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Abstract

Multiple-scale homogenization problems are treated in the space BV of functions of bounded variation, using
the notion of multiple-scale convergence developed in [30]. In the case of one microscale Amar’s result [3] is

recovered under more general conditions; for two or more microscales new results are obtained.
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1. Introduction and Main Results

Here we are concerned with the description of the macroscopic behavior of a microscopically heterogeneous
system. Several approaches have been proposed to handle the minimization of oscillating functionals,
such as the method of asymptotic expansions, G-convergence, H-convergence, I'-convergence and two-scale
convergence (we refer to [1] and references therein). In the case in which the microscopic properties of the
system are periodic, the method of two-scale convergence has proven to be particularly successful. It was
introduced by Nguetseng [37], and further developed by Allaire [1] and by Allaire and Briane [2], and it
provides a mathematical rigorous justification for the formal asymptotic expansions that were commonly
used in the study of homogenization problems (see [10], [34] and [40]).

In [3] Amar extended the notion of two-scale convergence to the case of bounded sequences of Radon measures
with finite total variation, which was then used to study the asymptotic behavior of sequences of positively 1-
homogeneous and periodically oscillating functionals with linear growth, defined in the space BV of functions
of bounded variation. Precisely, the following result is given in [3].

Theorem A (cf. [3, Thm. 4.1]). Let Q C RY be an open and bounded set with ) Lipschitz, let Q := [0, 1]",
and let f : RY x RN — [0,00) be a function such that

(A1) for all ¢ € RN, f(-,€) is continuous and Q-periodic;
(A2) for ally € Q, f(y,-) is convex, positively 1-homogeneous, and of class C* (RN \{0});
(A3) there exists a constant C' > 0 such that for ally € Y, £ € RN, L|¢] < f(y,€) < C|¢].
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For each e > 0, let I. : BV(§)) — R be the functional defined by

1w = [ £(Z giper@) diDule) + [ o) —ule)a.

where v € LN/N=1(Q), p € (1, N/(N —1)] if N > 1, and p € (1,00) if N = 1, and dDu/d||Dul| represents
the Radon—Nikodym derivative of Du with respect to its total variation ||Du|. Then for each € > 0, there
exists a unique u. € BV (Q) such that

I.(u.)= min I.(w)= inf {/Qf(g,Vw(xD da + /Q\v(:c) —w(x)[? d:c}.

weBV(Q) weWL1(Q)

Moreover, there exist v € BV () and p € M(Q;BV#(Q))T such that {u.}eso weakly-x converges to u
in BV(Q) as e — 0% and, up to a subsequence, {Du.}.~o two-scale converges to the measure on € x Q,

Aup = Dudy + Dyp as € — O*TT. Furthermore,

lim L(uc) = dnf o Tw,w) = I (u, )
& VEM(Q;BV4(Y))

where I°¢ is the two-scaled homogenized functional defined for w € BV (Q) and v € M(Q; BV4(Q)) by
dAy,

reww)= [ (g @) el @ ) + [ —u@p

Finally, in the minimizing pair (u, p) the function u € BV (Q) is uniquely determined.

The proof of Theorem A is based on the so-called two-scale convergence method, which has the virtue
of taking full advantage of the periodic microscopic properties of the media, enabling the explicit
characterization of the local behavior of the system: The asymptotic behavior as ¢ — 0T of the energies
F. and of the respective minimizers u. is given with regard to both macroscopic and microscopic levels,
through the two space variables x (the macroscopic one) and y (the microscopic one), and through the
two unknowns u and p. The next step of the two-scale convergence method is to obtain the effective or
homogenized problem, that is, the limit problem only involving the macroscopic space variable x, and which
has as solution the function a(x) := fQ u(x,y) dy. This is usually done via an average process with respect
to the “fast variable” y of the two-scale homogenized problem.

For the class of functions f considered by Amar [3], Theorem A provides an alternative characterization of
the homogenized problem previously obtained by Bouchitté [12], [13], and summarizes as follows:
Theorem B (cf. [12, Thm. 2.1]). Let © C RY be an open and bounded set, let Y := (0,1)Y, and let
f:RY xRN — R be a function such that

(B1) for all ¢ € RN, f(-,€) is measurable and Y -periodic;

(B2) for ally €Y, f(y,-) is convex;

(B3) there exists a constant C' > 0 such that for ally € Y, £ e RN, L[¢| = C < f(y, &) < C(1 + [¢]).
For each e > 0, let F. : L*(Q) — (—o00, 00| be the functional defined by

F.(u) := {/Qf(g,Vu(x)) de ifu e WhHi(Q),

00 otherwise.

T Here, and in the sequel, the subscript # stands for Q1 X - -+ X Qp-periodic functions (or measures), n € N, with respect to the
variables (y1, -+, yn), where each Q;, i € N, is a copy of Q. We refer the reader to Section 2 for the notations used throughout
this paper.

-H- We will give a precise meaning for this statement further below.
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Then, the sequence of functionals {F.}.~o -converges as ¢ — 0% with respect to the strong topology of
LY(Q) to the functional Fy : L*(2) — (—o0, oc] given by

Fy(u) = Fu) ifuec BV(Q),
O 00 otherwise,

where, for u € BV (),

0 = [ fron(Fue) de+ [ (ron)® (g @) dIDul@),
with ;
from (€) = inf { /Y Fly. £+ Vi(y) dy: v e W;’I(Y)} (from)>(€) := lim fhmf(g)

and Du = VULNLQ + D*u is the Radon-Nikodym decomposition of Du with respect to the N-dimensional
Lebesgue measure LV .

We recall (see [24]) that {F.}.~o [-converges, as ¢ — 07 and with respect to the strong topology of L!(Q),
to the functional Fy if for all u € L*(Q),

Fo(u) =T — liminf F.(u) =T — limsup F.(u),

e—07F e—0t

where
I — liminf F.(u) := inf{lim(i)rlfFE(us): u. € LY(Q), ue — u in Ll(Q)},

e—0t e—

I’ — limsup F(u) := inf { limsup F-(us): ue € LY(), ue — u in Ll(Q)}.
e—0t e—0+

Moreover, under the coercivity condition in (B3), if we consider the analogous functional I. of [3], i.e., the

functional I.(u) := F.(u) + [o|v — ul[P da, for u € L'(£2), where F. is as in Theorem B, and v and p are as

in Theorem A, then, assuming 02 Lipschitz and using the continuous injection of BV () in LP(2),

lim inf IL(w)= li inf IL(w)= min Iy(w)= min I"
ei%l+welfl(sz) () siIg)lereV%/qvl(Q) e(w) wen%llr(lﬂ) o(w) we%lgl(sz) (w),

where Io(w) := Fo(w) + [, v — w[P dz, I"(w) := F*(w) + [,|v — w|P dz, and Fy and F" were introduced in
Theorem B. In particular, if f satisfies conditions (A1), (A2) and (A3), then I"(u) = I*°(u, p), where I
and (u, p) € BV (2) x M(Q; BV4(Y')) are as in the statement of Theorem A.

The proof of Theorem B relies on integral functionals of measures and their formulation by duality, while,
as we mentioned before, the proof of Theorem A is based on the two-scale convergence method and is very
similar to that of [1, Thm. 3.3] in which the subdifferentiability of f and the regularity and boundedness of
Ve f play a crucial role. In particular, the arguments used in [3] do not apply neither under weaker regularity
hypotheses than those in (A2) nor under more general linear estimates from above and from below than
those in (A3).

Some questions then naturally arise: Is it possible to derive the two-scale homogenized functional under
weaker hypotheses than those considered in [3]7 May we establish the relation between the two-scale
homogenized functional I*¢ and the homogenized functional ™™ in a systematic and direct way? How
to generalize this analysis to the case of multiple microscales? And to the vectorial case? The goal of this
paper is precisely to give answers to these questions.

