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Abstract

The study of the semigroups OPn and ORn respectively of all orientation-preserving transformations and
of all orientation-preserving or orientation-reversing transformations on an n-element chain has began in [10]
and [4]. In order to bring more insight into the subsemigroup structure of OPn and ORn, we characterize
their maximal subsemigroups.
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Introduction and Preliminaries

For n ∈ N, let Xn = {1 < 2 < · · · < n} be a finite chain with n elements. As usual, we denote by Tn the monoid
(under composition) of all full transformations of Xn. For every transformation α ∈ Tn, we denote by kerα and
imα the kernel and the image of α, respectively. The number rankα = |kerα| = |imα| is called the rank of α.
Given a subset U of Tn, we denote by E(U) its set of idempotents. The weight of an equivalence relation π on
Xn is the number |Xn/π|. Let A ⊆ Xn and let π be an equivalence relation on Xn of weight |A|. We say that
A is a transversal of π (denoted by A#π) if |A ∩ x̄| = 1 for every equivalence class x̄ of π. A subset C of the
chain Xn is said to be convex if x, y ∈ C and x ≤ z ≤ y together imply that z ∈ C. An equivalence relation π
on Xn is convex if its classes are convex.

We say that a transformation α ∈ Tn is order-preserving (respectively, order-reversing) if x ≤ y implies
that xα ≤ yα (respectively, xα ≥ yα), for all x, y ∈ Xn. As usual, On denotes the submonoid of Tn of all
order-preserving transformations of Xn. This monoid has been largely studied, for instance in [1, 5, 8, 9, 12].

Let a = (a1, a2, . . . , at) be a sequence of t (t ≥ 1) elements from the chain Xn. We say that a is cyclic
(respectively, anti-cyclic) if there exists no more than one index i ∈ {1, . . . , t} such that ai > ai+1 (respectively,
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ai < ai+1), where at+1 denotes a1. We say that a transformation α ∈ Tn is orientation-preserving (respec-
tively, orientation-reversing) if the sequence of its images is cyclic (respectively, anti-cyclic). The notion of an
orientation-preserving transformation was introduced by McAlister in [10] and, independently, by Catarino and
Higgins in [4]. It is easy to show that the product of two orientation-preserving or of two orientation-reversing
transformations is orientation-preserving, and the product of an orientation-preserving transformation by an
orientation-reversing transformation is orientation-reversing (see [4]). We denote by OPn (respectively, ORn)
the monoid of all orientation-preserving (respectively, orientation-preserving or orientation-reversing) full trans-
formations. It is clear that OPn is a submonoid of ORn.

Since On, OPn and ORn are regular submonoids of Tn, the definition of the Green’s relations L, R and
H on On, OPn and ORn follow immediately from well known results on regular semigroups and from their
descriptions on Tn. We have αLβ ⇐⇒ imα = imβ and αRβ ⇐⇒ kerα = kerβ, for every transformations α and
β. Recall also that, for the Green’s relation J , we have (on On, OPn and ORn) αJ β ⇐⇒ rankα = rankβ, for
every transformations α and β.

Regarding the monoids OPn and ORn, presentations for them were exhibited by Catarino in [3] and by
Arthur and Ruškuc in [2], the Green’s relations, their sizes and ranks, among other properties, were determined
by Catarino and Higgins in [4] and a description of their congruences were given in [6] by Fernandes, Gomes
and Jesus. In [13] Zhao, Bo and Mei characterized the locally maximal idempotent-generated subsemigroups
of OPn (excluding the permutations).

In this paper, we aim to give more insight into the subsemigroup structure of the monoids OPn and ORn
by characterizing the maximal subsemigroups of these monoids and of their ideals. In Section 1, we study the
monoid OPn and its ideals. First, we describe all maximal subsemigroups of OPn (some of them are associated
with the maximal subgroups of the additive group Zn). The main result of this section is the characterization
of the maximal subsemigroups of the ideals of OPn. In Section 2, we study the monoid ORn and its ideals.
Again, first we describe all maximal subsemigroups of ORn (some of them are associated with the maximal
subgroups of the dihedral group Dn of order 2n). The main result of this section is the characterization of the
maximal subsemigroups of the ideals of ORn, which are associated with the maximal subsemigroups of the
ideals of OPn.

1 Maximal subsemigroups of the ideals of OPn
Let n ∈ N. The semigroup OPn is the union of its J -classes J1, J2, . . . , Jn, where

Jk = {α ∈ OPn | rankα = k},

for k = 1, . . . , n. It is well known that the ideals of the semigroup OPn are the unions of the J -classes
J1, J2, . . . , Jk, i.e. the sets

OP (n, k) = {α ∈ OPn | rankα ≤ k},

with k = 1, . . . , n. Every principal factor on OPn is a Rees quotient OP (n, k)/OP (n, k − 1) (2 ≤ k ≤ n) of
which we may think as Jk ∪ {0}, where the product of two elements of Jk is taken to be zero if it falls into
OP (n, k − 1).

