The maximal subsemigroups of semigroups of transformations preserving or reversing the orientation on a finite chain

Ilinka Dimitrova¹, Vítor H. Fernandes² and Jörg Koppitz¹

Faculty of Mathematics and Natural Science South-West University "Neofit Rilski" 2700 Blagoevgrad, Bulgaria ilinka_dimitrova@yahoo.com

Departamento de Matemática Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa 2829-516 Caparica, Portugal also: Centro de Álgebra da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal vhf@fct.unl.pt

> Institute of Mathematics University of Potsdam 14469 Potsdam, Germany koppitz@rz.uni-potsdam.de

Abstract

The study of the semigroups \mathcal{OP}_n and \mathcal{OR}_n respectively of all orientation-preserving transformations and of all orientation-preserving or orientation-reversing transformations on an *n*-element chain has began in [10] and [4]. In order to bring more insight into the subsemigroup structure of \mathcal{OP}_n and \mathcal{OR}_n , we characterize their maximal subsemigroups.

Keywords: finite transformation semigroup, orientation-preserving and orientation-reversing transformations, maximal subsemigroups.

2000 Mathematics Subject Classification: 20M20

Introduction and Preliminaries

For $n \in \mathbb{N}$, let $X_n = \{1 < 2 < \cdots < n\}$ be a finite chain with n elements. As usual, we denote by \mathcal{T}_n the monoid (under composition) of all full transformations of X_n . For every transformation $\alpha \in \mathcal{T}_n$, we denote by ker α and im α the kernel and the image of α , respectively. The number rank $\alpha = |\ker \alpha| = |\operatorname{im} \alpha|$ is called the rank of α . Given a subset U of \mathcal{T}_n , we denote by E(U) its set of idempotents. The weight of an equivalence relation π on X_n is the number $|X_n/\pi|$. Let $A \subseteq X_n$ and let π be an equivalence relation on X_n of weight |A|. We say that A is a transversal of π (denoted by $A \# \pi$) if $|A \cap \overline{x}| = 1$ for every equivalence class \overline{x} of π . A subset C of the chain X_n is said to be convex if $x, y \in C$ and $x \leq z \leq y$ together imply that $z \in C$. An equivalence relation π on X_n is convex if its classes are convex.

We say that a transformation $\alpha \in \mathcal{T}_n$ is order-preserving (respectively, order-reversing) if $x \leq y$ implies that $x\alpha \leq y\alpha$ (respectively, $x\alpha \geq y\alpha$), for all $x, y \in X_n$. As usual, \mathcal{O}_n denotes the submonoid of \mathcal{T}_n of all order-preserving transformations of X_n . This monoid has been largely studied, for instance in [1, 5, 8, 9, 12].

Let $a = (a_1, a_2, \ldots, a_t)$ be a sequence of $t \ (t \ge 1)$ elements from the chain X_n . We say that a is cyclic (respectively, *anti-cyclic*) if there exists no more than one index $i \in \{1, \ldots, t\}$ such that $a_i > a_{i+1}$ (respectively,

¹The authors gratefully acknowledges support of FCT, within the project ISFL-1-143 of CAUL.

²The author gratefully acknowledges support of FCT, within the projects ISFL-1-143 and PTDC/MAT/69514/2006 of CAUL.

 $a_i < a_{i+1}$), where a_{t+1} denotes a_1 . We say that a transformation $\alpha \in \mathcal{T}_n$ is orientation-preserving (respectively, orientation-reversing) if the sequence of its images is cyclic (respectively, anti-cyclic). The notion of an orientation-preserving transformation was introduced by McAlister in [10] and, independently, by Catarino and Higgins in [4]. It is easy to show that the product of two orientation-preserving or of two orientation-reversing transformations is orientation-preserving, and the product of an orientation-preserving transformation by an orientation-reversing transformation is orientation-reversing (see [4]). We denote by \mathcal{OP}_n (respectively, \mathcal{OR}_n) the monoid of all orientation-preserving (respectively, orientation-preserving or orientation-reversing) full transformations. It is clear that \mathcal{OP}_n is a submonoid of \mathcal{OR}_n .

Since \mathcal{O}_n , \mathcal{OP}_n and \mathcal{OR}_n are regular submonoids of \mathcal{T}_n , the definition of the Green's relations \mathcal{L} , \mathcal{R} and \mathcal{H} on \mathcal{O}_n , \mathcal{OP}_n and \mathcal{OR}_n follow immediately from well known results on regular semigroups and from their descriptions on \mathcal{T}_n . We have $\alpha \mathcal{L}\beta \iff \operatorname{im}\alpha = \operatorname{im}\beta$ and $\alpha \mathcal{R}\beta \iff \operatorname{ker}\alpha = \operatorname{ker}\beta$, for every transformations α and β . Recall also that, for the Green's relation \mathcal{J} , we have (on \mathcal{O}_n , \mathcal{OP}_n and \mathcal{OR}_n) $\alpha \mathcal{J}\beta \iff \operatorname{rank}\alpha = \operatorname{rank}\beta$, for every transformations α and β .

Regarding the monoids \mathcal{OP}_n and \mathcal{OR}_n , presentations for them were exhibited by Catarino in [3] and by Arthur and Ruškuc in [2], the Green's relations, their sizes and ranks, among other properties, were determined by Catarino and Higgins in [4] and a description of their congruences were given in [6] by Fernandes, Gomes and Jesus. In [13] Zhao, Bo and Mei characterized the locally maximal idempotent-generated subsemigroups of \mathcal{OP}_n (excluding the permutations).

In this paper, we aim to give more insight into the subsemigroup structure of the monoids \mathcal{OP}_n and \mathcal{OR}_n by characterizing the maximal subsemigroups of these monoids and of their ideals. In Section 1, we study the monoid \mathcal{OP}_n and its ideals. First, we describe all maximal subsemigroups of \mathcal{OP}_n (some of them are associated with the maximal subgroups of the additive group \mathbb{Z}_n). The main result of this section is the characterization of the maximal subsemigroups of the ideals of \mathcal{OP}_n . In Section 2, we study the monoid \mathcal{OR}_n and its ideals. Again, first we describe all maximal subsemigroups of \mathcal{OR}_n (some of them are associated with the maximal subgroups of the dihedral group \mathcal{D}_n of order 2n). The main result of this section is the characterization of the maximal subsemigroups of the ideals of \mathcal{OR}_n , which are associated with the maximal subsemigroups of the ideals of \mathcal{OP}_n .

1 Maximal subsemigroups of the ideals of \mathcal{OP}_n

Let $n \in \mathbb{N}$. The semigroup \mathcal{OP}_n is the union of its \mathcal{J} -classes J_1, J_2, \ldots, J_n , where

$$J_k = \{ \alpha \in \mathcal{OP}_n \mid \operatorname{rank} \alpha = k \},\$$

for k = 1, ..., n. It is well known that the ideals of the semigroup \mathcal{OP}_n are the unions of the \mathcal{J} -classes $J_1, J_2, ..., J_k$, i.e. the sets

$$OP(n,k) = \{ \alpha \in \mathcal{OP}_n \mid \operatorname{rank} \alpha \leq k \},\$$

with k = 1, ..., n. Every principal factor on \mathcal{OP}_n is a Rees quotient OP(n, k)/OP(n, k-1) $(2 \le k \le n)$ of which we may think as $J_k \cup \{0\}$, where the product of two elements of J_k is taken to be zero if it falls into OP(n, k-1).