We start by recalling the notion of (n 4 1)-convergence for sequences of Radon measures introduced in [3]
for n = 1, and generalized in [30] for any n € N. Let d,m,n,N € N, let Q C R" be an open set, and
set Y := (0,1)N. Let g1,..., 0n be positive functions on (0, 00) such that for all i € {1,---,n} and for all
je {2,"',7’L},

. . 0(€)
lim g;(g) = 0, 1 0. 1.1
E—l>%l+ e (E) 5—1>%1+ ijl(E) ( )
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Definition 1.1. Let {{ic}es0 C M(;R™) be a sequence of Radon measures with finite total variation on
0. We say that {p:}eso (n+ 1)-scale converges to a Radon measure jiy € (C’O(Q; Cu(Yr x - xYy; Rm)))' ~
My (2 x Y7 x -+ x Y,; R™) with finite total variation in the product space 2 x Y1 x --- x Y,,, where each
Y; is a copy of Y, if for all ¢ € Cy(2; C (Y1 x --- x Y,,;; R™)) we have

X X
lim @(ﬁ,,,)dﬂ (I’):/ @(xayla7yn)d:u0(xaylaayn)a
e—=0T Jq 91(5) Qn(g) ) QXY X XYy,

in which case we write ﬂs%ﬂ@

This notion of convergence is justified by a compactness result, which asserts that every bounded sequence
in M(2;R™) admits a (n + 1)-scale converging subsequence (see [30, Thm 3.2]). The (usual) weak-x limit
in M(Q;R™) is the projection on § of the (n 4 1)-scale limit, and so the latter captures more information
on the oscillatory behavior of a bounded sequence in M(;R™) than the former (see [30, Prop. 3.3]). This
leads us to the study of the asymptotic behavior with respect to the (n + 1)-scale convergence of first order
derivatives functionals with linear growth of the form

Fo(u) = /Qf(gli(e),...vQ%@,Vu(x))dx—&—/ng(’o(gla(ca),...’Qnazg),dﬁgjzl(x)>d||psu||(x) (1.2)

for u € BV(Q;RY), where

Fo(yns o yn, €) 1= hmsupw

t—oo t

is the recession function of a real valued function f : R™Y x RN — R, separately periodic in the first n
variables.

We start by characterizing the (n + 1)-scale limits of { (u-L"|q, Du. LQ)}€>O C MR x M(Q; RIXNY,
whenever {u.}.>¢ is a bounded sequence in BV (Q; R?).

Definition 1.2. Fori € N, define the space M, (Q2x Yy x -+ x Y;_1; BV (Y;;RY)) of all BV (Yi; RY)-valued
Radon measures p € M(Q x Y x -+ x Y;_1; BV (Y;;R?)) with finite total variation, for which there exists
a RN _valued Radon measure A € My (Qx Yy x -+ x Y;; RPN with finite total variation in the product
space Q x Y] X --- X Y;, such that for all B€ B(Q x Y] x ---xY; 1), E € B(Y;),

(Dy, ((B)))(E) = \(B x E).

We say that A is the measure associated with D, pt.

We refer the reader to [30] for more detailed considerations on the space M, (Q2x Y1 x---xY;_1; BV4x(Y;; R?)),
i € N. The following result holds (see [30, Thm. 1.10]).

Theorem 1.3. Let {u.}.~o C BV (Q;R?) be such that u, X u weakly-x in BV (Q;RY) as e — 0T, for some
u € BV(Q;R?). Assume that, in addition to satisfying (1.1), the length scales o1, ..., 0, are well separated,
i.e., there exists m € N such that for all i € {2,---,n},

lim ( 0i(c) )m L o (1.3)

e—0+ \ 0i—1(€) 0i(e)

Then
a) u-LYq ("+i)_sc Tu, where 7, € Myu (2 x Y1 x -+ x Yy,;R?) is the measure defined by

- N nN
Tu = ulNo ® Ly .y,
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ie. ifpe CO(Q;C’#(Yl X - X Yn;Rd)) then
(Tu,s0>:/ (x,y1, s yn) - u(x) dedys - - - dyn.
QAXY1 X--XY,

b) there exist a subsequence {Duc/} of {Du.} and, for all i € {1,---,n}, measures p; € M, (Q x V7 x
-+ X Y;_1; BV4(Y;;RY)) such that

(n+1)-sc
Duer === Mty oo

where Ay, g, € Mys(Q x Y1 X -+ x Yp; RTN) s the measure given by

n—1
)\“7“17"'7#«" = DULQ ® EZvayn + Z A,L X ‘Cf(g?;z’).{y’yn + )\7“ (14)
i=1
ie., ifpe€ CO(Q; C’#(Yl TR Yn;RdXN)) then
Ptspay oot ) =/ (T, y1, 5 Yn) : dDu(x)dy; - - - dy,
QXYi X XY,
n—1
+ Z/ (,0(!17,:[/1, te 7yn) : d)\i(xayb te ;yi)dyi+1 ce dyn
i=1 Y XY1X XYy

+/ Sp(xvyla"'ayn):dAn(mvyla"'ayn)v
QXY X+ XY,

and each \; € Myy (Q x Y1 x -+ x Y;; RN s the measure associated with Dy, p;, i € {1,---,n}.

Using Theorem 1.3, we seek to characterize and relate the functionals

F5(u, py, - -, ) = inf { lim(i)gf Fo(ues): ue € BV(Q;Rd)’ Du,. (n+l)'3c Mgy ”"} (1.5)
and
Fhom(y) .= inf { limirif Fo(us): ue € BV(Q;Rd), ue =, u weakly-x in BV(Q;Rd)} (1.6)
e—0

for u € BV(Q;Rd) and p; € M*(Q X Y] x -0 X K,l;BV#(K;Rd))7 i € {1,---,n}, where F_ is given by
(1.2).

Before we state our main result, we introduce some notation. Fix k € N and let ¢ : RFN x RN — R be a
Borel function. We recall that the effective domain of g, dom.g, is the set

domeg = {(yla"'aykaf) S RkN X RdXN: g(yla"'7yka§) < 00}7

while the conjugate function of g is the function g* : REN x RN — R defined by

g*(ylv"'vykag*) = Sl%ipN {g:g*_g(ylv"Wykvé.)}) yl)"'vykeRNv f* ERdXN7 (17)
EERAX

and the biconjugate function of g is the function g** : R¥N x RN — R defined by

g**(yla"'aykag) = Su}l) ~ {g* :f_g*(yla"'aykag*)}a Y1, Yk € RNv f* € RdXN' (18)
£xERAX
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We define a function ghom, : REDN x RN — R by setting

Ghomy (Y1, Yk—1,§) = inf{/ 91 k=1, Yk € + VUi (yx)) dyr: Yr € W;’I(Yk;Rd)} (1.9)
Yi

for y1,...,yr_1 € RN, £ € RN,

Let f: R™™ x RN — R be a Borel function. If n = 1, we set fhom := fhom,, Where fhom, is given by (1.9)
for k =1 and with g replaced by f, that is,

(€ = int { [ flon. &+ Trton))dns 0r € Wy () |

Y1

If n = 2, we define from := ( fhomZ)hom17 which is the function given by (1.9) for & = 1 and with g replaced
by fhom,, where the latter is the function given by (1.9) for k = 2 and with g replaced by f. Precisely,

from(€) == inf{ froms (41, € + Vb (y1)) dyr ¢ eW;l(Yl;Rd)},

Y1

where

Jhoms (Y1,&) 1= inf{ Fy1,y2, €+ Vaba(y2)) dya: )2 € qugl(Yz;Rd)}

Y2

Similarly, if n = 3 we define from := ((fh0m3)hom2) ie.,

hom;’

From(€) = inf{ /Y (fioms ) noms (W1, € + Vb1 (y1)) dyr: 9 eW;’l(Yl;Rd)},

where

(fhoms)hom2 (yla f) = lnf{ thms (ylv Y2, 5 + V%(yz)) dyQ: 7/}2 € W;i&’l (Y2; Rd) }7

Y2
with
foomg (Y1, Y2, ) := inf {/Y f(y1,y2,y3,§ + Vs(ys)) dys: s € W;’l(Ys;Rd)}-

Recursively, for n € N we set
from = ((fhomn)homnilu ) . (1.10)

hOIIl1

Consider the following conditions:
(F1) for all £ € RN (.. £)is Y] x --- x Y,-periodic;
(F2) for all yi,...,yn € RN, f(y1,-+,Yn,-) is convex;
(F3) there exists C' > 0 such that for all yy,...,y, € RY, ¢ € RN

(F4) for all § > 0 there exist cs € RY, bs € R, such that |cs| — 0 as § — 0, and for all yy,...,y, € RY,

§€RdXN
f(y177yn7£)+c5£+b5>07

(F4)’ there exists C' > 0 such that for all y;,...,y, € RV, ¢ € RN,

Flons v 2 el = C:

6
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(F5) for every y},...,y, € RN, § > 0, there exists 7 = 7(y},---,y.,d) such that for all y;,..., s, € RV
with |(yia o 7y1/1) - (yla o ayn)| < T, and for all f € RdXNa

f Wi ns ©) = F s yn, ) < O(1 + [E])5

(F6) forall § > 0 there exists as € Ly (Y1x---xY,) such that 6||&5||L#(Y1X,__XY”) — 0asd — 07, and there

exits 75 > 0 such that for all Yy, ..., Yn_1, ¥}, ., 1 € RY with [(y1, - yn_1)— (W, -, ¥ _1)| < 75,
and for all y,,, & € RN,

f(yla T 73/n71,ym'5) = 6d5(y17 o 7y’;7,71’yn> + (1 + 0(1)>f(y/17 o 'ayéflfy’mg)

(as & — 0F). If n > 3, then we assume in addition that for a.e. ¥, 1,9, € RY we have
&5('ayn—1ayn) S C#(ifl X X Yn—2) with H&é('ayn—layn)HC#(leme,,L,g) S Ll(Yn—l X Yn)§

(F7) there exist a € (0,1) and L,C > 0, such that for all yi,...,y, € RY, for all £ € RN with |¢] =1,
and for all t > L,
f(ylv"'aynatg) <C

¢ S Ga

foo(yh"'ayn?g)*

(F8) the conjugate function f* of f is a bounded function on its effective domain, dom, f*.