Denote by Lα, Rα and Hα the L-class, R-class and H-class, respectively, of an element α ∈ OPn. Since the
product αβ, for α, β ∈ Jk, belongs to the class Jk (if and only if αβ ∈ Rα ∩ Lβ) if and only if imα#kerβ, it is
easy to show:

Lemma 1.1 Let α, β ∈ Jk, with k = 1, 2, . . . , n. Then

αRβ =
{
Rαβ = Rα if imα#kerβ,
0 otherwise,

Lαβ =
{
Lαβ = Lβ if imα#kerβ,
0 otherwise,

LαRβ =
{
Jk if imα#kerβ,
0 otherwise

and αHβ = Hαβ =
{
Hαβ if imα#kerβ,
0 otherwise.
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Next, recall that Catarino and Higgins proved:

Proposition 1.2 ([4]) Let α ∈ Jk, with k = 1, 2, . . . , n. Then |Hα| = k. Moreover, if α is an idempotent, then
Hα is a cyclic group of order k.

LetG be a cyclic group of order k, with k ∈ N. It is well known that there exists an one-to-one correspondence
between the subgroups of G and the (positive) divisors of k. Moreover, if r is a divisor of k then there exits a
(cyclic) subgroup Gr of G such that |Gr| = r. On the other hand, being x ∈ G, there exists a (positive) divisor
r of k such that xr is the identity of G.

Let us consider the following elements:

g =
(

1 2 · · · n− 1 n
2 3 · · · n 1

)
∈ Jn and ui =

(
1 2 · · · i− 1 i i+ 1 · · · n
1 2 · · · i− 1 i+ 1 i+ 1 · · · n

)
∈ Jn−1,

for i = 1, . . . , n (with i = n we take i+ 1 = 1).
Notice that Jn = Hg, whence Jn is a cyclic group of order n.
We will use the following well known result (see [3, 10]).

Proposition 1.3 OPn = 〈u1, g〉.

Next, we present alternative generating sets of the monoid OPn.

Proposition 1.4 Let α ∈ Jn−1 and let γ ∈ Jn be a permutation of order n. Then OPn = 〈α, γ〉.

Proof. Since γ ∈ Jn has order n, we have 〈γ〉 = Jn and so g ∈ 〈γ〉. From α ∈ Jn−1, it follows that there exist
1 ≤ i, j ≤ n such that imα = Xn \ {j} and (i, i + 1) ∈ kerα (by taking i + 1 = 1, if i = n). Put s = i − j, if
j < i, and s = n+ i− j, otherwise. Then, it is easy to show that β = αgs ∈ Hui . Now, as ui is an idempotent
of OPn, by Proposition 1.2, it follows that ui is a power of β. On the other hand, it is a routine matter to show
that u1 = gn+i−1uig

n−i+1. Thus, by Proposition 1.3, we deduce that OPn = 〈α, γ〉.

For a prime divisor p of n, we put Wp = 〈gp〉 = {1, gp, g2p, . . . , gn−p}, which is, clearly, a cyclic group of
order n

p . Furthermore, from well known results regarding finite cyclic groups, we have:

Lemma 1.5 The groups Wp, with p a prime divisor of n, are the maximal subgroups of Jn.

Now, we can describe the maximal subsemigroups of OPn.

Theorem 1.6 A subsemigroup S of the semigroup OPn is maximal if and only if S = OP (n, n − 2) ∪ Jn or
S = OP (n, n− 1) ∪Wp, for a prime divisor p of n.

Proof. Let S be a maximal subsemigroup of OPn. Then, it is clear that OP (n, n − 2) ⊆ S and thus S =
OP (n, n − 2) ∪ T , for some subset T of Jn−1 ∪ Jn. By Proposition 1.4, we have T ∩ Jn−1 = ∅ or T does not
contain any element of Jn of order n. In this latter case, we must have Jn−1 ⊆ T , by the maximality of S. This
shows that S = OP (n, n − 1) ∪ T ′, for some subset T ′ of Jn, whence T ′ must be a maximal subgroup of Jn.
Thus, by Lemma 1.5, we have T ′ = Wp, for some prime divisor p of n. On the other hand, if T ∩ Jn−1 = ∅ then
S ⊆ OP (n, n− 2) ∪ Jn, whence S = OP (n, n− 2) ∪ Jn, by the maximality of S.

The converse part follows immediately from Proposition 1.4 and Lemma 1.5.
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Let n ≥ 3 and 1 ≤ k ≤ n− 1. In the remaining of this section, we consider the ideal OP (n, k) of OPn.
Clearly, the maximal subsemigroups of OP (n, 1) are the sets of the form OP (n, 1) \ {α}, for α ∈ OP (n, 1).

