

of potential GDP, available at the OECD Economic Outlook Database, with the sample

period ranging in most cases from 1970 up to 2009.

[Insert Table 4 about here]

In Table 4, we set forth the regression results using as dependent variable a measure of

the degree of association (namely, the Pearson correlation coefficient, the left and right joint

tail dependence, respectively measured by χL and χR) and as covariates the above described

factors, to wit: bilateral trade intensity; a specialization measure; and two policy stance

similarity indicators. For the Pearson correlation coefficient, the results are broadly similar

to those obtained by Inklaar et al. (2008). We also find evidence supporting the importance

of bilateral trade intensity, specialization measure and monetary policy stance similarity for

explaining comovement. In contrast, the fiscal policy stance indicator is not statistically

significant in our case. One should note that besides the fact that both the set of countries

and the sample period are not the same, we use the cyclically adjusted government primary
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balance whereas Inklaar et al. (2008) use the cyclically adjusted government total balance.

As it is widely acknowledged, the government primary balance is a more adequate measure

of the current fiscal policy stance since it is not affected by interest rate payments on the

government debt which reflects an accumulated governmental deficit over previous years.

The question that now arises is the following. Are the standard determinants of synchro-

nization tenable over periods of exceptional positive and negative growth? An answer to this

question is given by examining in Table 4 the regression outputs for the cases wherein χL and

χR are taken as dependent variables. From this exercise, a major conclusion can be readily

gathered. With the exception of the specialization measure, all the above determinants are

not statistically significant. This means that for the comovement in extreme events what

really seems to matter is the specialization similarity between economies. On the face of it,

the vehicle of propagation of shocks over scenarios of sharp variations in output appears to

be the specialization similarity across economies. Among the specialization indicators con-

sidered, the evidence for the export similarity measure, proposed by Baxter and Kouparitsas

(2005), is the strongest as it is statistically significant in the regression for both tails. By

its turn, the industrial similarity measure, as suggested by Imbs (2004), is clearly important

for explaining left-tail dependence whereas the intra-industry trade, used by Inklaar et al.

(2008), seems to be more relevant for right-tail dependence.

4. FINAL REMARKS

Extreme value theory methods are at the crux of the statistical modelling of tail events.

The theory and methods at discussion have received a pronounced recognition in applica-

tions over several fields of research. In fact, given that in a broad variety of situations,

one is chiefly interested in learning from costly tail events, the need to be equipped with
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statistical methods accredited for extreme value modelling arises. Yet, several statistical

tools oftentimes employed in the analysis of central events are simply improper for tail event

modelling. Particularly, Pearson correlation is not a suitable measure for evaluating the

strength of joint tail dependence.

This paper examines the synchronization of several OECD countries during periods of

abrupt declines and sudden increases in international economic activity, over the last 50

years. From the conducted analysis some noteworthy empirical findings are here collected.

The first to be stressed is the asymmetric tail behavior of extremal dependence. In fact,

our results point towards a remarkable dominance of left tails over right tails. Particularly,

this implies that sychronization is more intense during periods of sharp declines than during

scenarios of large positive growth. A second result to be mentioned is that our results

pinpoint statistical evidence in favor of asymptotic independence. Another point to be noted

is that dependence in the tails is appreciably stronger than the one suggested by a Gaussian

dependence model. Thus, in particular, this implies that Pearson correlation considerably

underestimates the level of synchronization in periods large positive and negative growth.

