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Abstract In this work near-exact distributions for the likelihood ratio test (l.r.t.)
statistic to test the one sample block-matrix sphericity hypothesis are developed
under the assumption of multivariate normality. Using a decomposition of the null
hypothesis in two null hypotheses, one for testing the independence of thek groups
of variables and the other one for testing the equality of thek block diagonal ma-
trices of the covariance matrix, we are able to derive the expressions of the l.r.t.
statistic, itsh-th null moment, and the characteristic function (c.f.) of its negative
logarithm. The decomposition of the null hypothesis induces a factorization on the
c.f. of the negative logarithm of the l.r.t. statistic that enables us to obtain near-exact
distributions for the l.r.t. statistic. Numerical studiesusing a measure based on the
exact and approximating c.f.’s are developed. This measureis an upper bound on the
distance between the exact and approximating distributionfunctions and it is used
to assess the performance of the near-exact distributions and to compare these with
the Box type asymptotic approximation in [3].

1 Introduction

The one sample block-matrix sphericity test is of great interest when we wish to
test, under multivariate normality, if in a sequence ofp random variables (r.v.’s)
X1, . . . ,Xp we havek independent groups ofp∗ variables and if all of thek covari-
ance matrices are equal. We show that we can split the null hypothesis of the block-
matrix test in two null hypotheses, one for testing the independence among thek
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of groups of variables and the other one for testing the equality of the k covariance
matrices.The exact distribution of the likelihood ratio test (l.r.t.) statistic has a very
complicated expression which makes its use very difficult inpractice. Therefore the
development of easy to use and yet highly accurate approximations becomes a good
target. Our aim is to show that, based on a the decomposition of the null hypothesis
of the one sample block-matrix sphericity, we are able to derive the expressions of
the l.r.t statistic and also of itsh-th null moment, and the characteristic function (c.f.)
of its negative logarithm. The factorization induced on thec.f. of the logarithm of the
l.r.t. statistic, by the decomposition of the null hypothesis, together with the results
in [7] and [6] will allow us to develop very accurate near-exact distributions for the
l.r.t statistic (see also [8]). In [4] the exact null distribution of the l.r.t. statistic when
k = 2 is obtained using the inverse Mellin transform and the Meijer G-function what
renders the quantile computations too hard even for small values ofp∗, reinforcing
the need for good manageable approximations. In [3] the authors present an asymp-
totic approximation based on Box’s method (see [2]) which wewill use to compare
with the new approximations proposed.

2 The decomposition of the test null hypothesis

Let us consider a sample of sizeN taken from ap-variate normal population
Np(µ , Σ). We intend to test the following null hypothesis

H0 : Σ =








∆ 0 . . . 0
0 ∆ . . . 0
...

...
.. .

...
0 0 . . . ∆








(

= Ik⊗∆
)

, (∆ not specified) (1)

where∆ is of orderp∗, with p = kp∗.
The null hypothesis in (1) may be decomposed in two null hypotheses, more

precisely
H0 = H0b|0a◦H0a (2)

where, for

Σ =








Σ11 Σ12 . . . Σ1k

Σ21 Σ22 . . . Σ2k
...

...
.. .

...
Σk1 Σk2 . . . Σkk








, (3)

we have
H0a : Σ = bdiag(Σ11,Σ22, . . . ,Σkk) , (4)

the null hypothesis to test the independence among thek groups ofp∗ variables and
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H0b|0a : Σ11 = Σ22 = . . . = Σkk(= ∆) , (∆ not specified)

assumingH0a true
(5)

the null hypothesis to test the equality of thek covariance matrices of orderp∗ .

3 The l.r.t. statistic, λ ∗, and theh-th null moment of λ ∗

The expressions of the l.r.t statistics,λ ∗
a andλ ∗

b|a, to test the null hypotheses in (4)
and(5) respectively are given by (see [1])

λ ∗
a =

|A|n/2

k
∏
j=1

|A j j |n/2

and λ ∗
b|a =

(kn)knp∗/2

k
∏
j=1

np∗n/2

k
∏
j=1

∣
∣A j j

∣
∣n/2

|A∗|nk/2
(6)

wheren= N−1,A=
N
∑

i=1

(
Xi −X

)(
Xi −X

)′
, A j j is the j-th diagonal matrix of order

p∗ of A andA∗ = A11+ . . .+Akk. Using the decomposition in (2) we may obtain the
expression for the l.r.t. statistic,λ ∗, to testH0 in (1) as the product of the expressions
of the l.r.t. statistics in (6) (see Lemma 10.3.1 in [1])