Therefore, in what follows, we consider k ≥ 2.
Notice that, as every element α ∈ On of rank r−1, for 2 ≤ r ≤ n−1, is expressible as a product of elements

of On of rank r (see [7]) and every element β ∈ OPn admits a decomposition β = gtα, for some 1 ≤ t ≤ n and
α ∈ On (see [4]), we deduce that every element of Jr−1 is a product of elements of Jr, for 2 ≤ r ≤ n− 1. Thus,
we have:

Lemma 1.7 OP (n, k) = 〈Jk〉.

Let us denote by Λk the collection of all subsets of Xn of cardinality k. Since two elements of Jk are L-related
if and only if they have the same image, an L-class of Jk (which coincides with an L-class of OPn, as Jk is
regular) is completely determined by the image set of its transformations. Therefore a typical L-class of Jk has
the form

LA = {α ∈ Jk | imα = A},

with A ∈ Λk.
Let Ωk be the collection of all equivalence relations π on Xn of weight k such that, for all x ∈ Xn/π, either

x or Xn \ x is a convex subset of Xn. Since two transformations of Jk are R-related if and only if they have
the same kernel, an R-class of Jk (which coincides with an R-class of OPn, as Jk is regular) is completely
determined by the kernel of any of its elements. A typical R-class of Jk has then the form

Rπ = {α ∈ Jk | kerα = π},

with π ∈ Ωk.
Finally, it follows that a typical H-class of Jk has the form

H(π,A) = Rπ ∩ LA,

with π ∈ Ωk and A ∈ Λk.

Notice that, for any π ∈ Ωk and for any α ∈ Rπ, it is easy to show that Hα∩On = ∅ if and only if (1, n) ∈ π
(i.e. π contains a non-convex class). Observe also that, being O(n, k) = OP (n, k) ∩ On (the ideal of On of all
elements of rank less than or equal to k) and J ′k = Jk ∩ On (the J -class of On of all elements of rank equal to
k), a typical L-class of J ′k has the form LA∩On, with A ∈ Λk, and a typical R-class of J ′k has the form Rπ∩On,
with π ∈ Ω′k = {π ∈ Ωk | (1, n) 6∈ π}.

Proposition 1.8 Let C be any subset of Jk containing Jk ∩On and at least one element from each R-class of
Jk. Then OP (n, k) = 〈C〉.

Proof. First, let α be an element of C with kernel {{1, k+1, . . . , n}, {2}, . . . , {k}}. Let β be any order-preserving
transformation with image {1, . . . , k} such that imα#kerβ. Then, ker(αβ) = kerα and im(αβ) = imβ, from

which it follows that the idempotent power of αβ is the transformation
(

1 · · · k k + 1 · · · n
1 · · · k 1 · · · 1

)
. There-

fore

γ =
(

1 · · · k k + 1 · · · n
2 · · · k + 1 k + 1 · · · k + 1

)(
1 · · · k k + 1 · · · n
1 · · · k 1 · · · 1

)
=

(
1 · · · k − 1 k k + 1 · · · n
2 · · · k 1 1 · · · 1

)
∈ 〈C〉.

Furthermore, as γ generates a cycle group of order k, we have Hγ ⊆ 〈C〉.
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Now, let ε = γk =
(

1 · · · k k + 1 · · · n
1 · · · k k · · · k

)
be the idempotent of Hγ and let H be any H-class

contained in Rε = Rγ . Since the elements of H have the same kernel that ε ∈ On, then H has an order-
preserving element τ . From εRτ it follows that ετ = τ , whence imε#kerτ and so, by Lemma 1.1, we have
Hετ = Hτ . As τ ∈ C and Hε ⊆ 〈C〉, we also have H = Hτ ⊆ 〈C〉. Hence Rε ⊆ 〈C〉.

Next, let π ∈ Ωk be such that (1, n) 6∈ π. Then, there exists an order-preserving transformation τ ∈ Lε∩Rπ.
Since ε ∈ Lε ∩Rε = Lτ ∩Rε, we have τε = τ , whence imτ#kerε and so, by Lemma 1.1, we obtain τRε = Rτ =
Rπ. As τ ∈ C and Rε ⊆ 〈C〉, it follows that Rπ ⊆ 〈C〉.

Finally, let π ∈ Ωk be such that (1, n) ∈ π and let τ ∈ C ∩Rπ. Take an order-preserving idempotent ε′ such
that imε′ = imτ . Then, ε′ ∈ Lε′ ∩Rε′ = Lτ ∩Rε′ , whence τε′ = τ and so imτ#kerε′. Thus, by Lemma 1.1, we
have τRε′ = Rτ = Rπ. As τ ∈ C and Rε′ ⊆ 〈C〉 (by the previous case), it follows that Rπ ⊆ 〈C〉.