The next proposition will be used to establish integral representations for the multiple-scale functional F*°
in (1.5) and for the homogenized functional F'°™ in (1.6).

Proposition 1.4. Let f : R"N x RN — R be a Borel function satisfying hypotheses (F1), (F3) and (F4).
For n > 0, let f, be the function defined by fy,(y1, -, Yn,&) = f(y1, -, yn,&) +n|§|. Then,
(i) For all yy,...,yn € RN, &€ € RN | the limit

i ((f)™)™ (1, yn, €) = ((for)™) (Y15 Yns €) (1.11)

n—0+
exists, ((for)**)> : R"™W x RN — R is positively 1-homogeneous and convex in the last variable, and
(f)2 < ((for)™)> < (f%).
Furthermore, if in addition
a) f also satisfies (F2), then ((fo+)*)> = f>°;
b) d =1 and f also satisfies (F7), then ((fo+)**)>° = (f>°)**.
(ii) For all £ € RN, the limit

im (((f3)"hom) ™ (€) =2 ((fo+)* Ihom) ™ (€) (1.12)

n—0+

o0

exists, with (((fo+)**)hom) : RY — R positively 1-homogeneous, convex, and such that

((F*hom) ™ < (((For )™ nom) ™ < (((For)™)™) om < ()™ o
Furthermore, if in addition
a) f also satisfies (F2) and (F8), then (((for)**Jhom) ™~ = (from)™® = (> )nom;
b) f also satisfies (F2) and (F7), then (((for)**Jhom) ™~ = (f)hom;
c) d =1 and f also satisfies (F7), then (((for)**Jhom) " = ((f°)*), -

7
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Remark 1.5. Hypothesis (F7) is common within variational problems with linear growth conditions (see,
for example, [14, Sect. 4], [9]). We will prove (see Lemma 3.12 below) that under hypotheses (F1), (F3),
(F4)’ and (F7), we have (frnom)™ = (f°)nom; in the scalar case, these conditions also ensure the equality
(f*)>° = (f°°)**. Other sufficient conditions to guarantee that (fhom)>™ = (f°°)hom are (F1)—(F4) and
(F8) (see Lemma 3.11 below), which is an hypothesis on f* that is often considered when dealing with
duality problems (see, for example, [42, Ch. I1.4]).

Unless stated otherwise, we will always assume that the length scales o1, ..., 0,, satisfy (1.1) and (1.3). A
simple example of such functions is the case in which for all i € {1,---,n}, g; = €. Our main result is the
following.

Theorem 1.6. Let @ C RY be an open, bounded set with OQ Lipschitz, let Y; := (0,1)", i € {1,---,n},
and let f : R™™ x RN — R be a Borel function satisfying (F1)—(F4), (F5) and (F6). Then, for all
(us oy, -+, ) € BV (S RY) X M (€ BV (Y15 RY)) X - X M (2 x Y X -+ X Y13 BV (Y RY)),

FSC(U,IIIla"'aMn) :/ f(yla"'ayru%(ﬂfayla'”ayn)) d:rdyl "'dyn
OXY) X XY, dLin

R (1.13)
o0 d)\u7”17"'7”n S
+ f (yh"'7yn7“7’(x7y17"'uyn>> d‘l)\u’pl’“w“n|‘(m7y17'"uyTL)-
QXY X XY, ||)‘u,y.l,...,p.nH
Moreover, for all u € BV(Q; Rd),
Fhom(u) _ inf FSC(U, JTUREE “n)
1 €M (4BVy (Y1RD),
p.neM*(Qxylx-uxyn,l;Bv#(yn-,Rd)) (1.14)
[ unm(Vut@) o+ [ (o om)™ (e (2)) Al D7)
= hom +,hom ETE=YIT )
Q Q" ° d|| Dsu|
where (fo+ nom)™ = (((fo+)**)nom) ~ is the function defined by (1.12) (note that in view of (F2),

(fn) = 1)
Furthermore, if in addition

(i) f satisfies one of the two conditions (F4)” or (F8), then (fo+ hom)™ = (fhom)™;
(11) f satisfies (‘7:7)7 then (f()*,hom)oo = (foo)hom-

We remark that in Theorem 1.6 we do not assume coercivity nor boundedness from below of f. The main
ingredients of the proof are the unfolding operator (see [19], [21]; see also [31]) and Reshetnyak’s continuity-
and lower semicontinuity-type results. The approach via the unfolding operator, in connection with the
notion of two-scale convergence and in the framework of homogenization problems, sometimes referred as
periodic unfolding method, has already been adopted by other authors in the Sobolev setting (see, for
example, [19], [20], [31]).

We use the convexity hypothesis (F2) when establishing the lower bound for the infimum defining F*¢, which
is based on a sequential lower semicontinuity argument. We start by proving that the (n+1)-scale convergence
of a sequence of measures absolutely continuous with respect to the Lebesgue measure is equivalent to the
weak-* convergence on the product space 2 x Y7 x - - - x Y}, in the sense of measures of the unfolded sequence,
i.e., the image through the unfolding operator of the original sequence (see Lemma 3.4). Then we prove that
the energy F. does not increase by means of the unfolding operator (see Lemma 3.2). In order to conclude
we need sequential lower semicontinuity of the functional

d)\ac
o ::/ Ty Uns —mw (@ Y1 Un) ) dadyr -+ - dyn
( ) QXY X XYy ( ! dﬁ(n-&-l)N( 1 )) 1

d\?®
+/ foo(yh,..7yn’—s(x,y1,...7yn)) d”)\SH(:p,yl,...,yn)
QXY x--XY, d”)‘ H

8
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for A € Myx(Q2x Yy x - xYy; RdXN), with respect to weak-x convergence in the sense of measures, which
requires convexity of f in the last variable (see, for example, [4]). In the scalar case d = 1 we can overcome
this difficulty by a relaxation argument with respect to the weak topology of W1(€), which cannot be
applied in the vectorial case since quasiconvexity is a weaker condition than convexity (see, for example,
[22]). As a corollary of Theorem 1.6, we obtain the following result concerning the scalar case d = 1.

Corollary 1.7. Let @ C RY be an open and bounded set with 0$) Lipschitz, let Y; = (0,1)V,
i€ {l,---,n}, and let f : R™ x RV — R be a Borel function satisfying conditions (F1), (F3), (F4),
(F5) and (F6) with d = 1 and with o(1) replaced by —|o(1)| in (F6). Then, for all (u,p,, -, p,) €
BV () x M, (€ BVg(Y1)) X -+ x M (2 X Y1 x -+ Yy _1; BVa(Yy)),

F(u, g, p >_/ f**<y1 Ly LZ?““"’””(% Y1y )) dady, -- - dy
9 1 ) n) — 9 y JIMNy n ’ 9 ydgn n
QXY X--XY, dﬁ( +ON
*% ) 00 dAZ?ll‘lv"'ap’n s
. (or " (0 e ) I e, 1200
QXY X XYy || u,yl,...,pn” )
(1.15)
where ((fo+)**)® is the function defined by (1.11). Moreover, for all w € BV (),
Fhom — : SC .
(u) /.LIEM*(SZ;IE\f/‘#(Yl)),.A., F (U»Hu 7”’71)
By €M (X Y] XX Yy, _1:B Vg (Yn)) (1 16)

((Ufos) o)™ (g ) Dl @),

L (e da [

Q

where (((fo+)**)hom)DO is the function defined by (1.12).
Furthermore, if in addition
(i) f satisfies the coercivity condition (F4)’, then ((fo+)**)>® = (f**)* and (((fOJr)"*)hom)OO =
((f**)hom)oo;
(i) | satisties (F7), then ((fo+)™)* = (£)** and ((for) ™ Ihom) ™ = (/*)%) o

Remark 1.8. (Comments on the hypotheses) (i) If f is bounded from below, then (F4) is satisfied: it
suffices to take cs = 0 and bs = —b, where b := inf f € R. Hypothesis (F4) may be regarded as a stronger
version of the condition

(F4)* for all § > 0 there exists bs € R such that for all yy, ..., yn, £ € RV,
f(y177yna§>+6|£‘ +b5 2 07

so f cannot decrease as —|¢| but it can decrease as —|¢|* with o € (0,1): If f : R™N x RN — [0, 00) is a
nonnegative function, and b € R, ¢ > 0, then for all « € (0,1),

f(ylv"'aynaé-) = f(y177yn7§)_c|£|a+b

is a function satisfying (F4)*. We do not assume (F4)* in place of (F4) in Theorem 1.6 and Corollary 1.7
because in general the former is not inherit neither by fnom nor by f** from f, whereas the latter is.