λ ∗ = λ ∗
a λ ∗

b|a =
|A|n/2

∣
∣
∣
∣
∣

1
k

k
∑
j=1

A j j

∣
∣
∣
∣
∣

nk/2
. (7)

Given the independence of the l.r.t. statistics,λ ∗
a andλ ∗

b|a, in (6), underH0 in (1),
the expression of theh-th null moment ofλ ∗ may be obtained as the product of the
expressions of theh-th null moments ofλ ∗

a andλ ∗
b|a (see [1]), therefore

E
[

(λ ∗)h
]

= E

[(

λ ∗
b|aλ ∗

a

)h
]

= E

[(

λ ∗
b|a

)h
]

×E
[

(λ ∗
a )h
]

=
(nk)nkp∗h/2

k
∏
j=1

np∗nh/2

Γp∗
(

nk
2

)

Γp∗
(

nk
2 (1+h)

)

k

∏
j=1

Γp∗
(

n
2(1+h)

)

Γp∗
(

n
2

) (8)

×
Γp∗k(

1
2n+ 1

2hn)

Γp∗k(
1
2n)

k

∏
i=1

Γp∗
(

n
2

)

Γp∗
(

n
2(1+h)

) (9)

= k
1
2 p∗knh

p∗k

∏
j=1

Γ
(

1
2(n+nh− j +1)

)

Γ
(

1
2(n− j +1)

)

p∗

∏
i=1

Γ
(

1
2(nk− i +1)

)

Γ
(

1
2(nk+nkh− i +1)

) .
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4 The c.f. ofW = − logλ ∗

The expression of the c.f. of the r.v.W = − logλ ∗ may be derived from the expres-
sion of theh-th null moment ofλ ∗, noticing thatE

(
eitW

)
= E

(
(λ ∗)−it

)

ΦW(t) = k−
1
2 p∗knit

p∗k

∏
j=1

Γ
(

1
2(n−nit − j +1)

)

Γ
(

1
2(n− j +1)

)

p∗

∏
j=1

Γ
(

1
2(nk− j +1)

)

Γ
(

1
2(nk−nkit − j +1)

) .

If we consider the decomposition in (8) and (9) we may rewritethe c.f. ofW as the
product of the c.f’s ofW1 = − logλ ∗

a andW2 = − logλ ∗
b|a

ΦW(t) =
Γp∗k(

1
2n− 1

2 itn)

Γp∗k(
1
2n)

k

∏
i=1

Γp∗
(

n
2

)

Γp∗
(

n
2(1− it)

)

︸ ︷︷ ︸

ΦW1(t)

(10)

×
(nk)−nkp∗it/2

k
∏
j=1

n−p∗nit/2

Γp∗
(

nk
2

)

Γp∗
(

nk
2 (1− it)

)

k

∏
j=1

Γp∗
(

n
2(1− it)

)

Γp∗
(

n
2

)

︸ ︷︷ ︸

ΦW2(t)

. (11)

4.1 Factorizations of the c.f.’s of W1 = − logλ ∗
a and W2 = − logλ ∗

b|a

With the final goal of developing near-exact distributions for the l.r.t. statistic,λ ∗,
in (7) (see Subsection 5) we will use factorizations of the c.f.’s of W1 =− logλ ∗

a and
W2 = − logλ ∗

b|a. These factorizations, already obtained in [6] and [7], show that the
exact distribution of bothW1 andW2 may be represented in the form of the sum of
two independent r.v.’s, one with a Generalized Integer Gamma (GIG) distribution
(see [5]) and the other one with the distribution of the sum ofindependent Logbeta
distributions, eventually multiplied by a constant. Thesesimilarities in the structure
of the c.f.’s ofW1 andW2 will be of great use to achieve our goal.

4.1.1 The c.f. ofW1 = − logλ ∗
a

In [6] the author shows a possible factorization for the c.f.of W1 = − logλ ∗
a , in the

form

ΦW1(t) =
p−1

∏
j=2

(
n− j

n

)r∗j
(

n− j
n

− it

)−r∗j

︸ ︷︷ ︸

Φ1,1(t)

{

Γ
(

n
2

)
Γ
(

n
2 −

1
2 −

n
2 it
)

Γ
(

n
2 −

n
2 it
)

Γ
(

n
2 −

1
2

)

}m∗

︸ ︷︷ ︸

Φ1,2(t)

(12)
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with m∗ = k if p∗ is odd andm∗ = 0 if p∗ is even; the parametersr∗j are the parame-
tersr j given by expressions (A.3) and (A.4) in [9]. The c.f.Φ1,1(t) is the c.f. of the
sum ofp−2 r.v.’s with Gamma distribution, with integers shape parameters,r∗j , and

with rates parametersn− j
n ( j = 2, . . . , p−1), that is, the c.f. of a GIG distribution

with depthp−2. The c.f.Φ1,2(t) is the c.f. of the sum ofm∗ independent r.v.’s with
Logbeta distribution multiplied byn2 and with parametersn2 −

1
2 and n

2.