Lastly, our results put forward that, among the standard determinants used for explaining

international output growth synchronization, only specialization similarity seems to play a

role during extreme events.
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Table 1: Pearson correlation of the output growth rates for OECD countries.
Pearson correlation ρ

AUS BEL CN FIN FR GER IT JP NL NOR POR SP SWE UK US

AUS 0.3073 0.0820 0.0743 0.0515 0.1449 0.2760 -0.0489 0.1767 0.0181 -0.0325 -0.0018 0.0467 0.1881 0.0206

BEL 0.3073 0.0133 0.0414 0.0463 0.1603 0.2736 -0.0425 0.0382 0.0190 -0.0291 0.0400 0.0788 0.2181 0.0470

CN 0.0820 0.0133 0.1664 0.0939 0.0848 0.0737 0.1749 0.0693 0.0690 -0.0030 0.1162 0.0506 0.1569 0.3715

FIN 0.0743 0.0414 0.1664 0.0726 0.1285 0.0828 0.0673 0.0488 -0.0362 0.1048 0.0195 0.2594 0.0368 0.0704

FR 0.0515 0.0463 0.0939 0.0726 0.1093 0.0536 0.1110 0.0898 -0.0375 0.0178 0.0823 0.1213 0.0215 0.0443

GER 0.1449 0.1603 0.0848 0.1285 0.1093 0.0684 0.2262 0.1136 -0.0157 0.0969 0.0922 0.0350 0.1527 0.1430

IT 0.2760 0.2736 0.0737 0.0828 0.0536 0.0684 0.0511 0.1678 0.0829 0.0576 0.1196 0.1088 0.1715 0.1180

JP -0.0489 -0.0425 0.1749 0.0673 0.1110 0.2262 0.0511 0.0237 0.0073 0.1232 0.1434 0.0401 0.0831 0.2068

NL 0.1767 0.0382 0.0693 0.0488 0.0898 0.1136 0.1678 0.0237 -0.1022 0.0541 0.1139 0.0376 0.1817 0.0545

NOR 0.0181 0.0190 0.0690 -0.0362 -0.0375 -0.0157 0.0829 0.0073 -0.1022 0.0288 0.0352 0.0266 -0.0423 0.0270

POR -0.0325 -0.0291 -0.0030 0.1048 0.0178 0.0969 0.0576 0.1232 0.0541 0.0288 0.1793 -0.0832 0.0426 -0.0391

SP -0.0018 0.0400 0.1162 0.0195 0.0823 0.0922 0.1196 0.1434 0.1139 0.0352 0.1793 0.1336 0.0208 0.0776

SWE 0.0467 0.0788 0.0506 0.2594 0.1213 0.0350 0.1088 0.0401 0.0376 0.0266 -0.0832 0.1336 0.1265 0.0936

UK 0.1881 0.2181 0.1569 0.0368 0.0215 0.1527 0.1715 0.0831 0.1817 -0.0423 0.0426 0.0208 0.1265 0.1493

US 0.0206 0.0470 0.3715 0.0704 0.0443 0.1430 0.1180 0.2068 0.0545 0.0270 -0.0391 0.0776 0.0936 0.1493

Notes: AUS = Austria ; BEL = Belgium ; CN = Canada ; DK = Denmark ; FIN = Finland ; FR = France ; GER = Germany ; IT = Italy ; JP = Japan ;

NL = Netherlands ; NOR = Norway ; POR = Portugal ; SP = Spain ; SWE = Sweden ; UK = United Kingdom ; US = United States of America.
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Table 2: Left-tail dependence of the output growth rates for OECD countries.
χL (Left-tail dependence as measured by χ)