We observe that if f is lower semicontinuous and independent of (y1,---,yn), then f satisfies (F4)* if, and
only if, it satisfies
N (3!
liminf == > 0. 1.17
e (A7

Moreover, if f is in addition convex, then (1.17) is a necessary and sufficient condition for the sequentially
lower semicontinuity with respect to weak-x convergence in the sense of measures of the functional

U L RPNY u(z)) dz.
e L(@RYY) [ fu(e)d

9
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Furthermore, (1.17) yields

imint [ @) de> [ 1(Gr@)de+ [ (rm) dxi@

whenever u.LN|q = X weakly+ in M(QRPN) (see [32, Thm. 5.21]). This fact will be used when
establishing (1.14) and (1.16).

(ii) If f satisfies a growth condition of the form |f(y1, -, yn,§)| < C(1 +[€]) and is convex in the last
variable, then (see [11]) (F5) holds if, and only if, the function f : R™Y x RN x [0, 00) — R defined by

B B tf<y1’...’yn,§) ift>0,
s Yns &) = ! i
f(y1 Yn,> & ) {foo(yl,...’ymg) ift =0,

is continuous. In particular, if f is continuous, positively 1-homogeneous in the last variable, and satisfies
(F2), (F3), and (F4)*, then it also satisfies (F5) since in this setting f is continuous.

The continuity of f will be crucial in our analysis in order to apply Reshetnyak’s continuity- and lower
semicontinuity-type results (see Lemmas 3.5 and 3.6 below).

(iii) Hypothesis (F6) is a weaker version of the hypothesis

(F6)’ there exist a continuous, positive function w satisfying w(0) = 0, and a function a € L%(Yn) such
that for all Y1, ..., Yn—1, Y1 Yh—1 Yn, € € RN we

‘f(ylf"ayn—lalhhé.) - f(y/lv"’vy;z—hynag”
w(|(y1a T aynfl) - (yll o 7y7/'7,71)|)(a’(yn) + f(yh' o 7yna§))7

which often appears in the literature (see, for example, [16], [41]).

If f is of the form f(y1, -, Yn,&) := g(y1, s Yn—1)"(Yn, &), where g is a continuous and Y7 X +-- X Yy, _1-
periodic function, and h is a function satisfying (F1)—(F5), then f satisfies (F1)—(F6); in particular, we
may consider g = 1, which corresponds to the case of one microscale (i.e., n = 1) and so, in this situation,
(F6) is trivially satisfied. Other simple examples of functions satisfying (F1)-(F6) are functions of the
form f(y1,- -, Yn,&) := g(y1, -+, yn)h(§), where g is continuous and Yy x - -- X Y, -periodic, and h satisfies
(F2)—(F4).

Remark 1.9. (i) Equalities (1.13) and the first one in (1.14) are valid under the more general growth
condition from below (F4)* (introduced in Remark 1.8 (i)). The reason why this condition is not enough in
order to conclude the second equality in (1.14) is that in general it is not inherited by fhom, while (F4) is
and this ensures that fnom satisfies (1.17), which, as we will see, will play a crucial role in the proof.

(ii) In Theorem 1.6 and Corollary 1.7, we need the length scales to satisfy condition (1.3) only to establish
the equalities (1.14) and (1.16) involving Fhom,

In the case in which n = 1 and d = 1, we recover Amar’s integral representation [3] of the two-scale
homogenized functional F*¢ under more general conditions (see Remark 1.8 (ii) and (iii)). Furthermore, if
we assume a priori compactness of a diagonal infimizing sequence for the sequence of functionals {F:}.~o,
we recover Amar’s result [3] under more general conditions. We observe that even if a priori compactness of
a diagonal infimizing sequence is assumed in Theorem A, the coercivity condition is still needed to validate
the arguments in [3]. We also recover Bouchitté’s integral representation [12] of the effective energy Fhom
without assuming coercivity of f and without assuming convexity of f in the second variable, but assuming
continuity in the first one in order to apply Reshetnyak Continuity Theorem, while in [12] f is assumed to
be convex in the second variable and coercive, but only measurable and Y -periodic in the first variable.

If n =1 and d > 1 in Theorem 1.6, then we recover De Arcangelis and Gargiulo’s integral representation
[26] of the effective energy F'™ without assuming f to be bounded from below, but assuming f to be

10
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continuous in the first variable and convex in the second one, while in [26] f is only required to be nonnegative,
measurable and Y-periodic in the first variable and continuous in the second one. As we mentioned before, our
hypotheses are related to the periodic unfolding method and Reshetnyak Continuity Theorem’s hypotheses.

In the case in which n > 2, Theorem 1.6 and Corollary 1.7 provide new results in the literature in that, to
the best of our knowledge, the homogenization of nonlinear periodically oscillating functionals with linear
growth and characterized by n > 2 microscales has not yet been carried out.

Finally, in the framework of homogenization by I'-convergence in the BV setting and for n = 1 we also
mention the works by Braides and Chiato Piat [15] and Carbone, Cioranescu, De Arcangelis and Gaudiello
[17] concerning the convex case; and Bouchitté, Fonseca and Mascarenhas [14, Sect. 4.3], Attouch, Buttazzo
and Michaille [7, Sect. 12.3] and Babadjian and Millot [8] regarding the nonconvex case.

This paper is organized as follows. In Section 2, we collect the necessary notation and we recall some basic
properties of (R™-valued) Radon measures and of functions of bounded variation. We also recall some results
established in [30] that will be used in the subsequent sections. In Section 3 we prove Proposition 1.4 and
Theorem 1.6, and in Section 4 we prove Corollary 1.7.

2. Notation and preliminaries

2.1. Notation

In the sequel Z is a o-compact separable metric space, §2 is an open subset of RY, N € N, and Y := (0, 1)V
is the reference cell. For each i € N, Y; stands for a copy of Y. Given x € RY, we write [z] and (z) to denote
the integer and the fractional part of x componentwise, respectively, so that z = [z] + (z) and [z] € Z",
(x) €Y.

Let n,m € N. If 2,y € R™, then « - y stands for the Euclidean inner product of  and y, and |z| := \/z -z

for the Euclidean norm of x. The space of (m x n)-dimensional matrices will be identified with R™", and
we write R™"™. If £ = (§ij)1<icm,1<i<ns € = (Cij)i<icm,1<j<n € R™*™, then

£:C:= ZZ&;’C@'

i=1 j=1

represents the inner product of ¢ and ¢, while |£] := /€ : £ denotes the norm of . If a € R™ and b € R”,
then a ® b stands for the (m x n)-dimensional rank-one matrix defined by a ® b := (a;b;)1<i<m,1<j<n-

Let g : R™™ — R™ be a function. We denote the Lipschitz constant of g on a set D C R™Y by Lip(g; D); if
D coincides with the domain of ¢ we omit its dependence. We say that ¢ is Y7 X --- X Y,-periodic if for all
(XS {1,"-,’0}, K€ ZNa Y1y -y Yn € RNa one has g(yla"'vyi +Ka" 7y7l) = g(yla"'7yi?"' 5y’ﬂ>

We will consider the Banach spaces
Cu(Y1 x -+ x Y R™) = {g € C(R™;R™): gis Y} x -+ x Y,,-periodic}

endowed with the supremum norm || - |le, and Co(Z;Cx(Y1 x -+ x Y,;R™)), which is the closure with
respect to the supremum norm ||+ ||loo of Co(Z; Ce (Y1 X - - - X ¥5,; R™)). The latter is the space of all functions
g: ZxR"™W — R™ guch that for all z € Z, g(z,-) € Cg(Y1 x -++ x Y;,; R™) and for all yi,...,y, € RY,
9(, Y1, Yn) € Co(Z;R™). The spaces C’@(Yl XX Yo R™), OF (Y1 X - x Y ; R™), Ck(z; C;;(Yl X oo X
Vi R™)), C22(Z; 0 (Y1 X -+ x Yo R™)), CE(Z; CE(Yy % -+ x Vs R™)) and C§°(Z;C% (Y1 X - -+ X Y3 R™))
are now defined in an obvious way.

If m =1 the co-domain will often be omitted (e.g., we write Cy(Z) instead of Cy(Z;R)).

C represents a generic positive constant, whose value may change from expression to expression, and & stands
for a positive small parameter, often considered as taking its values on a positive sequence converging to
zero; in this case, ¢’ represents a subsequence of e, and we write &' < «.

11
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2.2. Measure theory
For m € N, the m-dimensional Lebesgue measure is denoted by £™.