Hence, we proved that Jk ⊆ 〈C〉 and so, by Lemma 1.7, we obtain OP (n, k) = 〈C〉, as required.

Since O(n, k) = 〈E(Jk ∩ On)〉 (see [7]) and each R-class of Jk contains at least one idempotent, we have:

Corollary 1.9 OP (n, k) = 〈E(Jk)〉.

Notice that, it is easy to show that, in fact, each R-class of Jk contains at least two idempotents. Moreover,
as 2 ≤ k ≤ n− 1, it also is easy to show that each L-class of Jk contains at least two idempotents.

Let Λ be a non-empty proper subset of Λk and let Ω be a non-empty proper subset of Ωk (respectively, of
Ω′k). The pair (Λ,Ω) is called a coupler of (Λk,Ωk) (respectively, of (Λk,Ω′k)) if the following three conditions
are satisfied (see [11]):

1. For every A ∈ Λ and π ∈ Ω, A is not a transversal of π;

2. For every B ∈ Λk \ Λ, there exists π ∈ Ω such that B#π;

3. For every ρ ∈ Ωk \ Ω (respectively, ρ ∈ Ω′k \ Ω), there exists A ∈ Λ such that A#ρ.

Next, we consider the following subsets of OP (n, k):

1. SA = OP (n, k − 1) ∪ (Jk \ LA), for each A ∈ Λk;

2. Sπ = OP (n, k − 1) ∪ (Jk \Rπ), for each π ∈ Ωk;

3. S(Λ,Ω) = OP (n, k − 1) ∪ (
⋃
{LA | A ∈ Λ}) ∪ (

⋃
{Rπ | π ∈ Ω}), for each coupler (Λ,Ω) of (Λk,Ωk).

It is routine matter to prove that each of these subsets is a (proper) subsemigroup of OP (n, k).

Before we give the description of the maximal subsemigroups of the ideals of the semigroup OPn, we recall
the following result presented by the first and third author in [5] (see also [12]).

Theorem 1.10 ([5]) Let n ≥ 3 and 2 ≤ k ≤ n− 1. Then a subsemigroup of O(n, k) is maximal if and only if
it belongs to one of the following types:

1. SA ∩ On, with A ∈ Λk;

2. Sπ ∩ On, with π ∈ Ω′k such that π does not admit an interval of Λ as a transversal;

3. S′(Λ,Ω) = O(n, k − 1) ∪ (
⋃
{LA ∩ On | A ∈ Λ}) ∪ (

⋃
{Rπ ∩ On | π ∈ Ω}), with (Λ,Ω) a coupler of (Λk,Ω′k).

Lemma 1.11 Let S be a maximal subsemigroup of OP (n, k). Then S =
⋃
{Hα | α ∈ S}.
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Proof. Let T =
⋃
{Hα | α ∈ S}. First, notice that, by Corollary 1.9, there exists ε ∈ E(Jk) such that ε 6∈ S.

Hence, Hε ∩ S = ∅ and so S ⊆ T ( OP (n, k). The result follows by proving that T is a subsemigroup of
OP (n, k). Clearly, by the maximality of S (and Lemma 1.7), we have OP (n, k− 1) ( S. So, if suffices to show
that, for all α, β ∈ T ∩Jk such that αβ ∈ Jk, we get αβ ∈ T . Therefore, let α, β ∈ T ∩Jk be such that αβ ∈ Jk.
Take α′, β′ ∈ S such that α ∈ Hα′ and β ∈ Hβ′ . Then imα′ = imα#kerβ = kerβ′ and αβ ∈ Rα ∩ Lβ, whence
α′β′ ∈ Rα′ ∩ Lβ′ = Rα ∩ Lβ = Hαβ and so, as α′β′ ∈ S, we obtain αβ ∈ Hα′β′ ⊆ T , as required.

Now, we have:

Theorem 1.12 Let n ≥ 3 and 2 ≤ k ≤ n − 1. Then a subsemigroup of OP (n, k) is maximal if and only if it
belongs to one of the following types:

1. SA, with A ∈ Λk;

2. Sπ, with π ∈ Ωk;

3. S(Λ,Ω), with (Λ,Ω) a coupler of (Λk,Ωk).

Proof. We begin by showing that each of these subsemigroups of OP (n, k) is maximal.
First, let A ∈ Λk and let α ∈ LA. Take an idempotent ε ∈ (Jk \LA)∩Rα. As Lε ⊆ SA and, by Lemma 1.1,

Lεα = LA, we have 〈SA, α〉 = OP (n, k). Thus, SA is maximal.
Similarly, being π ∈ Ωk and α ∈ Rπ, the L-class Lα contains at least an idempotent ε ∈ Jk \ Rπ and so

Rε ⊆ Sπ and, by Lemma 1.1, αRε = Rπ, whence 〈Sπ, α〉 = OP (n, k). Thus, Sπ is maximal.
Finally, regarding the subsemigroups of type 3, let (Λ,Ω) be a coupler of (Λk,Ωk). As Λk \ Λ 6= ∅ and