Denote by L_{α} , R_{α} and H_{α} the \mathcal{L} -class, \mathcal{R} -class and \mathcal{H} -class, respectively, of an element $\alpha \in \mathcal{OP}_n$. Since the product $\alpha\beta$, for $\alpha, \beta \in J_k$, belongs to the class J_k (if and only if $\alpha\beta \in R_{\alpha} \cap L_{\beta}$) if and only if $\mathrm{im}\alpha \# \mathrm{ker}\beta$, it is easy to show:

Lemma 1.1 Let $\alpha, \beta \in J_k$, with $k = 1, 2, \ldots, n$. Then

$$\alpha R_{\beta} = \begin{cases} R_{\alpha\beta} = R_{\alpha} & \text{if } \operatorname{im} \alpha \# \operatorname{ker} \beta, \\ 0 & \text{otherwise,} \end{cases} \qquad L_{\alpha}\beta = \begin{cases} L_{\alpha\beta} = L_{\beta} & \text{if } \operatorname{im} \alpha \# \operatorname{ker} \beta, \\ 0 & \text{otherwise,} \end{cases}$$
$$L_{\alpha}R_{\beta} = \begin{cases} J_{k} & \text{if } \operatorname{im} \alpha \# \operatorname{ker} \beta, \\ 0 & \text{otherwise} \end{cases} \qquad \text{and} \quad \alpha H_{\beta} = H_{\alpha}\beta = \begin{cases} H_{\alpha\beta} & \text{if } \operatorname{im} \alpha \# \operatorname{ker} \beta, \\ 0 & \text{otherwise.} \end{cases}$$

Next, recall that Catarino and Higgins proved:

Proposition 1.2 ([4]) Let $\alpha \in J_k$, with k = 1, 2, ..., n. Then $|H_{\alpha}| = k$. Moreover, if α is an idempotent, then H_{α} is a cyclic group of order k.

Let G be a cyclic group of order k, with $k \in \mathbb{N}$. It is well known that there exists an one-to-one correspondence between the subgroups of G and the (positive) divisors of k. Moreover, if r is a divisor of k then there exists a (cyclic) subgroup G_r of G such that $|G_r| = r$. On the other hand, being $x \in G$, there exists a (positive) divisor r of k such that x^r is the identity of G.

Let us consider the following elements:

$$g = \begin{pmatrix} 1 & 2 & \cdots & n-1 & n \\ 2 & 3 & \cdots & n & 1 \end{pmatrix} \in J_n \quad \text{and} \quad u_i = \begin{pmatrix} 1 & 2 & \cdots & i-1 & i & i+1 & \cdots & n \\ 1 & 2 & \cdots & i-1 & i+1 & i+1 & \cdots & n \end{pmatrix} \in J_{n-1},$$

for i = 1, ..., n (with i = n we take i + 1 = 1).

Notice that $J_n = H_g$, whence J_n is a cyclic group of order n. We will use the following well known result (see [3, 10]).

Proposition 1.3 $\mathcal{OP}_n = \langle u_1, g \rangle$.

Next, we present alternative generating sets of the monoid \mathcal{OP}_n .

Proposition 1.4 Let $\alpha \in J_{n-1}$ and let $\gamma \in J_n$ be a permutation of order n. Then $\mathcal{OP}_n = \langle \alpha, \gamma \rangle$.

Proof. Since $\gamma \in J_n$ has order n, we have $\langle \gamma \rangle = J_n$ and so $g \in \langle \gamma \rangle$. From $\alpha \in J_{n-1}$, it follows that there exist $1 \leq i, j \leq n$ such that $\operatorname{im} \alpha = X_n \setminus \{j\}$ and $(i, i+1) \in \ker \alpha$ (by taking i+1=1, if i=n). Put s=i-j, if j < i, and s=n+i-j, otherwise. Then, it is easy to show that $\beta = \alpha g^s \in H_{u_i}$. Now, as u_i is an idempotent of \mathcal{OP}_n , by Proposition 1.2, it follows that u_i is a power of β . On the other hand, it is a routine matter to show that $u_1 = g^{n+i-1}u_ig^{n-i+1}$. Thus, by Proposition 1.3, we deduce that $\mathcal{OP}_n = \langle \alpha, \gamma \rangle$.

For a prime divisor p of n, we put $W_p = \langle g^p \rangle = \{1, g^p, g^{2p}, \dots, g^{n-p}\}$, which is, clearly, a cyclic group of order $\frac{n}{p}$. Furthermore, from well known results regarding finite cyclic groups, we have:

Lemma 1.5 The groups W_p , with p a prime divisor of n, are the maximal subgroups of J_n .

Now, we can describe the maximal subsemigroups of \mathcal{OP}_n .

Theorem 1.6 A subsemigroup S of the semigroup \mathcal{OP}_n is maximal if and only if $S = OP(n, n-2) \cup J_n$ or $S = OP(n, n-1) \cup W_p$, for a prime divisor p of n.

Proof. Let S be a maximal subsemigroup of \mathcal{OP}_n . Then, it is clear that $OP(n, n-2) \subseteq S$ and thus $S = OP(n, n-2) \cup T$, for some subset T of $J_{n-1} \cup J_n$. By Proposition 1.4, we have $T \cap J_{n-1} = \emptyset$ or T does not contain any element of J_n of order n. In this latter case, we must have $J_{n-1} \subseteq T$, by the maximality of S. This shows that $S = OP(n, n-1) \cup T'$, for some subset T' of J_n , whence T' must be a maximal subgroup of J_n . Thus, by Lemma 1.5, we have $T' = W_p$, for some prime divisor p of n. On the other hand, if $T \cap J_{n-1} = \emptyset$ then $S \subseteq OP(n, n-2) \cup J_n$, whence $S = OP(n, n-2) \cup J_n$, by the maximality of S.

The converse part follows immediately from Proposition 1.4 and Lemma 1.5.

Let $n \geq 3$ and $1 \leq k \leq n-1$. In the remaining of this section, we consider the ideal OP(n,k) of \mathcal{OP}_n . Clearly, the maximal subsemigroups of OP(n, 1) are the sets of the form $OP(n, 1) \setminus \{\alpha\}$, for $\alpha \in OP(n, 1)$. Therefore, in what follows, we consider $k \geq 2$.

Notice that, as every element $\alpha \in \mathcal{O}_n$ of rank r-1, for $2 \leq r \leq n-1$, is expressible as a product of elements of \mathcal{O}_n of rank r (see [7]) and every element $\beta \in \mathcal{OP}_n$ admits a decomposition $\beta = g^t \alpha$, for some $1 \leq t \leq n$ and $\alpha \in \mathcal{O}_n$ (see [4]), we deduce that every element of J_{r-1} is a product of elements of J_r , for $2 \leq r \leq n-1$. Thus, we have:

Lemma 1.7 $OP(n,k) = \langle J_k \rangle$.