The Borel g-algebra on Z is denoted by B(Z), and M(Z;R™) is the Banach space of all Radon measures
A :B(Z) — R™ endowed with the total variation norm || - ||.

If o€ Co(Z) and A = (A1, -+, Ap) € M(Z;R™), then we set

[eerae = ([ e@ine.. [ o).

If o = (1, pm) € Co(Z;R™) and A € M(Z;R), then we define

[eerae = ( [a@ae. . [ enEae).

We write My (Yy x -+ - xY,; R™) and My (Z x Yy x - - xY,; R™) to denote the duals of Cy (Y7 x - - - x Yy, R™)
and Cy(Z;Cx (Y7 x --- x Y,,;R™)), respectively.

Let E C R™ be a Borel set and let p : B(E) — [0,00] be a positive Radon measure. If A € M(E;R™),
then (see for example, [32]) by Lebesgue Decomposition Theorem we can decompose A as A = A% + \* =

dé\;C p e + A%, where A% is absolutely continuous with respect to u, A* and p are mutually singular.

2.3. The space of functions of bounded variation

A function u : @ — R?, d € N, is said to be a function of bounded variation, and we write v € BV (;RY), if
u € L' (Q;R?) and its distributional derivative Du belongs to M (Q; R**™), that is, if there exists a measure
Du € M(Q;R™N) such that for all ¢ € Co(Q), j € {1,---,d} and i € {1,---, N} one has

/Quj(l‘)gji (z)dx = —/ng)(x) dDu; (),

where v = (u1,---,uq) and Du; = (Diuj,---,Dpnuj). The space BV(Q;Rd) is a Banach space when
endowed with the norm ||ul| gy (;rae) := [[ul| L1 (Q;rey + [[Dul| ().

We will also consider the space BVy (Y; Rd) = {u € BVioe (RN; }Rd) Do is Y—periodic}7 endowed with the
norm of BV(Y;Rd). Notice that if u € BV (Y;Rd), then Du € M#(Y;RdXN).

We will consider the weak-+ convergence in BV (;R?). We recall that {u;}jen C BV (;R?) is said to
weakly-* converge in BV(Q; Rd) to some u € BV(Q; Rd) if u; — u (strongly) in L! (Q; R?) and Du; X Du
weakly-x in M(Q; RdXN).
Ifue BV (Q; Rd), then Du = VUENLQ + D*u is the Radon-Nikodym decomposition of Du with respect to
N
Lo

2.4. Some preliminary results

We start this subsection by providing a simple example of a measure in the space M*(Q XYy X o0 X
Yi—1; BV (Y3 R?)), i € N, introduced in Section 1. For simplicity, assume i = 1, and let 7 € M(;R) be
a real-valued Radon measure with finite total variation, let v € BV (Y;R?), and consider the mapping p :
B e B(Q) — 7(B)v € BV4(Y;RY). Then pr € M, (€ BV (Y;R?)), and A := 7@ Dv € My» (2 x YV; RN
is the measure associated with Dy : B € B(Q2) — D, (u(B)) = 7(B)Dv in the sense of Definition 1.2, that
is, (A, ) := foY o(x,y)dr(z)dDv(y), p € Cy (Q; Cy (Y;RdXN)).

We refer the reader to [30] for more detailed considerations on the space M, (Q XYy X xY;_1; BVy (Yi; Rd) ),
i€ N.

The next result shows that Theorem 1.3 fully characterizes the (n + 1)-scale limit of bounded sequences in
BV (;R%) (see [30, Prop. 1.11]).

12
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Proposition 2.1. Letu € BV(Q;Rd) and fori € {1,---,n}, let u, € M*(Q XYy x---xY;_1; BV (Yi;Rd)).
Then there exists a bounded sequence {uc}e~o C BV (Q;R?) for which a) and b) of Theorem 1.3 hold (with
¢’ replaced by ).

Remark 2.2. Since every (n + 1)-scale convergent sequence in M(;R™) is also a weakly-x convergent
sequence in the sense of measures (see [30, Prop. 3.3]), it follows that any such sequence is bounded in

M(Q;R™).

We now recall a density type result proved in [30, Prop. 3.14], which will play an important role in the proof
of our main results.

Proposition 2.3. Let Q C RY be an open and bounded set such that 0) is Lipschitz. Let u € BV(Q; Rd),
and for each i € {1,---,n}, let p; € M. (Q x Yy x ++- x Y;_1; BV (Y;;R?)). Then there exist sequences
{uj}jen C C™ (ﬁ; Rd) and {wj(-i)}jeN cCx (Q; cy (Y1 X oo X Y;-;Rd)) satisfying

Jj—00

uj = u weakly-x in BV(Q;R?),  lim Q|Vuj(x)\ dz = || Du||(),

(vuj + Z vyiw;i)>£(n+l)Nm><Y1><~~-><Y,,, Lj
i=1

25 Ny, Weakly-x in Mz (Q X Y7 x -+ x Vi RN, (2.1)
n
lim ‘V“j(fc) + 3V @y, )| dady - dy,
I JOAXY) X XY, i—1
= Ay (2 X Y1 X X V),
where Ay ..., is the measure defined in (1.4), and
N2 Xy, Weakly-k in Myg (Q x Yy x -+ x Vi RN X R),
~ ~ 2.2
Hm A2 x YD x - x V) = [[ Ay o, (R X Y1 X2 -2 X Y, (22)
J‘)OO

where, for any B € B(d x Y1 x --- x Y,,),

Aj(B) = (/B (Vuj(x) + Z Vyiz/Jj(-i)(a:, Y1, ,yi)> dzdy; - - - dyn, E(”H)N(B)),
i=1
Nyt (B) = (Mg, (B), L0V (B) ).

Finally, we recall that in view of Riemann-Lebesgue’s Lemma, if ¢ € C(€; Cx (Y7 X -+ x Y,,; R™)) then

*

e — N YL yn) Ay - dyy, 2.3
QO( Ql(g) Qn(a)) le...xy,Lw( U1 y) Y1 Y ( )

weakly-+ in Lo (Q;R™). In particular, if ¢ € Cp (Q; Cy (Y1 X oo X Yn;Rd)) then (2.3) holds weakly-* in
L (Q;R™).

Also, if a: R™ — Ris a Y] x --- x Y,-periodic function such that for some 1 < p < oo and for a.e. y, € Y,
we have a(-,yn) € Cx(Y1 X --- x Y1) and [la(-, yn)llcy (vi - xv,_1) € LP(Yn), then (see [27])

eakly in L (RY) if 1 <p < oo,

loc

eakly-x in L (RY) if p = oo,

loc

(2.4)

z =

where a:= [, a(yi, - yn) dyi ... dyn.
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3. Proof of Theorem 1.6

Throughout this section we will assume that n = 2. The cases in which n = 1 or n > 3 do not bring any
additional technical difficulties.

For n = 2 the energies F. in (1.2) take the form

Fo(u) = /Qf(gli(s),Q%@,vu(m))dﬂ/ﬂfW(glfe),g;ge),dﬁg:ZH(x))ansun(m) (3.1)

for u € BV(Q;Rd), where, we recall, g1, 02 : (0,00) — (0, 00) are functions satisfying (1.1) (with n = 2) and
f°° is the recession function associated with f. Due to the convexity hypothesis (F2), the limit superior
defining f*° is actually a limit (see, for example, [32]), so that > : RY x RY x RN — R is given by by

foo(y17y27§) = tli)m M

00 t

Moreover, under hypotheses (F1)—(F3) and (F4)* on f, we have that f> is a Borel function satisfying (F1),
(F2), and the growth condition
0< f*(y1,92,€) < CIE]. (3.2)

Notice that in view of (F3), (F4)* and (3.2), the functional F; is well defined (in R) for every u € BV (Q; R?).
In Theorem 3.1 below we will establish (1.13). We will use the unfolding operator (see [19], [21]; see also
[31]): For ¢ >0, 7, : LY(Q;R™) — Ll(RN;L;ﬁ(YQ;]Rm)) is defined by

To(o)w2) =3 (o[ | + 02~ ) for .30 € RV, g € LR,

where § is the extension by zero of g to RY. Clearly 7, is linear, and for every g € L' ({; R™)
17o(9lr@xvairm) < N1 To(9l|Lr @y xvairm) = 19l @y mmy = 9l @mm), (3.3)
and

lim |9(z) = To(9) (2, y2)| dzdyz = 0 (3.4)

e—0" JRN xy,
(see [31, Prop. A.1]).
Similarly, we define the operator A, : L'(€ x Ya; R™) — LY(RN; LY, (Y1; L' (Y2;R™))) by

Ag(h) (@, y1,y2)

x
= h(@b} +o(y1 — [yl]),yz> =T,(h(-,y2))(z,y1) for z,y1 € RN, yo € Ya, h € L' (2 x Yo; R™),
where £ is the extension by zero of h to RY x Ys. A, is linear, and for all h € L*(Q x Yo; R™),

AL ()| £ @x v xvasmm) < M) L2 @3 xvy xvamm) = 1Bl @Y vamm) = 7]l L3 @xvamm) (3.5)
by (3.3) and Fubini’s Theorem. Moreover, we notice that for a.e. yo € Ys, we have
lim 7@, y2) = To(h(- y2)) (@, 1)| dadyr = 0
0—0t RN xY;

by (3.4), and
/ ’ﬁ(xyyZ) - %(h(vyZ))(xayl)‘ dxdyl < 2/ |}~L({L‘,y2)| dz € Ll(}/v?)v
RN xY; RN

14



Feb 25, 2011

where we used (3.3) to obtain

[ 1nh ) ) sy, = [ fiteg)] .
RN xY; RN

Thus, Lebesgue Dominated Convergence Theorem yields

lim |h(,y2) — Ag(h)(x, y1, y2) | dedyidys

0—0" JRN V] x Vs

= lim |h(z, y2) — To(h(-, y2)) (x, y1)| dwdyrdys = 0.