Ωk \ Ω 6= ∅, we may take α ∈ Rρ ∩ LB, for some ρ ∈ Ωk \ Ω and B ∈ Λk \ Λ. Then, there exist π ∈ Ω and
A ∈ Λ such that B#π and A#ρ. Now, by Lemma 1.1, we have αRπ = Rα = Rρ. As Rπ ⊆ S(Λ,Ω), we obtain
Rρ ⊆ 〈S(Λ,Ω), α〉. On the other hand, by Lemma 1.1, we also have LARρ = Jk. Since LA ∈ S(Λ,Ω), we deduce
that 〈S(Λ,Ω), α〉 = OP (n, k). Thus, S(Λ,Ω) is maximal.

For the converse part, let S be a maximal subsemigroup of the ideal OP (n, k).
If S ∩ Rπ = ∅, for some π ∈ Ωk, then S = Sπ, by the maximality of S. Similarly, if S ∩ LA = ∅, for some

A ∈ Λk, then S = SA. Thus, admit that S contains at least one element from each R-class and each L-class
of Jk. If S ∩ On = O(n, k) then S = OP (n, k), by Proposition 1.8. Therefore S ∩ On ( O(n, k). Let S̄ be any
maximal subsemigroup of O(n, k) such that S ∩ On ⊆ S̄. Now, by Theorem 1.10, we have three possible cases
for S̄.

First, suppose that S̄ = Sπ ∩ On, for some π ∈ Ω′k. Then, as S ∩ Rπ 6= ∅, we may take α ∈ S ∩ Rπ. Since
π ∈ Ω′k, we have Hα ∩ On 6= ∅. Now, as Hα ⊆ S (by Lemma 1.11), we have (S ∩ On) ∩ Rπ 6= ∅, whence
S̄ ∩Rπ 6= ∅, which is a contradiction. Thus, S̄ cannot be of this type.

Secondly, we suppose that S̄ = SA1 ∩ On, for some A1 ∈ Λk. Let A1, . . . , Ar be the r ≥ 1 distinct elements
of Λk such that, for all A ∈ Λk, LA∩On∩S = ∅ if and only if A ∈ {A1, . . . , Ar}. Notice that, for i ∈ {1, . . . , r},
we have LAi ∩ S 6= ∅ and, as a consequence of Lemma 1.11, if α ∈ LAi ∩ S then (1, n) ∈ kerα. Now, let

Ω = {π ∈ Ωk | Rπ ∩ LAi ∩ S 6= ∅, for some i ∈ {1, . . . , r}}.

Notice that, clearly, Ω 6= ∅. Also, let

Λ = {A ∈ Λk | A is not a transversal of π, for all π ∈ Ω}.

Observe that, as (1, n) ∈ π, for all π ∈ Ω, then {A ∈ Λk | 1, n ∈ A} ⊆ Λ and so, in particular, Λ 6= ∅.
Furthermore, it is a routine matter to check that the pair (Λ,Ω) is a coupler of (Λk,Ωk). Next, we show that
S ∩ Jk ⊆ S(Λ,Ω). Take α ∈ S ∩ Jk. If imα ∈ Λ, then α ∈

⋃
{LA | A ∈ Λ}. Thus, let us suppose that

imα 6∈ Λ. Then we have to consider two cases. If α ∈ LAi , for some i ∈ {1, . . . , r}, then kerα ∈ Ω, whence
α ∈

⋃
{Rπ | π ∈ Ω}. Now, let α 6∈ LAi , for all i ∈ {1, . . . , r}. Then, there exists π ∈ Ω such that imα#π. As
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π ∈ Ω, there exists i ∈ {1, . . . , r} such that Rπ∩LAi ∩S 6= ∅. Take β ∈ Rπ∩LAi ∩S 6= ∅. Hence imα#π = kerβ
and so αβ ∈ Rα ∩ Lβ = Rα ∩ LAi . Moreover, αβ ∈ S, whence αβ ∈ Rαβ ∩ LAi ∩ S. Then kerα = ker(αβ) ∈ Ω,
from which it follows that α ∈

⋃
{Rπ | π ∈ Ω}. So, we have proved that α ∈ S(Λ,Ω). Therefore S ⊆ S(Λ,Ω) and

thus S = S(Λ,Ω), by the maximality of S.
Finally, suppose that S̄ = S′(Λ′,Ω′), for some coupler (Λ′,Ω′) of (Λk,Ω′k). Let

Λ = {A ∈ Λ′ | LA ∩ S ∩
(⋃
{Rπ | π ∈ Ω′k \ Ω′}

)
6= ∅},

which is a nonempty subset of Λk (as S ∩Rπ 6= ∅, for all π ∈ Ωk). Also, let

Ω = {π ∈ Ωk | A is not a transversal of π, for all A ∈ Λ}.