4.1.2 The c.f. ofW2 = − logλ ∗
b|a

In [7] the authors derive the following factorization for the c.f. ofΦW2(t)

ΦW2
(t)=

p−1

∏
j=1

(
n− j

n

)r j
(

n− j
n

− it

)−r j

︸ ︷︷ ︸

Φ2,1(t)

×
⌊p/2⌋

∏
j=1

q

∏
k=1

Γ (a j +b jk)

Γ (a j +b∗jk)

Γ (a j +b∗jk−nit)

Γ (a j +b jk−nit)

×

(
q

∏
k=1

Γ (ap+bpk)

Γ (ap+b∗pk)

Γ (ap+b∗pk−
n
2 it)

Γ
(
ap+bpk−

n
2 it
)

)p⊥⊥2

︸ ︷︷ ︸

Φ2,2(t)

(13)

wherea j , b jk, b∗jk, ap, bpk andbpk∗ are given in (3.1) and (3.2) in [7],r j are given in
expressions (3.3)-(3.5) also in [7] and where

p⊥⊥ 2 =

⌊
p+1

2

⌋

−
⌊ p

2

⌋

=

{
0 , for p even
1 , for p odd

.

The c.f.Φ2,1(t) is the c.f. of the sum ofp−1 r.v.’s with Gamma distribution, with
integers shape parameters,r j , and with rates parametersn− j

n ( j = 1, . . . , p−1), that
is, the c.f. of a GIG distribution with depthp−1. The c.f.Φ2,2(t) is the c.f. of the
sum of⌊p/2⌋×q+q× p⊥⊥ 2 independent r.v.’s with Logbeta distribution, the first
⌊p/2⌋×q ones multiplied byn and the remaining ones byn2.

5 Near-exact distributions forW and λ ∗

Using the similarities observed on the factorizations of the c.f.’s ofW1 eW2 given in
Subsection 4.1 we may now rewrite the c.f. ofW = − logλ ∗.

Theorem 1.The c.f. of W= − logλ ∗ may be represented in the form
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ΦW(t) =
p−1

∏
j=1

(
n− j

n

)υ j
(

n− j
n

− it

)−υ j

︸ ︷︷ ︸

ΦW∗
1

(t)

Φ1,2(t) × Φ2,2(t)
︸ ︷︷ ︸

ΦW∗
2

(t)

(14)

with Φ1,2(t) andΦ2,2(t) given respectively in(12)and(13)and whereυ j are given
by

υ j =

{
r j j = 1
r j + r∗j j = 2, . . . , p−1,

(15)

with r∗j equal to the parameters rj given by expressions (A.3) and (A.4) in [9] and
r j given in expressions (3.3)-(3.5) in [7].

The near-exact c.f.’s will thus have the form

ΦW∗
1
(t)

︸ ︷︷ ︸

GIG distribution

×Φne(t) (16)

whereΦW∗
1
(t) is given by (14) andΦne(t) is the c.f. that we will use to approximate

the c.f.ΦW∗
2
(t) in (14). Since a Logbeta distribution is indeed an infinite mixture of

Gamma distributions, we proposeΦne(t) to be the c.f. of a single Gamma r.v. or a
mixture of 2 or 3 Gamma r.v.’s. The parameters inΦne(t) are evaluated so that we
can ensure thatΦW∗

2
(t) andΦne(t) have the same first 2, 4 or 6 derivatives att = 0,

that is, we want to ensure the exact and the approximating distributions to have the
same first 2, 4 or 6 moments. Thus, we will have

Φne(t) =
h/2

∑
ℓ=1

θℓ µδℓ(µ − it)−δℓ (17)

with weightsθℓ > 0 (ℓ = 1, . . . ,h/2 with h = 2, 4 or 6) and∑h/2
ℓ=1 θℓ = 1, and with

d j

dt j ΦW∗
2
(t)

∣
∣
∣
∣
t=0

=
d j

dt j Φne(t)

∣
∣
∣
∣
t=0

, j = 1, . . . ,h (18)

for h = 2,4 or 6, depending onΦne(t) being the c.f. of a single r.v. or a mixture
of 2 or 3 Gamma r.v.’s with the same rate parameters. Using this approach we ob-
tain, for h = 2, as near-exact distribution forW a single Generalized Near-Integer
Gamma (GNIG) distribution (see [6]) or, forh = 4 or 6, a mixture of 2 or 3GNIG
distributions. By simple transformation it is easy to obtain near-exact distributions
for λ ∗.