0—0" JRN V] x V>

Theorem 3.1. Let Q C RY be an open, bounded set with OQ Lipschitz, let Y1 = Y := (0,1)", and let
f RN xRN x RN — R be a Borel function satisfying conditions (F1)—(F3), (F4)*, (F5), (F6) forn = 2.
Then (1.13) holds (with n = 2).

The proof of Theorem 3.1 is hinged on some lemmas. The first lemma “unfolds” the rapidly oscillating

sequence.

Lemma 3.2. Under the same hypotheses of Theorem 3.1, if {ve}eso C Lt (Q; RdXN) is a bounded sequence
then, for all n > 0,

€T xZ
liminf [ f,(——, —— dz > lim inf o (To(e)(v2)) (2,1, 2)) dedyrdys,
im in /an(gl(g)m(g), v.(a)) o > limin /Qxylm Fa (192, Agy (0) (Toa() (v6)) (@, 91, 2)) dardyr dyo
(3.6)
where fy(y1,92,€) == f(y1,y2, ) + nl¢l.

PRrOOF. Fix > 0 and § > 0. Let b, € R be given by (F4)* (see Remark 1.8), and let a5 € Ly (Y1 x Y3)
and 75 > 0 be given by (F6). Then

fﬁ('v'v') z - b'm (37)
and, for all 1,9,y € RY, € € RN such that [y, — y| < 75,
Fa1,y2,€) = das(y1, y2) + (1+ 0(1)) fo (W1, y2,§) — o()nl¢] (as 6 — 07F). (3-8)

Set ¢ := sup, [|v|| L1 (rax Ny, €1 := 01(¢) and €3 := g2(¢). Define

Zey ={h€ZN: e2(k+Y2)NQ#0}, Q.= int( U EQ(I{-FYQ)). (3.9)

KEZe,
Notice that Q C Q., and, by (3.3),

Sglo) 17, (ve) [l L2 (¥ vy Rax vy < e (3.10)
S

Recalling that 9. stands for the extension by zero to the whole RY of v., using (F3), a change of variables
and (F1), in this order, we obtain

fplE )=, <~< Yo [ A(ZE0)e

x T N
2 , > Ve - QEQ Q
NGXZ: / H+Y2) 51 €2 ($)> dz cL ( \ ) (311)
= Z / fn —li + —yg, Y2, Ve (e2k + 523/2)) e dys — CLY (Q2:,\0).
KEZe, Yz
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Since [Z] = k whenever z € e3(k + Y2), LV (e2(k + Y2)) = b and [y] = 0 for all y, € Y2, in view of the
definition of 7;, (v.), by Fubini’s Theorem, and from (3.11) we get

/an(g, é,vg(x)) dx

> 2. /62<N+y2> (/Y fn(i—f [:—2} + Z—jyz,yz,ﬁe (= [:—2} =) dy2> de — OLN (2.,\0)

KREZe, (3.12)
X

_ S2T], & oy
= [ B(E[E] R T dadye - LY (02\0)

2] | &2 B N
Z /QXY2 fn(€1 [52} +Ely2ay277—€2(vs)(x7y2)) dzdys — (by + O) LN (Q2:,\Q),

where in the last inequality we used (3.7).

By (1.1) there exists £5 > 0 such that for all 0 < & < g5 one has 0 < e5/e; < 75/2v/N. For any such e,

9 x 9 T 9 T S
2] 2nm 2=, |- 2(E) ] <o
1

sup Y
€2 €1 €1 T€EQY2€Y> €1 \&€2 €1

z€Q,y2€Y2

thus (3.8) and (3.10) yield

Ea[ X 135}
/QXY2 fn(g {5} + aymy%'fm (vs)(x,yg)) dzdys o1

>0 as (;—1, yz) dxdys + (1 + 0(1)) /

X
Fo( S92 Tea (02) (@, 92) ) dadys — Jo(D)lne:
QOxYs QxYs €1

Defining Z., and Q., as in (3.9) (with e5 and Y5 replaced by &1 and Y3, respectively), and reasoning as in
(3.11)—(3.12), we conclude that

[ a(E o T ) dodys

Qxvz L (3.14)

> / Fo (1,2, Acy (T2, (ve)) (2,91, 92) ) dedyrdys — (by + C) LY (22,\9Q).
QXY xYs

By the Riemann-Lebesgue Lemma we have that for a.e. yo € Y3, as(-/e1,y2) — le as(y1,y2) dy; weakly in
Ll (RY). Hence,

lim inf/ as <£, yg) dadys > EN(Q)/ as(y1,y2) dy1dys, (3.15)
e=0" Jaxy, €1 Y1 xYa
where we have also used Fatou’s Lemma and Fubini’s Theorem.

In view of (3.12)—(3.15), we obtain

.. r X
gt | (5 2oveto)) da

> (140(1)) liminf/ Fo (1,2, Acy (Toy (ve)) (2,91, 2)) dedydy, (3.16)
QXY1><Y2

e—0t

+ 5£N(Q)/ as(y1, y2) dyrdyz — |o(1)|ne,
Y1 XYQ

where we also used the convergences £V (€, \Q), LN (Q.,\Q) — 0 as e — 07, since 09 is Lipschitz and so
LN(99) = 0. Finally, recalling that 6||d5||L;&(Y1><Y2) — 0 as § — 0T, passing (3.16) to the limit as § — 0T

we get (3.6). |
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Remark 3.3. The previous proof can be easily generalized to the case in which n > 3 by using (2.4) in
place of Riemann—Lebesgue Lemma (see (3.15)).

We now show that, similarly to what happens in the LP-case with p € (1,00) (see [21, Prop. 2.14]), 3-
scale convergence of a sequence of measures absolutely continuous with respect to the Lebesgue measure is
equivalent to a weak-x convergence in the sense of measures in a product space of the unfolded sequence.

Lemma 3.4. Let Q C RY be open and bounded, let {v.}c~q C L* (Q;RdXN) be a bounded sequence and
let A € Myz(Q x Yy x Yo; RN) . Then v LN o 3= X if, and only if, Ay, (o) (Tpu(e) (0e)) L3N axyixvs — A
weakly— in Myy(Q x Y] x Yo; RPN) ase — 0F.

PROOF. For § > 0, define the sets

Ws:={keZ": §(k+Y)CQ}, Qs ::int( U 5(l€+?)>.
reEWs

Take ¢ € CL(Q), ¢ € C’#(Yl) and Y9 € qu#(}/Q;RdXN), and let ¢ 1= ¢11Pa. Set 1 := p1(¢) and 5 := pa(e).
By (1.1) we can find & > 0 such that for all 0 < ¢ < £ one has

dist(supp ¢, 0\Q.,) > 261V N, dist(supp ¢, Q\Qe,) > 26, VN. (3.17)

Fix any such e. Using (3.17), the definition of A.,, Fubini’s Theorem, and the equalities [%] = g if
x €er1(k+Y1) and [y1] = 0 if y; € Y1, in this order, we get

/ (@1, 2) < Aoy (Toa (02)) (21, 2) dadyndys
QAxY; XY

X
- /QE1 B oz, y1,y2) : Ty (ve) (51 {a} +ei(yr — [yl]),y2> dady, dys (3.18)

- /YlXYz < Z

/ o(x,y1,92) :752(%)(61H+Elyhyz)dx>dy1dy2.
KEW,, e1(k+Y1)

Performing the change of variables @ = 1k + €1, by Fubini’s Theorem the last integral in (3.18) becomes