Clearly, Ω′ ⊆ Ω, whence Ω 6= ∅. Furthermore, it is a routine matter to check that the pair (Λ,Ω) is a coupler
of (Λk,Ωk). Next, we aim to prove that S = S(Λ,Ω). First, observe that, from the definition of Λ and from
S∩On ⊆ S′(Λ′,Ω′) in view of Lemma 1.11, we deduce that Rπ∩LA∩S = ∅, for all π ∈ Ω′k\Ω′ and A ∈ Λk\Λ. Now,
take α ∈ Jk ∩S and suppose that α 6∈ S(Λ,Ω). Then, imα ∈ Λk \Λ and kerα ∈ Ωk \Ω. Hence, there exists A ∈ Λ
such that A#kerα. Thus, by the definition of Λ, we may take β ∈ LA ∩ S ∩ (

⋃
{Rπ | π ∈ Ω′k \ Ω′}) and so, as

imβ = A#kerα, we have βα ∈ Rβ∩Lα∩S, i.e. βα ∈ S, im(βα) = imα ∈ Λk\Λ and ker(βα) = ker(β) ∈ Ω′k\Ω′,
which contradicts the above deduction. Therefore α ∈ S(Λ,Ω). It follows that S ⊆ S(Λ,Ω) and then S = S(Λ,Ω),
by the maximality of S, as required.

2 Maximal subsemigroups of the ideals of ORn

Let n ∈ N. As for OPn, the semigroup ORn is the union of its J -classes J̄1, J̄2, . . . , J̄n, where

J̄k = {α ∈ ORn | rankα = k}

for k = 1, . . . , n. Notice that J̄k ∩ OPn is the J -class Jk of OPn, for k = 1, . . . , n, and J̄1 = J1 and J̄2 = J2.
Analogously to OPn, the ideals of the semigroup ORn are the unions of the J -classes J̄1, J̄2, . . . , J̄k, i.e. the
sets

OR(n, k) = {α ∈ ORn | rankα ≤ k},

with k = 1, . . . , n. To avoid ambiguity, we denote by L̄α, R̄α and H̄α the L-class, R-class and H-class,
respectively, of an element α ∈ ORn. Observe that, for α ∈ OPn, the sets L̄α∩OPn, R̄α∩OPn and H̄α∩OPn
are respectively the L-class Lα, the R-class Rα and the H-class Hα of OPn.

Taking the product of two elements of J̄k, for k = 2, . . . , n, as being zero if it falls into OR(n, k−1), a result
similar to Lemma 1.1 holds for elements of ORn.

Lemma 2.1 Let α, β ∈ J̄k, with k = 1, 2, . . . , n. Then

αR̄β =
{
R̄αβ = R̄α if imα#kerβ,
0 otherwise,

L̄αβ =
{
L̄αβ = L̄β if imα#kerβ,
0 otherwise,

L̄αR̄β =
{
J̄k if imα#kerβ,
0 otherwise

and αH̄β = H̄αβ =
{
H̄αβ if imα#kerβ,
0 otherwise.

As OR1 = OP1 and OR2 = OP2, in what follows, we consider n ≥ 3.

Next, recall that a dihedral group Dn of order 2n can abstractly be defined by the group presentation

〈x, y | xn = y2 = 1, xy = yx−1〉.
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Let

h =
(

1 2 · · · n− 1 n
n n− 1 · · · 2 1

)
∈ J̄n.

Hence, we have J̄n = 〈g, h〉 and, as gn = h2 = (gh)2 = 1, it is easy to see that J̄n is a dihedral group of order
2n. Furthermore, Catarino and Higgins proved:

Proposition 2.2 ([4]) Let α ∈ J̄k, with k = 3, . . . , n. Then |H̄α| = 2k. Moreover, if α is an idempotent, then
H̄α is a dihedral group of order 2k.

Thus, eachH-class of rank k ofORn has k orientation-preserving transformations and k orientation-reversing
transformations, for k ∈ {3, . . . , n}.

Notice that, since J̄1 = J1 and J̄2 = J2, for α ∈ J̄k with k = 1, 2, we have |H̄α| = k.

Let us consider again the dihedral group Dn = 〈x, y | xn = y2 = 1, xy = yx−1〉 of order 2n. Observe that
Dn = {1 = x0, x, x2, . . . , xn−1} ∪ {y, xy, x2y, . . . , xn−1y}. It is easy to show that the subgroups of Dn are of
the form 〈xd〉 (a cyclic group of order n/d) and of the form 〈xd, xiy〉 (a dihedral group of order 2n/d), for each
positive divisor d of n and each 0 ≤ i < d. It follows that 〈x〉 and 〈xp, xiy〉, with p a prime divisor of n and
0 ≤ i < p, are the maximal subgroups of Dn.