Let us denote by Λ_k the collection of all subsets of X_n of cardinality k. Since two elements of J_k are \mathcal{L} -related if and only if they have the same image, an \mathcal{L} -class of J_k (which coincides with an \mathcal{L} -class of \mathcal{OP}_n , as J_k is regular) is completely determined by the image set of its transformations. Therefore a typical \mathcal{L} -class of J_k has the form

$$L_A = \{ \alpha \in J_k \mid \mathrm{im}\, \alpha = A \},\$$

with $A \in \Lambda_k$.

Let Ω_k be the collection of all equivalence relations π on X_n of weight k such that, for all $\overline{x} \in X_n/\pi$, either \overline{x} or $X_n \setminus \overline{x}$ is a convex subset of X_n . Since two transformations of J_k are \mathcal{R} -related if and only if they have the same kernel, an \mathcal{R} -class of J_k (which coincides with an \mathcal{R} -class of \mathcal{OP}_n , as J_k is regular) is completely determined by the kernel of any of its elements. A typical \mathcal{R} -class of J_k has then the form

$$R_{\pi} = \{ \alpha \in J_k \mid \ker \alpha = \pi \},\$$

with $\pi \in \Omega_k$.

Finally, it follows that a typical \mathcal{H} -class of J_k has the form

$$H_{(\pi,A)} = R_{\pi} \cap L_A,$$

with $\pi \in \Omega_k$ and $A \in \Lambda_k$.

Notice that, for any $\pi \in \Omega_k$ and for any $\alpha \in R_{\pi}$, it is easy to show that $H_{\alpha} \cap \mathcal{O}_n = \emptyset$ if and only if $(1, n) \in \pi$ (i.e. π contains a non-convex class). Observe also that, being $O(n,k) = OP(n,k) \cap \mathcal{O}_n$ (the ideal of \mathcal{O}_n of all elements of rank less than or equal to k) and $J'_k = J_k \cap \mathcal{O}_n$ (the \mathcal{J} -class of \mathcal{O}_n of all elements of rank equal to k), a typical \mathcal{L} -class of J'_k has the form $L_A \cap \mathcal{O}_n$, with $A \in \Lambda_k$, and a typical \mathcal{R} -class of J'_k has the form $R_\pi \cap \mathcal{O}_n$, with $\pi \in \Omega'_k = \{\pi \in \Omega_k \mid (1, n) \notin \pi\}.$

Proposition 1.8 Let C be any subset of J_k containing $J_k \cap \mathcal{O}_n$ and at least one element from each \mathcal{R} -class of J_k . Then $OP(n,k) = \langle C \rangle$.

Proof. First, let α be an element of C with kernel $\{\{1, k+1, \ldots, n\}, \{2\}, \ldots, \{k\}\}$. Let β be any order-preserving transformation with image $\{1, \ldots, k\}$ such that $\operatorname{im} \alpha \# \ker \beta$. Then, $\ker(\alpha \beta) = \ker \alpha$ and $\operatorname{im}(\alpha \beta) = \operatorname{im} \beta$, from which it follows that the idempotent power of $\alpha\beta$ is the transformation $\begin{pmatrix} 1 & \cdots & k & k+1 & \cdots & n \\ 1 & \cdots & k & 1 & \cdots & 1 \end{pmatrix}$. There-

$$\gamma = \begin{pmatrix} 1 & \cdots & k & | & k+1 & \cdots & n \\ 2 & \cdots & k+1 & | & k+1 & \cdots & k+1 \end{pmatrix} \begin{pmatrix} 1 & \cdots & k & | & k+1 & \cdots & n \\ 1 & \cdots & k & | & 1 & \cdots & 1 \end{pmatrix}$$

=
$$\begin{pmatrix} 1 & \cdots & k-1 & k & | & k+1 & \cdots & n \\ 2 & \cdots & k & 1 & | & 1 & \cdots & 1 \end{pmatrix} \in \langle C \rangle.$$

Furthermore, as γ generates a cycle group of order k, we have $H_{\gamma} \subseteq \langle C \rangle$.

Now, let $\varepsilon = \gamma^k = \begin{pmatrix} 1 & \cdots & k & k+1 & \cdots & n \\ 1 & \cdots & k & k & \cdots & k \end{pmatrix}$ be the idempotent of H_{γ} and let H be any \mathcal{H} -class contained in $R_{\varepsilon} = R_{\gamma}$. Since the elements of H have the same kernel that $\varepsilon \in \mathcal{O}_n$, then H has an order-preserving element τ . From $\varepsilon \mathcal{R} \tau$ it follows that $\varepsilon \tau = \tau$, whence $\mathrm{im} \varepsilon \# \mathrm{ker} \tau$ and so, by Lemma 1.1, we have $H_{\varepsilon} \tau = H_{\tau}$. As $\tau \in C$ and $H_{\varepsilon} \subseteq \langle C \rangle$, we also have $H = H_{\tau} \subseteq \langle C \rangle$. Hence $R_{\varepsilon} \subseteq \langle C \rangle$.

Next, let $\pi \in \Omega_k$ be such that $(1, n) \notin \pi$. Then, there exists an order-preserving transformation $\tau \in L_{\varepsilon} \cap R_{\pi}$. Since $\varepsilon \in L_{\varepsilon} \cap R_{\varepsilon} = L_{\tau} \cap R_{\varepsilon}$, we have $\tau \varepsilon = \tau$, whence $\operatorname{im} \tau \# \ker \varepsilon$ and so, by Lemma 1.1, we obtain $\tau R_{\varepsilon} = R_{\tau} = R_{\pi}$. As $\tau \in C$ and $R_{\varepsilon} \subseteq \langle C \rangle$, it follows that $R_{\pi} \subseteq \langle C \rangle$.

Finally, let $\pi \in \Omega_k$ be such that $(1, n) \in \pi$ and let $\tau \in C \cap R_{\pi}$. Take an order-preserving idempotent ε' such that $\operatorname{im} \varepsilon' = \operatorname{im} \tau$. Then, $\varepsilon' \in L_{\varepsilon'} \cap R_{\varepsilon'} = L_{\tau} \cap R_{\varepsilon'}$, whence $\tau \varepsilon' = \tau$ and so $\operatorname{im} \tau \# \ker \varepsilon'$. Thus, by Lemma 1.1, we have $\tau R_{\varepsilon'} = R_{\tau} = R_{\pi}$. As $\tau \in C$ and $R_{\varepsilon'} \subseteq \langle C \rangle$ (by the previous case), it follows that $R_{\pi} \subseteq \langle C \rangle$.

Hence, we proved that $J_k \subseteq \langle C \rangle$ and so, by Lemma 1.7, we obtain $OP(n,k) = \langle C \rangle$, as required.