Theorem 2.The near-exact distributions forλ ∗ are either a exponential GNIG dis-
tribution or a mixture of 2 or 3 exponential GNIG distributions of depth p and for
h = 2,4 or 6with p.d.f. forλ ∗ given by (using the notation of Appendix B in [9])

h/2

∑
ℓ=1

θℓ f GNIG
(

− logw|υ1, . . . ,υp−1,δℓ ;
n−1

n
, . . . ,

n− p+1
n

,µ ; p
) 1

w



The block-matrix sphericity test – exact and near-exact distributions for the test statistic 7

and c.d.f given by

1−
h/2

∑
ℓ=1

θℓ F GNIG
(

− logw|υ1, . . . ,υp−1,δℓ ;
n−1

n
, . . . ,

n− p+1
n

,µ ; p
)

with υ1, . . . ,υp−1 given in(15), and where, for h= 2,4 or 6, the parametersθℓ, δℓ

andµ are obtained as the numerical solution of the system of equations in(18), with

θh/2 = 1−∑h/2−1
ℓ=1 θℓ .

6 Numerical studies

To assess the closeness of the near-exact distributions to the exact distribution we
will use the measure

∆ =
∫ +∞

−∞

∣
∣
∣
∣

ΦW(t)−Φapp(t)

t

∣
∣
∣
∣
dt ,

whereΦW(t) andΦapp(t) represent respectively the exact and the approximate c.f.
of the r.v.W = − log λ ∗. For further details on this measure see [7]. We will denote
by GNIG, M2GNIG andM3GNIG the near-exact distributions corresponding, re-
spectively, to a GNIG or to a mixture of 2 or 3 GNIG distributions and byBox the
asymptotic approximation in [3].

Table 1 Values of∆ for the approximating distributions forW=− logλ ∗

p p∗ k n GNIG M2GNIG M3GNIG Box

9 3 3 11 4.5×10−6 3.6×10−9 4.0×10−12 5.8×10−2

12 3 4 14 1.2×10−6 4.3×10−10 2.9×10−13 1.2×10−1

15 3 5 17 4.3×10−7 8.2×10−11 3.8×10−14 2.1×10−1

21 3 7 23 8.3×10−8 1.7×10−12 9.0×10−16 4.1×10−1

27 3 9 29 2.5×10−8 6.3×10−13 5.2×10−17 6.4×10−1

Table 2 Values of∆ for the approximating distributions forW=− logλ ∗

p p∗ k n GNIG M2GNIG M3GNIG Box

8 4 2 10 3.1×10−6 2.9×10−10 9.1×10−13 3.3×10−2

8 4 2 50 2.1×10−7 6.9×10−13 1.8×10−14 3.2×10−5

8 4 2 100 5.5×10−8 4.3×10−14 3.2×10−18 3.3×10−6

From Tables 1, 2 and 3 we may observe not only the very good asymptotic prop-
erties of the near-exact distributions proposed for increasing values ofn and p but
also the very good results of the measure∆ for the near-exact distributions, specially
when compared with the ones presented by the asymptotic approximation denoted
by Boxand given in [3].
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Table 3 Values of∆ for the approximating distributions forW=− logλ ∗

p p∗ k n GNIG M2GNIG M3GNIG Box

9 3 3 11 4.5×10−6 3.6×10−9 4.0×10−12 5.8×10−2

9 3 3 50 4.6×10−7 2.7×10−11 1.2×10−14 9.0×10−5

9 3 3 100 1.2×10−7 2.0×10−12 1.5×10−15 9.2×10−6

7 Conclusions

We have shown that, based on a the decomposition of the null hypothesis of the one
sample block-matrix sphericity, we may derive the expressions of the l.r.t statistic, its
h-th null moment, and also of the c.f. of its logarithm. This decomposition induces a
factorization on the c.f. of the l.r.t. statistic which together with the results obtained
in [7] and [6] allow us to develop very accurate near-exact distributions for the l.r.t
statistic and for the logarithm of the l.r.t. statistic. These near-exact distributions
are very accurate approximations and reveal at the same timevery good asymptotic
properties.
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