Now, for a prime divisor p of n and 0 ≤ i < p, consider the dihedral group Vp,i = 〈gp, gih〉 of order 2n/p.
Then, the above observation can be rewrote as:

Lemma 2.3 The group Jn = 〈g〉 and the groups Vp,i, with p a prime divisor of n and 0 ≤ i < p, are the
maximal subgroups of J̄n.

Next, we recall the following well known result (see [3, 10]).

Proposition 2.4 ORn = 〈u1, g, h〉.

In fact, more generally, we have:

Proposition 2.5 Let α ∈ J̄n−1, γ an element of Jn of order n and β ∈ J̄n \ Jn. Then ORn = 〈α, γ, β〉.

Proof. If α ∈ J̄n−1 ∩ OPn then, by Proposition 1.4, we have OPn = 〈α, γ〉. If α ∈ J̄n−1 \ OPn then
αβ ∈ J̄n−1 ∩ OPn and, again by Proposition 1.4, we obtain OPn = 〈αβ, γ〉. Therefore, u1, g ∈ 〈α, γ, β〉. As

β ∈ J̄n \ OPn, there exists i ∈ {1, . . . , n} such that β =
(

1 2 · · · i− 1 i · · · n− 1 n
i− 1 i− 2 · · · 1 n · · · i+ 1 i

)
. On

the other hand, the transformation δ =
(

1 2 · · · i− 1 i · · · n− 1 n
n− i+ 2 n− i+ 3 · · · n 1 · · · n− i n− i+ 1

)
is an

element of OPn and h = βδ ∈ 〈α, γ, β〉. Therefore, by Proposition 2.4, we deduce that ORn = 〈α, γ, β〉.

We have now all the ingredients to describe the maximal subsemigroups of ORn.

Theorem 2.6 A subsemigroup S of the semigroup ORn is maximal if and only if S = OR(n, n − 2) ∪ J̄n or
S = OR(n, n− 1) ∪ Jn or S = OR(n, n− 1) ∪ Vp,i, for some prime divisor p of n and 0 ≤ i < p.

Proof. Let S be a maximal subsemigroup of ORn. Then, by Proposition 2.5, we have S = OR(n, n−2)∪T , for
some T ⊂ (J̄n−1∪J̄n) such that T∩J̄n−1 = ∅ or T does not contain any element of Jn of order n or T∩(J̄n\Jn) =
∅. In the latter two cases, we must have J̄n−1 ⊆ T , by the maximality of S. Thus, S = OR(n, n−1)∪T ′, for some
T ′ ⊂ J̄n. Clearly, T ′ must be a maximal subgroup of J̄n, whence S = OR(n, n−1)∪Jn or S = OR(n, n−1)∪Vp,i,
for some prime divisor p of n and 0 ≤ i < p, accordingly with Lemma 2.3. On the other hand, if T ∩ J̄n−1 = ∅
then S ⊆ OR(n, n− 2) ∪ J̄n and so S = OR(n, n− 2) ∪ J̄n, by the the maximality of S.

The converse part follows immediately from Proposition 2.5 and Lemma 2.3.
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From now on we consider the ideals OR(n, k) of ORn, for k ∈ {1, . . . , n − 1}. Since OR(n, 1) = OP (n, 1)
and OR(n, 2) = OP (n, 2), in what follows, we take k ≥ 3.

Notice that, as αh ∈ OP (n, k), for all α ∈ OR(n, k) \OP (n, k), by using Lemma 1.7, it is easy to conclude:

Lemma 2.7 OR(n, k) = 〈J̄k〉.

In fact, moreover, we have:

Proposition 2.8 OR(n, k) = 〈Jk, α〉, for all α ∈ J̄k \ Jk.

Proof. Let α ∈ J̄k \ Jk and take an idempotent ε ∈ L̄α. Since imα = imε#kerε, we have αR̄ε = R̄α, by
Lemma 2.1. Hence, α(R̄ε ∩Jk) = R̄α \Jk and so R̄α = (R̄α ∩Jk)∪ (R̄α \Jk) = (R̄α ∩Jk)∪α(R̄ε ∩Jk) ⊆ 〈Jk, α〉.

Now, let ε′ be an idempotent of R̄α and take α′ ∈ H̄ε′ \Jk. Notice that α′ ∈ 〈Jk, α〉. As imε′#kerε′ = kerα′,
we have L̄ε′α′ = L̄α′ = L̄ε′ , by Lemma 2.1. Thus (L̄ε′ ∩ Jk)α′ = L̄ε′ \ Jk, whence L̄ε′ = (L̄ε′ ∩ Jk)∪ (L̄ε′ \ Jk) =
(L̄ε′ ∩ Jk) ∪ (L̄ε′ ∩ Jk)α′ ⊆ 〈Jk, α〉.