/ ( > / ¢(61n+elc,y1,y2):ng(ve)(sm+61y1,y2)5{\7dy1>d§dy2. (3.19)
Y1><Y2 KEWal Yl

z

Considering now the change of variables y; = =

>

KEWe,

o (L

x x
:/ 80(51[*} + ey, *7y2) 1o, (ve) (w, y2) dedy dys,
Qe XY1XYa €1 €1

— K, and using again Fubini’s Theorem, (3.19) reduces to
x
/ ¢<E1f€+€1C7— —Féayz) 17—52(U5)($ayz)df>dﬁdy2
e1(r+Y1) €1

o1 2] + 16 o) Tu02) o) ) (3.20)

where in the first equality we used the Y;-periodicity of ;.
We claim that if 2 € Q\Q., UQ\Q., then

(61 {g} + 51Y1) N supp ¢ = 0. (3.21)
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In fact, if there was z € (e1[2] +e1Y1) Nsupp @, then z = &1[F] + 11 for some y; € Y1 and, by (3.17),
261V N < dist(supp ¢, z) < |z — x| = ‘81 [; ] + ey — x‘ = ‘ — £1< > + £1y1‘ < 2e1VN,
which is a contradiction. Hence, (3.21) holds. Consequently,

X
/ @(51{ } + ey, — 73/2) T, (ve) (2, y2) dody:dys
QEIXY1XY2 51

(3.22)
:/ @(51[ } + ey, — ,yz) : Te, (ve) (z, y2) dzdy:dys.
QE2><Y1 XYQ E
Arguing as in (3.18)—(3.20), we have
T T
/ @(51 [*] + €1y, *,y2) 2 Tz, (ve) (2, y2) dzdy:dys
Qey XY XY €1 €1
:/ ( / 90(51[ } + ey, — ,yz> ;v5(62/<;+52y2)d$)dy1dy2
Y1 XY K/EWEQ 82(H+Y2) €1
= / ( / go(sl {—/{ + C} + €1y1, Ii —|— C y2> vz (E2K + £2Y2) sévdyg)dyldg
Yl XY2 EEWE Yz €
. (3.23)
:/ ( / <p( [ K+ C] +51y1, I<L+ C,——n) :ve(ac)dx>dy1d§
Y1 XY :"T»EWEZ 82(R+Y2) €1
=[] oo 22+ 2 e 2]+ 26 2 ) as)amac
Y1 xYs Qe €1 le2 €1 €1 lég €1 €2
= / @(51 {6—2 {E} + <€—23/2] + 191, = [ﬁ} + 5—2112, 1) 2 Ve () dedy dys,
Qey XY X Y2 g1 Leg €1 g1 Leg €1 &2
where in the fourth equality we used the Ys-periodicity of ..
In view of (3.18)-(3.20) and (3.22)—(3.23), we conclude that
/ o(x,y1,y2) : A, (T2, (ve)) (2, 91, y2) dedyrdy,
QXY XY N (3.24)
-/ Blac (1,92 (0= (2, 2)) 6 () - 02 () oy,
Q.. XY XYs &2
where
Ea[ T € gal @ €
ac(z,y1,92) = €1 [—2 [—] + —Qyz} +eyn, be(z,y2) = — [—] + 2o, z,y1,y2 € RV,
€1 Leg €1 €1 Lég €1
Notice that for all z € Q, y; € Y7 and ys € Y3,
ac(@. ) — 2] S 2VN(Eer o), [belin) — =] <2VN 2 (3.25)
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Using (3.24) and (3.17), we obtain

‘/ o(z,y1,y2) + Aey (T2, (ve)) (w, 1, y2) dazdyr dys —/w(ﬂc L £) Ve (z) do
QXY1><Y2 Q

/ Blac (1, 2)Wr (e, 2002 () - 02(0) dadyndy
Qoy XY xY2 [Sp)

/QEQ><Y1><Y2 o )7/}1( )wZ( ) v=(z) dedyrdyz

< Wallipoameny [ [olactone)un b)) = o) () |loc(o) dadppdye B26)

QXYl XY2

< HwQHL;’;(YQ;RdXN) /

QXYl XY2

(1ollz~oy v o)~ 2|

il 00 L0 o . 30) = ] o)

<C(€1 +€2+E—2>7
€1

where in the last inequality we used (3.25) and the fact that sup, [|ve|| g1 (orax~) < 00

Since functions of the form ¢ = ¢1p1¢); are dense in Co (€; Cp (Y1 x Ya; RN and since {A,, (o) (Tpy () (ve)) } C
LY(Q x Y7 x Yo; RPN) {u.} € L RN) are bounded sequences (see (3.3) and (3.5)), using a density
argument, (1.1), and passing (3.26) to the limit as ¢ — 0T, we conclude that v. LYo X if, and only if,

Ay (e) (Ton(e)(0)) L3N vy v, = A weakly-+ in Mz (Q x Y7 x Ya; RN) as e — 0+ O

The next lemma is a Reshetnyak continuity type result for functions not necessarily positively 1-homogeneous,
and similar to [35, Thm. 5] (see [25] for related results).

Lemma 3.5. Let U C R! be an open set such that L'(U) < oo. Let g : U x R™ — R be a function such
that g : U x R™ x [0,00) — R defined by

g(z,8) ift>0,
9(2,&,t) : {ngtg) ifi— 0, (3.27)

is continuous and bounded on U x ™, where g*(z,§) := limsup,_, . g(z,t)/t is the recession function of g
and S™ is the unit sphere in R™ x R. If X € M(U;R™), let A € M(U;R™ x R) denote the measure defined
by A(+) := (A(-), £(+)). Assume that A\j, A € M(U;R™) are such that

Aj 25 N weakly-—+ in M(U;R™ x R), jlilglo||5\j||(U) = [|AI(©). (3.28)

Then

S

s { [ o= i) s+ [ o (= @) i)
~ [ o(= G @) as+ [ = (= g ) ANl

PROOF. Since g is a continuous and bounded function on U x S, in view of (3.28) Reshetnyak Continuity
Theorem (see [38], and also [5, Thm. 2.39]) yields

Jim [ o= dﬁi () IE = [ o= dﬁi( )l z) (3.30)
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We claim that (3.30) reduces to (3.29). In fact, writing the Lebesgue decomposition of an arbitrary
€ M(U;R™) with respect to L' as

dac
n= dlZZ ‘Cll_U—’_:U'Sa
then
= (B )+ n0), = | (S )+ e (3.31)
H= Y \u m59), Bl = El? \;u K .

are the Lebesgue decomposition of i and ||| with respect to £!, respectively.

In view of the Besicovitch Derivation Theorem, for £'-a.e. z € U, we have

dji W (2),1
o) = ((ﬁfac ) : (3.32)
[l (L7 (2),1) |
and for ||p®|-a.e. z € U, we have
dit dp®
/i 0 3.33
a1~ (aper-0) )

From (3.31)—(3.33), and taking into account the positive 1-homogeneity of (£,t) € R™ x [0,00) — §(z,&, 1),
we deduce that

[ a(e @)l e = [ a(=Sar.1)de+ [ (e gr0)aeie)
- [o(= @) a+ [ (s @) i)

where in the last equality we used the definition of g. By (3.34) we conclude that (3.30) reduces to (3.29). O

(3.34)

Next we prove a Reshetnyak lower semicontinuity type result for functions not necessarily positively 1-
homogeneous (see also [23], [33]).

Lemma 3.6. Let U C R! be an open set such that L'(U) < oco. Let g : U x R™ — R be a function satisfying
lg(z,€)] < C(1+1€]), for some C' > 0 and for every (z,§) € U x R™, and such that for all z € U, g(z,-) is
convex. Assume further that for all Z € U and ¢ > 0, there exists 7 = 7(Z,9) > 0 such that for all z € U
with |z — zZ| < 7, and £ € R™, we have |g(Z,&) — g(z,&)| < 0(1 + [¢]). If \j, A € M(U;R™) are such that
Aj 25 A weakly-x in M(U;R™) as j — oo, then

e [ S o))
> [ (= ) s+ /U o (= e ) AN,

PROOF. Let A\j,A\ € M(U;R™) be such that \; =, \ weakly-x in M(U;R™ x R). Defining \;, A €
*

M(U;R™ x R) as in Lemma 3.5, we see that A; =, A weakly *in M(U;R™ x R).