Since $O(n,k) = \langle E(J_k \cap \mathcal{O}_n) \rangle$ (see [7]) and each \mathcal{R} -class of J_k contains at least one idempotent, we have:

Corollary 1.9 $OP(n,k) = \langle E(J_k) \rangle.$

Notice that, it is easy to show that, in fact, each \mathcal{R} -class of J_k contains at least two idempotents. Moreover, as $2 \leq k \leq n-1$, it also is easy to show that each \mathcal{L} -class of J_k contains at least two idempotents.

Let Λ be a non-empty proper subset of Λ_k and let Ω be a non-empty proper subset of Ω_k (respectively, of Ω'_k). The pair (Λ, Ω) is called a *coupler* of (Λ_k, Ω_k) (respectively, of (Λ_k, Ω'_k)) if the following three conditions are satisfied (see [11]):

- 1. For every $A \in \Lambda$ and $\pi \in \Omega$, A is not a transversal of π ;
- 2. For every $B \in \Lambda_k \setminus \Lambda$, there exists $\pi \in \Omega$ such that $B \# \pi$;
- 3. For every $\rho \in \Omega_k \setminus \Omega$ (respectively, $\rho \in \Omega'_k \setminus \Omega$), there exists $A \in \Lambda$ such that $A \# \rho$.

Next, we consider the following subsets of OP(n, k):

- 1. $S_A = OP(n, k 1) \cup (J_k \setminus L_A)$, for each $A \in \Lambda_k$;
- 2. $S_{\pi} = OP(n, k 1) \cup (J_k \setminus R_{\pi})$, for each $\pi \in \Omega_k$;
- 3. $S_{(\Lambda,\Omega)} = OP(n,k-1) \cup (\bigcup \{L_A \mid A \in \Lambda\}) \cup (\bigcup \{R_\pi \mid \pi \in \Omega\})$, for each coupler (Λ,Ω) of (Λ_k,Ω_k) .

It is routine matter to prove that each of these subsets is a (proper) subsemigroup of OP(n,k).

Before we give the description of the maximal subsemigroups of the ideals of the semigroup \mathcal{OP}_n , we recall the following result presented by the first and third author in [5] (see also [12]).

Theorem 1.10 ([5]) Let $n \ge 3$ and $2 \le k \le n-1$. Then a subsemigroup of O(n,k) is maximal if and only if it belongs to one of the following types:

1.
$$S_A \cap \mathcal{O}_n$$
, with $A \in \Lambda_k$;

- 2. $S_{\pi} \cap \mathcal{O}_n$, with $\pi \in \Omega'_k$ such that π does not admit an interval of Λ as a transversal;
- 3. $S'_{(\Lambda,\Omega)} = O(n,k-1) \cup (\bigcup \{L_A \cap \mathcal{O}_n \mid A \in \Lambda\}) \cup (\bigcup \{R_\pi \cap \mathcal{O}_n \mid \pi \in \Omega\}), \text{ with } (\Lambda,\Omega) \text{ a coupler of } (\Lambda_k,\Omega'_k).$

Lemma 1.11 Let S be a maximal subsemigroup of OP(n,k). Then $S = \bigcup \{H_{\alpha} \mid \alpha \in S\}$.

Proof. Let $T = \bigcup \{H_{\alpha} \mid \alpha \in S\}$. First, notice that, by Corollary 1.9, there exists $\varepsilon \in E(J_k)$ such that $\varepsilon \notin S$. Hence, $H_{\varepsilon} \cap S = \emptyset$ and so $S \subseteq T \subsetneq OP(n,k)$. The result follows by proving that T is a subsemigroup of OP(n,k). Clearly, by the maximality of S (and Lemma 1.7), we have $OP(n,k-1) \subsetneq S$. So, if suffices to show that, for all $\alpha, \beta \in T \cap J_k$ such that $\alpha\beta \in J_k$, we get $\alpha\beta \in T$. Therefore, let $\alpha, \beta \in T \cap J_k$ be such that $\alpha\beta \in J_k$. Take $\alpha', \beta' \in S$ such that $\alpha \in H_{\alpha'}$ and $\beta \in H_{\beta'}$. Then $\operatorname{im} \alpha' = \operatorname{im} \alpha \# \ker \beta = \ker \beta'$ and $\alpha\beta \in R_{\alpha} \cap L_{\beta}$, whence $\alpha'\beta' \in R_{\alpha'} \cap L_{\beta'} = R_{\alpha} \cap L_{\beta} = H_{\alpha\beta}$ and so, as $\alpha'\beta' \in S$, we obtain $\alpha\beta \in H_{\alpha'\beta'} \subseteq T$, as required.

Now, we have:

Theorem 1.12 Let $n \ge 3$ and $2 \le k \le n-1$. Then a subsemigroup of OP(n,k) is maximal if and only if it belongs to one of the following types:

- 1. S_A , with $A \in \Lambda_k$;
- 2. S_{π} , with $\pi \in \Omega_k$;
- 3. $S_{(\Lambda,\Omega)}$, with (Λ,Ω) a coupler of (Λ_k,Ω_k) .

Proof. We begin by showing that each of these subsemigroups of OP(n,k) is maximal.

First, let $A \in \Lambda_k$ and let $\alpha \in L_A$. Take an idempotent $\varepsilon \in (J_k \setminus L_A) \cap R_\alpha$. As $L_\varepsilon \subseteq S_A$ and, by Lemma 1.1, $L_\varepsilon \alpha = L_A$, we have $\langle S_A, \alpha \rangle = OP(n, k)$. Thus, S_A is maximal.

Similarly, being $\pi \in \Omega_k$ and $\alpha \in R_{\pi}$, the \mathcal{L} -class L_{α} contains at least an idempotent $\varepsilon \in J_k \setminus R_{\pi}$ and so $R_{\varepsilon} \subseteq S_{\pi}$ and, by Lemma 1.1, $\alpha R_{\varepsilon} = R_{\pi}$, whence $\langle S_{\pi}, \alpha \rangle = OP(n, k)$. Thus, S_{π} is maximal.

Finally, regarding the subsemigroups of type 3, let (Λ, Ω) be a coupler of (Λ_k, Ω_k) . As $\Lambda_k \setminus \Lambda \neq \emptyset$ and $\Omega_k \setminus \Omega \neq \emptyset$, we may take $\alpha \in R_\rho \cap L_B$, for some $\rho \in \Omega_k \setminus \Omega$ and $B \in \Lambda_k \setminus \Lambda$. Then, there exist $\pi \in \Omega$ and $A \in \Lambda$ such that $B \# \pi$ and $A \# \rho$. Now, by Lemma 1.1, we have $\alpha R_\pi = R_\alpha = R_\rho$. As $R_\pi \subseteq S_{(\Lambda,\Omega)}$, we obtain $R_\rho \subseteq \langle S_{(\Lambda,\Omega)}, \alpha \rangle$. On the other hand, by Lemma 1.1, we also have $L_A R_\rho = J_k$. Since $L_A \in S_{(\Lambda,\Omega)}$, we deduce that $\langle S_{(\Lambda,\Omega)}, \alpha \rangle = OP(n,k)$. Thus, $S_{(\Lambda,\Omega)}$ is maximal.

For the converse part, let S be a maximal subsemigroup of the ideal OP(n, k).