Finally, as imε′#kerε′ = kerα, we have L̄ε′R̄α = J̄k, again by Lemma 2.1. Therefore, J̄k ⊆ 〈Jk, α〉 and so,
by Lemma 2.7, OR(n, k) = 〈Jk, α〉, as required.

As an immediate consequence of Proposition 2.8, we have:

Corollary 2.9 OR(n, k − 1) ∪ Jk is a maximal subsemigroup of OR(n, k).

Also, combining Proposition 2.8 with Corollary 1.9, we have:

Corollary 2.10 OR(n, k) = 〈E(Jk), α〉, for all α ∈ J̄k \ Jk.

Before we present our description of the maximal subsemigroups of the ideals of ORn, we prove the following
result:

Proposition 2.11 Let S be a maximal subsemigroup of OR(n, k) containing at least one orientation-reversing
transformation of rank k. Then S =

⋃
{H̄α | α ∈ S ∩ OPn}.

Proof. Let α ∈ S. As clearly OR(n, k − 1) ⊆ S, it suffices to consider α ∈ J̄k. Take β ∈ H̄α and suppose
that β /∈ S. Hence, by the maximality of S, we have OR(n, k) = 〈S, β〉. Let τ ∈ J̄k \ S. Then, there exist
t ≥ 0, r0, r1, . . . , rt ≥ 0 and α1, . . . , αt ∈ S such that τ = βr0α1β

r1α2 · · ·βrt−1αtβ
rt . As αHβ, it follow that

τ ′ = αr0α1α
r1α2 · · ·αrt−1αtα

rtHτ . Furthermore, τ ′ ∈ S. Thus, for all τ ∈ J̄k, H̄τ ∩ S 6= ∅, from which it
follows that E(Jk) ⊆ S. Since S also contains an orientation-reversing transformation of rank k, by Corollary
2.10, we have S = OR(n, k), a contradiction. Therefore H̄α ⊆ S. This shows that H̄α ⊆ S for all α ∈ S,
i.e.

⋃
{H̄α | α ∈ S} ⊆ S and thus

⋃
{H̄α | α ∈ S} = S. Since each H-class of ORn contains an orientation-

preserving transformation, we obtain S =
⋃
{H̄α | α ∈ S ∩ OPn}, as required.

In general, if S′ is a subsemigroup of OP (n, k) containing OP (n, k − 1), then (using an argument similar
to that considered in the proof of Lemma 1.11) it is easy to show that S =

⋃
{H̄α | α ∈ S′} is a subsemigroup

of OR(n, k). Furthermore, if S′ ( OP (n, k) then S is also a proper subsemigroup of OR(n, k). In fact, in this
case, by Corollary 1.9, there exists ε ∈ E(Jk) such that ε 6∈ S′. It follows that H̄ε ∩ S′ = ∅ and so also ε 6∈ S.

Finally, we have:

Theorem 2.12 Let n ≥ 4 and 3 ≤ k ≤ n− 1. Then, a subsemigroup S of OR(n, k) is maximal if and only if
S = OR(n, k − 1) ∪ Jk or S =

⋃
{H̄α | α ∈ S′}, for some maximal subsemigroup S′ of OP (n, k).
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Proof. First, let S be a maximal subsemigroup of OR(n, k) and admit that S 6= OR(n, k−1)∪Jk. Then S must
contain an orientation-reversing transformation of rank k and so S =

⋃
{H̄α | α ∈ S ∩ OPn}, by Proposition

2.11. Clearly, S ∩OPn is a proper subsemigroup of OP (n, k), whence there exists a maximal subsemigroup S′

of OP (n, k) such that S∩OPn ⊆ S′. Then, by the above observation,
⋃
{H̄α | α ∈ S′} is a proper subsemigroup

of OR(n, k) and, as it contains S, it follows that S =
⋃
{H̄α | α ∈ S′}, by the maximality of S.

Conversely, if S = OR(n, k − 1) ∪ Jk, then S is a maximal subsemigroup of OR(n, k), by Corollary 2.9.
Hence, let us admit that S =

⋃
{H̄α | α ∈ S′}, for some maximal subsemigroup S′ of OP (n, k). Then, by the

above observation, S is a proper subsemigroup of OR(n, k). Moreover, S must contain an orientation-reversing
transformation of rank k. Let Ŝ be a maximal subsemigroup of OR(n, k) such that S ⊆ Ŝ. Then Ŝ also contains
an orientation-reversing transformation of rank k and so, by Proposition 2.11, Ŝ =

⋃
{H̄α | α ∈ Ŝ ∩OPn}. On

the other hand, S′ ⊆ S ∩ OPn ⊆ Ŝ ∩ OPn ( OP (n, k), whence S′ = S ∩ OPn, by the maximality of S′. It
follows that S = Ŝ and thus S is a maximal subsemigroup of OR(n, k), as required.
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