AUS BEL CN FIN FR GER IT JP NL NOR POR SP SWE UK US

AUS 0.3306 0.2233 0.2082 0.3355 0.3089 0.2815 0.4649 0.1783 0.2174 -0.0602 0.1045 0.2144 0.4512 0.1616

BEL 0.3306 0.1193 -0.0221 0.2472 0.2042 0.4695 0.2222 0.1455 0.2685 -0.0286 0.4878 0.2374 0.6945 0.0304

CN 0.2233 0.1193 0.6593 0.5195 0.3835 0.3426 0.7964 0.4253 0.1821 0.1495 0.8673 0.1820 0.5378 0.7113

FIN 0.2082 -0.0221 0.6593 0.4634 0.7133 0.3876 0.5085 0.1248 0.2421 0.3009 0.2620 0.4097 0.2709 0.3070

FR 0.3355 0.2472 0.5195 0.4634 0.3134 0.2743 0.4468 0.2970 0.1311 0.1985 0.3537 0.4243 0.4265 0.1549

GER 0.3089 0.2042 0.3835 0.7133 0.3134 0.4390 0.6803 0.2650 -0.0718 -0.0177 0.0292 0.5709 0.5559 0.5489

IT 0.2815 0.4695 0.3426 0.3876 0.2743 0.4390 0.2807 0.1579 0.0760 0.4741 0.2466 0.6350 0.6165 0.3513

JP 0.4649 0.2222 0.7964 0.5085 0.4468 0.6803 0.2807 -0.0920 0.3153 0.0926 0.1648 0.3136 0.4895 0.3582

NL 0.1783 0.1455 0.4253 0.1248 0.2970 0.2650 0.1579 -0.0920 -0.1104 0.2051 0.2198 0.2431 0.2890 0.3893

NOR 0.2174 0.2685 0.1821 0.2421 0.1311 -0.0718 0.0760 0.3153 -0.1104 0.2435 0.5762 0.3724 0.0752 0.2126

POR -0.0602 -0.0286 0.1495 0.3009 0.1985 -0.0177 0.4741 0.0926 0.2051 0.2435 0.1882 0.0904 0.1701 0.2392

SP 0.1045 0.4878 0.8673 0.2620 0.3537 0.0292 0.2466 0.1648 0.2198 0.5762 0.1882 0.1485 0.3036 0.6660

SWE 0.2144 0.2374 0.1820 0.4097 0.4243 0.5709 0.6350 0.3136 0.2431 0.3724 0.0904 0.1485 0.4895 0.5396

UK 0.4512 0.6945 0.5378 0.2709 0.4265 0.5559 0.6165 0.4895 0.2890 0.0752 0.1701 0.3036 0.4895 0.5002

US 0.1616 0.0304 0.7113 0.3070 0.1549 0.5489 0.3513 0.3582 0.3893 0.2126 0.2392 0.6660 0.5396 0.5002

Notes: AUS = Austria ; BEL = Belgium ; CN = Canada ; DK = Denmark ; FIN = Finland ; FR = France ; GER = Germany ; IT = Italy ; JP = Japan
NL = Netherlands ; NOR = Norway ; POR = Portugal ; SP = Spain ; SWE = Sweden ; UK = United Kingdom ; US = United States of America.
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Table 3: Right-tail dependence of the output growth rates for OECD countries.
χR (Right-tail dependence as measured by χ)