If $S \cap R_{\pi} = \emptyset$, for some $\pi \in \Omega_k$, then $S = S_{\pi}$, by the maximality of S. Similarly, if $S \cap L_A = \emptyset$, for some $A \in \Lambda_k$, then $S = S_A$. Thus, admit that S contains at least one element from each \mathcal{R} -class and each \mathcal{L} -class of J_k . If $S \cap \mathcal{O}_n = O(n,k)$ then S = OP(n,k), by Proposition 1.8. Therefore $S \cap \mathcal{O}_n \subsetneq O(n,k)$. Let \overline{S} be any maximal subsemigroup of O(n,k) such that $S \cap \mathcal{O}_n \subseteq \overline{S}$. Now, by Theorem 1.10, we have three possible cases for \overline{S} .

First, suppose that $\overline{S} = S_{\pi} \cap \mathcal{O}_n$, for some $\pi \in \Omega'_k$. Then, as $S \cap R_{\pi} \neq \emptyset$, we may take $\alpha \in S \cap R_{\pi}$. Since $\pi \in \Omega'_k$, we have $H_{\alpha} \cap \mathcal{O}_n \neq \emptyset$. Now, as $H_{\alpha} \subseteq S$ (by Lemma 1.11), we have $(S \cap \mathcal{O}_n) \cap R_{\pi} \neq \emptyset$, whence $\overline{S} \cap R_{\pi} \neq \emptyset$, which is a contradiction. Thus, \overline{S} cannot be of this type.

Secondly, we suppose that $\overline{S} = S_{A_1} \cap \mathcal{O}_n$, for some $A_1 \in \Lambda_k$. Let A_1, \ldots, A_r be the $r \ge 1$ distinct elements of Λ_k such that, for all $A \in \Lambda_k$, $L_A \cap \mathcal{O}_n \cap S = \emptyset$ if and only if $A \in \{A_1, \ldots, A_r\}$. Notice that, for $i \in \{1, \ldots, r\}$, we have $L_{A_i} \cap S \neq \emptyset$ and, as a consequence of Lemma 1.11, if $\alpha \in L_{A_i} \cap S$ then $(1, n) \in \ker \alpha$. Now, let

$$\Omega = \{ \pi \in \Omega_k \mid R_{\pi} \cap L_{A_i} \cap S \neq \emptyset, \text{ for some } i \in \{1, \dots, r\} \}.$$

Notice that, clearly, $\Omega \neq \emptyset$. Also, let

 $\Lambda = \{ A \in \Lambda_k \mid A \text{ is not a transversal of } \pi, \text{ for all } \pi \in \Omega \}.$

Observe that, as $(1,n) \in \pi$, for all $\pi \in \Omega$, then $\{A \in \Lambda_k \mid 1, n \in A\} \subseteq \Lambda$ and so, in particular, $\Lambda \neq \emptyset$. Furthermore, it is a routine matter to check that the pair (Λ, Ω) is a coupler of (Λ_k, Ω_k) . Next, we show that $S \cap J_k \subseteq S_{(\Lambda,\Omega)}$. Take $\alpha \in S \cap J_k$. If $\operatorname{im} \alpha \in \Lambda$, then $\alpha \in \bigcup \{L_A \mid A \in \Lambda\}$. Thus, let us suppose that $\operatorname{im} \alpha \notin \Lambda$. Then we have to consider two cases. If $\alpha \in L_{A_i}$, for some $i \in \{1, \ldots, r\}$, then ker $\alpha \in \Omega$, whence $\alpha \in \bigcup \{R_\pi \mid \pi \in \Omega\}$. Now, let $\alpha \notin L_{A_i}$, for all $i \in \{1, \ldots, r\}$. Then, there exists $\pi \in \Omega$ such that $\operatorname{im} \alpha \# \pi$. As $\pi \in \Omega$, there exists $i \in \{1, \ldots, r\}$ such that $R_{\pi} \cap L_{A_i} \cap S \neq \emptyset$. Take $\beta \in R_{\pi} \cap L_{A_i} \cap S \neq \emptyset$. Hence $\operatorname{im} \alpha \# \pi = \operatorname{ker} \beta$ and so $\alpha\beta \in R_{\alpha} \cap L_{\beta} = R_{\alpha} \cap L_{A_i}$. Moreover, $\alpha\beta \in S$, whence $\alpha\beta \in R_{\alpha\beta} \cap L_{A_i} \cap S$. Then $\operatorname{ker} \alpha = \operatorname{ker}(\alpha\beta) \in \Omega$, from which it follows that $\alpha \in \bigcup \{R_{\pi} \mid \pi \in \Omega\}$. So, we have proved that $\alpha \in S_{(\Lambda,\Omega)}$. Therefore $S \subseteq S_{(\Lambda,\Omega)}$ and thus $S = S_{(\Lambda,\Omega)}$, by the maximality of S.

Finally, suppose that $\bar{S} = S'_{(\Lambda',\Omega')}$, for some coupler (Λ',Ω') of (Λ_k,Ω'_k) . Let

$$\Lambda = \{ A \in \Lambda' \mid L_A \cap S \cap \left(\bigcup \{ R_\pi \mid \pi \in \Omega'_k \setminus \Omega' \} \right) \neq \emptyset \},\$$

which is a nonempty subset of Λ_k (as $S \cap R_{\pi} \neq \emptyset$, for all $\pi \in \Omega_k$). Also, let

$$\Omega = \{\pi \in \Omega_k \mid A \text{ is not a transversal of } \pi, \text{ for all } A \in \Lambda \}.$$

Clearly, $\Omega' \subseteq \Omega$, whence $\Omega \neq \emptyset$. Furthermore, it is a routine matter to check that the pair (Λ, Ω) is a coupler of (Λ_k, Ω_k) . Next, we aim to prove that $S = S_{(\Lambda,\Omega)}$. First, observe that, from the definition of Λ and from $S \cap \mathcal{O}_n \subseteq S'_{(\Lambda',\Omega')}$ in view of Lemma 1.11, we deduce that $R_\pi \cap L_A \cap S = \emptyset$, for all $\pi \in \Omega'_k \setminus \Omega'$ and $A \in \Lambda_k \setminus \Lambda$. Now, take $\alpha \in J_k \cap S$ and suppose that $\alpha \notin S_{(\Lambda,\Omega)}$. Then, $\operatorname{im} \alpha \in \Lambda_k \setminus \Lambda$ and $\operatorname{ker} \alpha \in \Omega_k \setminus \Omega$. Hence, there exists $A \in \Lambda$ such that $A \# \operatorname{ker} \alpha$. Thus, by the definition of Λ , we may take $\beta \in L_A \cap S \cap (\bigcup \{R_\pi \mid \pi \in \Omega'_k \setminus \Omega'\})$ and so, as $\operatorname{im} \beta = A \# \operatorname{ker} \alpha$, we have $\beta \alpha \in R_\beta \cap L_\alpha \cap S$, i.e. $\beta \alpha \in S$, $\operatorname{im}(\beta \alpha) = \operatorname{im} \alpha \in \Lambda_k \setminus \Lambda$ and $\operatorname{ker}(\beta \alpha) = \operatorname{ker}(\beta) \in \Omega'_k \setminus \Omega'$, which contradicts the above deduction. Therefore $\alpha \in S_{(\Lambda,\Omega)}$. It follows that $S \subseteq S_{(\Lambda,\Omega)}$ and then $S = S_{(\Lambda,\Omega)}$, by the maximality of S, as required.

2 Maximal subsemigroups of the ideals of \mathcal{OR}_n

Let $n \in \mathbb{N}$. As for \mathcal{OP}_n , the semigroup \mathcal{OR}_n is the union of its \mathcal{J} -classes $\bar{J}_1, \bar{J}_2, \ldots, \bar{J}_n$, where

$$\bar{J}_k = \{ \alpha \in \mathcal{OR}_n \mid \operatorname{rank} \alpha = k \}$$

for k = 1, ..., n. Notice that $\bar{J}_k \cap \mathcal{OP}_n$ is the \mathcal{J} -class J_k of \mathcal{OP}_n , for k = 1, ..., n, and $\bar{J}_1 = J_1$ and $\bar{J}_2 = J_2$. Analogously to \mathcal{OP}_n , the ideals of the semigroup \mathcal{OR}_n are the unions of the \mathcal{J} -classes $\bar{J}_1, \bar{J}_2, ..., \bar{J}_k$, i.e. the sets

$$OR(n,k) = \{ \alpha \in \mathcal{OR}_n \mid \operatorname{rank} \alpha \le k \}$$

with k = 1, ..., n. To avoid ambiguity, we denote by \bar{L}_{α} , \bar{R}_{α} and \bar{H}_{α} the \mathcal{L} -class, \mathcal{R} -class and \mathcal{H} -class, respectively, of an element $\alpha \in \mathcal{OR}_n$. Observe that, for $\alpha \in \mathcal{OP}_n$, the sets $\bar{L}_{\alpha} \cap \mathcal{OP}_n$, $\bar{R}_{\alpha} \cap \mathcal{OP}_n$ and $\bar{H}_{\alpha} \cap \mathcal{OP}_n$ are respectively the \mathcal{L} -class L_{α} , the \mathcal{R} -class R_{α} and the \mathcal{H} -class H_{α} of \mathcal{OP}_n .

Taking the product of two elements of \bar{J}_k , for k = 2, ..., n, as being zero if it falls into OR(n, k-1), a result similar to Lemma 1.1 holds for elements of OR_n .

Lemma 2.1 Let $\alpha, \beta \in \overline{J}_k$, with $k = 1, 2, \ldots, n$. Then

$$\alpha \bar{R}_{\beta} = \begin{cases} \bar{R}_{\alpha\beta} = \bar{R}_{\alpha} & \text{if } \operatorname{im} \alpha \# \operatorname{ker} \beta, \\ 0 & \text{otherwise,} \end{cases} \quad \bar{L}_{\alpha}\beta = \begin{cases} \bar{L}_{\alpha\beta} = \bar{L}_{\beta} & \text{if } \operatorname{im} \alpha \# \operatorname{ker} \beta, \\ 0 & \text{otherwise,} \end{cases}$$
$$\bar{L}_{\alpha}\bar{R}_{\beta} = \begin{cases} \bar{J}_{k} & \text{if } \operatorname{im} \alpha \# \operatorname{ker} \beta, \\ 0 & \text{otherwise} \end{cases} \quad \text{and} \quad \alpha \bar{H}_{\beta} = \bar{H}_{\alpha}\beta = \begin{cases} \bar{H}_{\alpha\beta} & \text{if } \operatorname{im} \alpha \# \operatorname{ker} \beta, \\ 0 & \text{otherwise.} \end{cases}$$

As $\mathcal{OR}_1 = \mathcal{OP}_1$ and $\mathcal{OR}_2 = \mathcal{OP}_2$, in what follows, we consider $n \geq 3$.

Next, recall that a dihedral group \mathcal{D}_n of order 2n can abstractly be defined by the group presentation

$$\langle x, y \mid x^n = y^2 = 1, xy = yx^{-1} \rangle.$$

Let

$$h = \begin{pmatrix} 1 & 2 & \cdots & n-1 & n \\ n & n-1 & \cdots & 2 & 1 \end{pmatrix} \in \overline{J}_n.$$

Hence, we have $\bar{J}_n = \langle g, h \rangle$ and, as $g^n = h^2 = (gh)^2 = 1$, it is easy to see that \bar{J}_n is a dihedral group of order 2*n*. Furthermore, Catarino and Higgins proved:

Proposition 2.2 ([4]) Let $\alpha \in \overline{J}_k$, with k = 3, ..., n. Then $|\overline{H}_{\alpha}| = 2k$. Moreover, if α is an idempotent, then \overline{H}_{α} is a dihedral group of order 2k.

Thus, each \mathcal{H} -class of rank k of \mathcal{OR}_n has k orientation-preserving transformations and k orientation-reversing transformations, for $k \in \{3, \ldots, n\}$.

Notice that, since $\bar{J}_1 = J_1$ and $\bar{J}_2 = J_2$, for $\alpha \in \bar{J}_k$ with k = 1, 2, we have $|\bar{H}_{\alpha}| = k$.

Let us consider again the dihedral group $\mathcal{D}_n = \langle x, y \mid x^n = y^2 = 1, xy = yx^{-1} \rangle$ of order 2*n*. Observe that $\mathcal{D}_n = \{1 = x^0, x, x^2, \dots, x^{n-1}\} \cup \{y, xy, x^2y, \dots, x^{n-1}y\}$. It is easy to show that the subgroups of \mathcal{D}_n are of the form $\langle x^d \rangle$ (a cyclic group of order n/d) and of the form $\langle x^d, x^iy \rangle$ (a dihedral group of order 2n/d), for each positive divisor d of n and each $0 \leq i < d$. It follows that $\langle x \rangle$ and $\langle x^p, x^iy \rangle$, with p a prime divisor of n and $0 \leq i < p$, are the maximal subgroups of \mathcal{D}_n .

Now, for a prime divisor p of n and $0 \le i < p$, consider the dihedral group $V_{p,i} = \langle g^p, g^i h \rangle$ of order 2n/p. Then, the above observation can be rewrote as:

Lemma 2.3 The group $J_n = \langle g \rangle$ and the groups $V_{p,i}$, with p a prime divisor of n and $0 \leq i < p$, are the maximal subgroups of \overline{J}_n .

Next, we recall the following well known result (see [3, 10]).

Proposition 2.4 $\mathcal{OR}_n = \langle u_1, g, h \rangle$.

In fact, more generally, we have:

Proposition 2.5 Let $\alpha \in \overline{J}_{n-1}$, γ an element of J_n of order n and $\beta \in \overline{J}_n \setminus J_n$. Then $\mathcal{OR}_n = \langle \alpha, \gamma, \beta \rangle$.