AUS BEL CN FIN FR GER IT JP NL NOR POR SP SWE UK US

AUS 0.6020 -0.1907 0.1072 0.2875 0.0959 0.4584 -0.0053 0.1407 0.2027 0.1304 -0.0555 -0.0856 0.3831 0.0998

BEL 0.6020 -0.1243 0.1239 0.1812 0.4930 0.2857 -0.0490 0.1587 -0.0184 0.0108 0.2388 0.1102 0.3831 -0.1974

CN -0.1907 -0.1243 0.0735 -0.0836 0.1854 0.3215 0.1592 -0.2801 0.3181 0.0693 0.0359 0.0835 0.1513 0.0721

FIN 0.1072 0.1239 0.0735 0.1750 0.2358 0.0839 0.0895 0.1574 0.1701 0.0198 -0.1508 0.5396 0.1720 0.1569

FR 0.2875 0.1812 -0.0836 0.1750 0.1403 0.1693 0.3287 0.3095 0.2648 0.0644 0.2075 0.3047 0.1609 0.3225

GER 0.0959 0.4930 0.1854 0.2358 0.1403 0.1651 0.2693 0.1188 0.0198 0.2646 0.4709 0.1236 0.2091 0.0873

IT 0.4584 0.2857 0.3215 0.0839 0.1693 0.1651 0.0043 0.0708 0.0794 0.4226 0.0937 0.1480 0.5779 0.4077

JP -0.0053 -0.0490 0.1592 0.0895 0.3287 0.2693 0.0043 -0.0782 0.1348 0.4659 0.0242 0.0529 0.2261 0.2324

NL 0.1407 0.1587 -0.2801 0.1574 0.3095 0.1188 0.0708 -0.0782 0.1875 0.0252 0.1197 -0.0721 0.3355 0.1409

NOR 0.2027 -0.0184 0.3181 0.1701 0.2648 0.0198 0.0794 0.1348 0.1875 0.0292 0.3102 0.2181 0.1926 0.0765

POR 0.1304 0.0108 0.0693 0.0198 0.0644 0.2646 0.4226 0.4659 0.0252 0.0292 0.0945 -0.1106 0.1111 0.1880

SP -0.0555 0.2388 0.0359 -0.1508 0.2075 0.4709 0.0937 0.0242 0.1197 0.3102 0.0945 0.2879 0.2222 0.0695

SWE -0.0856 0.1102 0.0835 0.5396 0.3047 0.1236 0.1480 0.0529 -0.0721 0.2181 -0.1106 0.2879 0.0968 -0.0010

UK 0.3831 0.3831 0.1513 0.1720 0.1609 0.2091 0.5779 0.2261 0.3355 0.1926 0.1111 0.2222 0.0968 0.2691

US 0.0998 -0.1974 0.0721 0.1569 0.3225 0.0873 0.4077 0.2324 0.1409 0.0765 0.1880 0.0695 -0.0010 0.2691

Notes: AUS = Austria ; BEL = Belgium ; CN = Canada ; DK = Denmark ; FIN = Finland ; FR = France ; GER = Germany ; IT = Italy ; JP = Japan
NL = Netherlands ; NOR = Norway ; POR = Portugal ; SP = Spain ; SWE = Sweden ; UK = United Kingdom ; US = United States of America.
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Table 4: Comovement Determinants over Pearson Correlation and Extremal Dependence Measures.
Specialization Measure

Industrial similarity Export similarity Intra industry trade

Pearson Correlation
Coefficient t-HCSE Coefficient t-HCSE Coefficient t-HCSE

Bilateral trade 0.571 2.89 0.533 2.20 0.526 2.07
Specialization measure 0.146 3.50 0.087 2.79 0.102 1.58
Short-term interest rate 0.091 2.06 0.102 2.31 0.107 2.34
Cyclically adjusted government primary balance 0.008 0.34 0.002 0.09 -0.005 -0.19

Left-tail Extremal Dependence
Coefficient t-HCSE Coefficient t-HCSE Coefficient t-HCSE

Bilateral trade 0.528 1.25 0.385 0.71 0.578 1.22
Specialization measure 0.344 3.12 0.233 3.02 0.149 0.93
Short-term interest rate -0.074 -0.57 -0.052 -0.41 -0.028 -0.21
Cyclically adjusted government primary balance 0.030 0.41 0.013 0.18 0.011 0.14

Right-tail Extremal Dependence
Coefficient t-HCSE Coefficient t-HCSE Coefficient t-HCSE

Bilateral trade 0.439 1.02 0.293 0.77 0.059 0.14
Specialization measure 0.111 1.33 0.127 2.08 0.279 1.75
Short-term interest rate -0.009 -0.08 -0.011 -0.10 -0.016 -0.15
Cyclically adjusted government primary balance 0.068 1.41 0.059 1.20 0.031 0.55

Notes: constant is included ; t-HCSE (Heteroscedasticity Consistent Standard Errors).
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Figure 1: Average values per country for each of the dependence measures considered. The vertical bars correspond to
Pearson correlation ρ, while the solid and the dashed lines respectively correspond to the left-tail and right-tail extremal
dependence as measured by χL and χR.
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