Proof. If $\alpha \in \overline{J}_{n-1} \cap \mathcal{OP}_n$ then, by Proposition 1.4, we have $\mathcal{OP}_n = \langle \alpha, \gamma \rangle$. If $\alpha \in \overline{J}_{n-1} \setminus \mathcal{OP}_n$ then $\alpha\beta \in \overline{J}_{n-1} \cap \mathcal{OP}_n$ and, again by Proposition 1.4, we obtain $\mathcal{OP}_n = \langle \alpha\beta, \gamma \rangle$. Therefore, $u_1, g \in \langle \alpha, \gamma, \beta \rangle$. As $\beta \in \overline{J}_n \setminus \mathcal{OP}_n$, there exists $i \in \{1, \ldots, n\}$ such that $\beta = \begin{pmatrix} 1 & 2 & \cdots & i-1 & i & \cdots & n-1 & n \\ i-1 & i-2 & \cdots & i-1 & i & \cdots & i+1 & i \end{pmatrix}$. On the other hand, the transformation $\delta = \begin{pmatrix} 1 & 2 & \cdots & i-1 & i & \cdots & n-1 & n \\ n-i+2 & n-i+3 & \cdots & n & 1 & \cdots & n-i & n-i+1 \end{pmatrix}$ is an element of \mathcal{OP}_n and $h = \beta\delta \in \langle \alpha, \gamma, \beta \rangle$. Therefore, by Proposition 2.4, we deduce that $\mathcal{OR}_n = \langle \alpha, \gamma, \beta \rangle$.

We have now all the ingredients to describe the maximal subsemigroups of \mathcal{OR}_n .

Theorem 2.6 A subsemigroup S of the semigroup \mathcal{OR}_n is maximal if and only if $S = OR(n, n-2) \cup \overline{J}_n$ or $S = OR(n, n-1) \cup J_n$ or $S = OR(n, n-1) \cup V_{p,i}$, for some prime divisor p of n and $0 \le i < p$.

Proof. Let S be a maximal subsemigroup of \mathcal{OR}_n . Then, by Proposition 2.5, we have $S = OR(n, n-2) \cup T$, for some $T \subset (\bar{J}_{n-1} \cup \bar{J}_n)$ such that $T \cap \bar{J}_{n-1} = \emptyset$ or T does not contain any element of J_n of order n or $T \cap (\bar{J}_n \setminus J_n) = \emptyset$. In the latter two cases, we must have $\bar{J}_{n-1} \subseteq T$, by the maximality of S. Thus, $S = OR(n, n-1) \cup T'$, for some $T' \subset \bar{J}_n$. Clearly, T' must be a maximal subgroup of \bar{J}_n , whence $S = OR(n, n-1) \cup J_n$ or $S = OR(n, n-1) \cup V_{p,i}$, for some prime divisor p of n and $0 \le i < p$, accordingly with Lemma 2.3. On the other hand, if $T \cap \bar{J}_{n-1} = \emptyset$ then $S \subseteq OR(n, n-2) \cup \bar{J}_n$ and so $S = OR(n, n-2) \cup \bar{J}_n$, by the the maximality of S.

The converse part follows immediately from Proposition 2.5 and Lemma 2.3.

From now on we consider the ideals OR(n,k) of OR_n , for $k \in \{1, \ldots, n-1\}$. Since OR(n,1) = OP(n,1)and OR(n,2) = OP(n,2), in what follows, we take $k \ge 3$.

Notice that, as $\alpha h \in OP(n,k)$, for all $\alpha \in OR(n,k) \setminus OP(n,k)$, by using Lemma 1.7, it is easy to conclude:

Lemma 2.7 $OR(n,k) = \langle \bar{J}_k \rangle.$

In fact, moreover, we have:

Proposition 2.8 $OR(n,k) = \langle J_k, \alpha \rangle$, for all $\alpha \in \overline{J}_k \setminus J_k$.

Proof. Let $\alpha \in \bar{J}_k \setminus J_k$ and take an idempotent $\varepsilon \in \bar{L}_\alpha$. Since $\operatorname{im} \alpha = \operatorname{im} \varepsilon \# \operatorname{ker} \varepsilon$, we have $\alpha \bar{R}_\varepsilon = \bar{R}_\alpha$, by Lemma 2.1. Hence, $\alpha(\bar{R}_\varepsilon \cap J_k) = \bar{R}_\alpha \setminus J_k$ and so $\bar{R}_\alpha = (\bar{R}_\alpha \cap J_k) \cup (\bar{R}_\alpha \setminus J_k) = (\bar{R}_\alpha \cap J_k) \cup \alpha(\bar{R}_\varepsilon \cap J_k) \subseteq \langle J_k, \alpha \rangle$.

Now, let ε' be an idempotent of \bar{R}_{α} and take $\alpha' \in \bar{H}_{\varepsilon'} \setminus J_k$. Notice that $\alpha' \in \langle J_k, \alpha \rangle$. As $\operatorname{im} \varepsilon' \# \ker \varepsilon' = \ker \alpha'$, we have $\bar{L}_{\varepsilon'} \alpha' = \bar{L}_{\alpha'} = \bar{L}_{\varepsilon'}$, by Lemma 2.1. Thus $(\bar{L}_{\varepsilon'} \cap J_k) \alpha' = \bar{L}_{\varepsilon'} \setminus J_k$, whence $\bar{L}_{\varepsilon'} = (\bar{L}_{\varepsilon'} \cap J_k) \cup (\bar{L}_{\varepsilon'} \setminus J_k) = (\bar{L}_{\varepsilon'} \cap J_k) \cup (\bar{L}_{\varepsilon'} \cap J_k) \alpha' \subseteq \langle J_k, \alpha \rangle$.

Finally, as $\operatorname{im} \varepsilon' \# \operatorname{ker} \varepsilon' = \operatorname{ker} \alpha$, we have $\overline{L}_{\varepsilon'} \overline{R}_{\alpha} = \overline{J}_k$, again by Lemma 2.1. Therefore, $\overline{J}_k \subseteq \langle J_k, \alpha \rangle$ and so, by Lemma 2.7, $OR(n,k) = \langle J_k, \alpha \rangle$, as required.

As an immediate consequence of Proposition 2.8, we have:

Corollary 2.9 $OR(n, k-1) \cup J_k$ is a maximal subsemigroup of OR(n, k).

Also, combining Proposition 2.8 with Corollary 1.9, we have:

Corollary 2.10 $OR(n,k) = \langle E(J_k), \alpha \rangle$, for all $\alpha \in \overline{J}_k \setminus J_k$.

Before we present our description of the maximal subsemigroups of the ideals of \mathcal{OR}_n , we prove the following result:

Proposition 2.11 Let S be a maximal subsemigroup of OR(n,k) containing at least one orientation-reversing transformation of rank k. Then $S = \bigcup \{\bar{H}_{\alpha} \mid \alpha \in S \cap \mathcal{OP}_n\}$.

Proof. Let $\alpha \in S$. As clearly $OR(n, k - 1) \subseteq S$, it suffices to consider $\alpha \in \overline{J}_k$. Take $\beta \in \overline{H}_\alpha$ and suppose that $\beta \notin S$. Hence, by the maximality of S, we have $OR(n, k) = \langle S, \beta \rangle$. Let $\tau \in \overline{J}_k \setminus S$. Then, there exist $t \geq 0, r_0, r_1, \ldots, r_t \geq 0$ and $\alpha_1, \ldots, \alpha_t \in S$ such that $\tau = \beta^{r_0} \alpha_1 \beta^{r_1} \alpha_2 \cdots \beta^{r_{t-1}} \alpha_t \beta^{r_t}$. As $\alpha \mathcal{H}\beta$, it follow that $\tau' = \alpha^{r_0} \alpha_1 \alpha^{r_1} \alpha_2 \cdots \alpha^{r_{t-1}} \alpha_t \alpha^{r_t} \mathcal{H}\tau$. Furthermore, $\tau' \in S$. Thus, for all $\tau \in \overline{J}_k$, $\overline{H}_\tau \cap S \neq \emptyset$, from which it follows that $E(J_k) \subseteq S$. Since S also contains an orientation-reversing transformation of rank k, by Corollary 2.10, we have S = OR(n, k), a contradiction. Therefore $\overline{H}_\alpha \subseteq S$. This shows that $\overline{H}_\alpha \subseteq S$ for all $\alpha \in S$, i.e. $\bigcup \{\overline{H}_\alpha \mid \alpha \in S\} \subseteq S$ and thus $\bigcup \{\overline{H}_\alpha \mid \alpha \in S\} = S$. Since each \mathcal{H} -class of \mathcal{OR}_n contains an orientationpreserving transformation, we obtain $S = \bigcup \{\overline{H}_\alpha \mid \alpha \in S \cap \mathcal{OP}_n\}$, as required.

In general, if S' is a subsemigroup of OP(n, k) containing OP(n, k-1), then (using an argument similar to that considered in the proof of Lemma 1.11) it is easy to show that $S = \bigcup \{\bar{H}_{\alpha} \mid \alpha \in S'\}$ is a subsemigroup of OR(n, k). Furthermore, if $S' \subsetneq OP(n, k)$ then S is also a proper subsemigroup of OR(n, k). In fact, in this case, by Corollary 1.9, there exists $\varepsilon \in E(J_k)$ such that $\varepsilon \notin S'$. It follows that $\bar{H}_{\varepsilon} \cap S' = \emptyset$ and so also $\varepsilon \notin S$.

Finally, we have:

Theorem 2.12 Let $n \ge 4$ and $3 \le k \le n-1$. Then, a subsemigroup S of OR(n,k) is maximal if and only if $S = OR(n, k-1) \cup J_k$ or $S = \bigcup \{\overline{H}_{\alpha} \mid \alpha \in S'\}$, for some maximal subsemigroup S' of OP(n,k).

Proof. First, let S be a maximal subsemigroup of OR(n,k) and admit that $S \neq OR(n,k-1) \cup J_k$. Then S must contain an orientation-reversing transformation of rank k and so $S = \bigcup \{\bar{H}_{\alpha} \mid \alpha \in S \cap \mathcal{OP}_n\}$, by Proposition 2.11. Clearly, $S \cap \mathcal{OP}_n$ is a proper subsemigroup of OP(n,k), whence there exists a maximal subsemigroup S' of OP(n,k) such that $S \cap \mathcal{OP}_n \subseteq S'$. Then, by the above observation, $\bigcup \{\bar{H}_{\alpha} \mid \alpha \in S'\}$ is a proper subsemigroup of OR(n,k) and, as it contains S, it follows that $S = \bigcup \{\bar{H}_{\alpha} \mid \alpha \in S'\}$, by the maximality of S.

Conversely, if $S = OR(n, k - 1) \cup J_k$, then S is a maximal subsemigroup of OR(n, k), by Corollary 2.9. Hence, let us admit that $S = \bigcup \{\bar{H}_{\alpha} \mid \alpha \in S'\}$, for some maximal subsemigroup S' of OP(n, k). Then, by the above observation, S is a proper subsemigroup of OR(n, k). Moreover, S must contain an orientation-reversing transformation of rank k. Let \hat{S} be a maximal subsemigroup of OR(n, k) such that $S \subseteq \hat{S}$. Then \hat{S} also contains an orientation-reversing transformation of rank k and so, by Proposition 2.11, $\hat{S} = \bigcup \{\bar{H}_{\alpha} \mid \alpha \in \hat{S} \cap \mathcal{OP}_n\}$. On the other hand, $S' \subseteq S \cap \mathcal{OP}_n \subseteq \hat{S} \cap \mathcal{OP}_n \subseteq OP(n, k)$, whence $S' = S \cap \mathcal{OP}_n$, by the maximality of S'. It follows that $S = \hat{S}$ and thus S is a maximal subsemigroup of OR(n, k), as required.

References

- Aĭzenštat, A.Ja., Defining Relations of the Semigroup of Endomorphisms of a Finite Linearly Ordered Set, Sibirsk. Matem. Žurn., 3 (1962), 161–169.
- [2] Arthur, R.E., N. Ruškuc, Presentations for two extensions of the monoid of order-preserving mappings on a finite chain, Southeast Asian Bull. Math., 24 (2000), 1–7.
- [3] Catarino, P.M., Monoids of orientation-preserving transformations of a finite chain and their presentations, in: J.M. Howie, N. Ruškuc (Eds.), Semigroups and Applications, World Scientific, (1998), 39–46.
- [4] Catarino, P.M., P.M. Higgins, The monoid of orientation-preserving mappings on a chain, Semigroup Forum, 58 (1999), 190–206.
- [5] Dimitrova, I., J. Koppitz, On the Maximal Subsemigroups of Some Transformation Semigroups, Asian-European Journal of Mathematics, Vol. 1 No 2 (2008), 189–202.
- [6] Fernandes, V.H., G.M.S. Gomes, M.M. Jesus, Congruences on monoids of transformations preserving the orientation on a finite chain, Journal of Algebra, 321 (2009), 743–757.
- [7] Garba, G.U., On the idempotent ranks of certain semigroups of order-preserving transformations, Portugaliae Mathematica 51 (1994), 185–204.
- [8] Gomes, G.M.S., J.M. Howie, On the Rank of Certain Semigroups of Order-preserving Transformations, Semigroup Forum, 51 (1992), 275–282.
- Howie, J.M., Products of Idempotents in Certain Semigroups of Transformations, Proc. Edinburgh Math. Soc., 17 (1971), 223–236.
- [10] McAlister, D., Semigroups generated by a group and an idempotent, Communications in Algebra, 26 (1998), 515–547.
- [11] Yang, H., X. Yang, Maximal Subsemigroups of Finite Transformation Semigroups K(n, r), Acta Mathematica Sinica, English Series, 20(3), (2004), 475–482.
- [12] Yang, X., A Classification of Maximal Subsemigroups of Finite Order-Preserving Transformation Semigroups, Communications in Algebra, 28 (2000), 1503–1513.
- [13] Zhao, P., X. Bo, Y. Mei, Locally Maximal Idempotent-Generated Subsemigroups of Singular Orientationpreserving Transformation Semigroups, Semigroup Forum, 77 (2008), 187–195.