Let g: U x R™ x R — R be the function introduced in (3.27). Then (see Remark 1.8 (ii)) g is a continuous
function, and |g(z, &, t)| < 2C|(&,t)| for all (z,£,t) € U x R™ x [0,00). Moreover, since for each i € N there
exist functions a; : U — R and b; : U — R™ such that

g(z,f) = sup {CLL(Z) =+ bZ(Z) ' g}a 900(275) = ?16115 {bl(z) ’ g}v

€N

(3.35)

(see [32, Prop. 2.77]), we have that for all (z,£,¢) € U x R™ x [0, 00),

(z&t)-&up{oaZ )+ bi(z) - €5
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Thus for all z € U, (§,t) € R™ x [0,00) — §(z,&,t) is convex and positively 1-homogeneous. So, Reshetnyak
Lower Semicontinuity Theorem (see [38], and also [5, Thm. 2.38]) yields

d, - dA <
timin [ 9= 2 ())alR G > [ 9z 505 IR, (3.30)
i=ee Jy ( dff A ) ’ U ( dfjAl )
Finally, we observe that by (3.34), (3.36) reduces to (3.35). |

PROOF OF THEOREM 3.1. Fix (u, py, py) € BV (5 RY) x M, (€ BV (Y1; R?Y)) x M, (2 x Y1; BV (Ya; RY) ),
and set

drze
G(u, py, py) r=/ f(yhyz, M(m,yl,yz)) dzdy;dy,

QXY XY dLsy
'] )\751,/»"17#2 s
+ f (ylaymm(%yla?ﬂ)) d||)‘u,pl,p2||(z7ylvy2)'
QXY XY U,y Mo

We will proceed in two steps.

Step 1. We start by proving that

FSC(’U” Ky, I"’2) 2 G(“’v M1, “2)'
Let {en}nen be an arbitrary sequence of positive numbers converging to zero as h — oo, and by
Proposition 2.1 let {up theny C BV(Q;Rd) be a bounded sequence such that Duh%\)\uﬁl’“z. We claim

that
lihm inf F., (up) = G(u, oy, ps)- (3.37)
—00

Since {Duy }pen is bounded in M (Q;R?*N) (see Remark 2.2), in view of (F3), (F4)* and (3.2), we have
that {F, (up)}ren is bounded. Therefore, we may assume without loss of generality that the limit inferior
in (3.37) is actually a limit and that this limit is finite (which is true up to a subsequence).

By Proposition 2.3 (with p; = 0), for each h € N we can find a sequence {ugh) }jeN c whl (Q; Rd) such that

ul™ 2wy, weakly-x in BV (Q;R?),
MM 20N, weakly-x in M(Q RPN x R),  Lim [AY][(Q) = [Anll(), (3.38)
Jj—o0

where, for B € B({),
AP () = ( / vy () dx,£N<B>), An(B) = (Dun(B), LN(B)).
B

Under hypotheses (F1)—(F3), (F4)*, (F5) (see also Remark 1.8 (ii)), it can be shown that for fixed h € N,
Lemma 3.5 applies to U := Q and g(z, &) := f(ﬁ, ﬁ, £), which ensures the continuity of the functional

F., with respect to the convergence (3.38), that is, lim;_,o Fy, (ugh)) = F., (up). Consequently,

lim lim F., <u§")) = lim ., (un). (3.39)

h—o00 j—00

Moreover, given ¢ € C (Q; Cu (Yl X Ya; ]RdXN)) we have

im lim T, ———
h—00 j—00 QSD 01(en)” 02(en)

(h) ; z z
:Vu; /' (z)dr = lim r,———,——— ) : dDup(x
)@ =l J o oo o) 4D

(3.40)
:/ (P(xaylﬂyQ) : d)‘u,l-tp#z(xayl’y?)v
QAxY; XY
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where we have used the weak-x convergence Vug-h)EN 2 = j Duyp in M (Q; R4xN ), and the 3-scale convergence

Duh?’;%)\uyﬂhﬂz. In addition, in view of (3.38),

sup sup/ |Vu§h) ()| dz < oo. (3.41)
heNjeEN JQ

Using the separability of Co (€2; C (Y1 x Y2; R?*Y)) and a diagonalization argument, from (3.39), (3.40) and
(h)

(3.41), we can find a sequence {jp} such that j, — oo as h — oo, and such that wy, := u;,” satisfies
wy, € Wl’l (Q, Rd)a vwhﬁNLQ%)\u [T hlggo Feh (wh) = hlgrolo Fsh (uh)' (342)

Set ¢ := supy, ||Vwn || L1 (grax~y < oo and fix > 0. Then by Lemmas 3.2 and 3.4, and by Lemma 3.6 applied

to U := Q x Yl X Yv? and g(x7y17y235) = fn(ylay%g)a where fn(yl,y%f) = f(ylay%g) + 77|£|7 we conclude
that

hlim F,, (up) +nc= hm Fsh(wh)—l—nc hmmf/f , Vuwp(z )) dz
—00 le

2(5h)

(3.43)
> liminf/Q fa (yhyz,Amsh)(TgQ(eh)(th))(fv,yuyz)) dadydys > F3C(u, py, po),
xXY1 XY

h— o0

where

ac

SC dA“vI—h:#z
Fo(us g, o) == In (y17y2, AN (I’Z/hyz)) dzdydy:
QXYl XY2 (3 44)

d)\ Uy, Ko ({L‘ ) ‘l)\‘5 ||(flj )
,} y17y27 ]”A 7y17y2 d Uy by 5 o 7y17y2 .
QXY xYs

bty bt

Since fr?o (yla Y2, 5) = foo (yla Y2, 5) + 77|€|7 from (343) we deduce that

Jm Fey (up) +ne > Glus s o) + 0l Aupy 0, 12 X Vi X Ya).

Finally, letting n — 0% we obtain (3.37).

Step 2. We prove that
Fsc(uvulﬂ/"ﬁ) < G(u7p’1n“2>' (3'45)

Let {e;,}nen be a sequence of positive numbers converging to zero as h — oo, and let {u;};en C C*°(Q;R?),
{1ﬁ§1)}jeN C C¥ (Q;C;;O (Yl;Rd)) and {wj(?)}jeN C Cx (Q;C;f (Y1 X YQ;Rd)) be the sequences given by
Proposition 2.3. For each h,j € N define uy ; € C* (ﬁ; Rd) by

wn 3 (@) = u;(2) + o1(en)l (o )+ 0 (2., —). (3.46)

x
" o1(en) o1(en)” 02(cn)
Using (1.1), (2.3), and (2.1), in this order, we have that for all ¢ € Cy(€2; Cy (Y1 x Yo; R*N))

€T T

lim lim cp(m,—,—) s Vuy, (2 da::/ T, y1,Y2) L Ay, (2,91, Y2). 3.47
j—o00 h—oo Jo Ql(gh) 92(€h) J( ) XY, x Vs @( ) H Mz( ) ( )

Moreover,
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where
} L (1) T (2) € <
ns(e) = alen) (V") (o 5 ) + enen (V=) (o )
02(en) (2) z x
e AR G Sw et

We claim that if K € R?Y is a compact set then there exists a positive constant C(K), depending only on
K, such that for all y;,ys € RV, £, ¢ € K,

|f(y1,92,€) — f(y1,92,€")| < C(K)[E =€) (3.48)

In fact, the continuity of f (see Remark 1.8 (ii)) and (F1) ensure that there exists a positive constant ¢(K)
only depending on K such that for all y1,ys € RV, € € K,

On the other hand, by (F2) (see, for example, [32, Thm. 4.36]) f(y1,ya, ) is locally Lipschitz with

Vdx N
T

Lip(f(y1,y2,-); B(0;7)) < sup { | f(y1,92,€) — fF(y1,92,&)| : €,€ € B(0,2r)}. (3.50)

From (3.49) and (3.50), we deduce that (3.48) holds.

Taking into account (1.1), in view of (3.48) for each j € N we can find a positive constant C; independent
of € such that

F., (unj) < /Qf($7 ﬁ,Vuj(a:) + (Vy1¢§1)) <$7 ﬁ) + (Vyz¢a('2)) (gc, $7 Qzéh)>) dz

+ Cj/ |19h,j(37)| d:L‘,
Q

(3.51)
with, for all j € N,
lim / W3 ()] dar = 0, (3.52)
h—o00 Q
Furthermore, the function
gj(m7y17y2) = f(yh Y2, vu](x) + (Vyle(l))(x,yl) + (Vy2wj('2))(m7yl7y2))
belongs to C(€2; Cx (Y1 x Y2)), hence by (2.3)
x x
lim [ gilx, ——, dx:/ gi(x,y1,y2) dedy; dy,. 3.53
B[99 (5 Gy Ge) = ey O 00 dedn 259
From (3.51)—(3.53) we conclude that
lim sup lim sup F,, (up,;)
j—o00 h—oo
< limSUp/ Fyn 2, Vg (@) + (V08 (2, 50) + (V0 02) (2,91, 92)) dedyrdy,  (3:54)
J—00 QAxY;xXYs
= G(“’a p‘lu H2)7

where in the last equality we invoked Lemma 3.5 applied to U := Qx Y] x Y3 and g(z, y1,92, &) := f(y1,¥2,§),
and also (2.2).
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Using the separability of Cy (Q; Cyu (Y1 x Ya; RdXN)) and a diagonalization argument, from (3.47) and (3.54),
and noticing that {uy ;}n jen is a bounded sequence in wili (Q; Rd)7 we can find subsequences hy < h and
Jji < j such that uy, ;, € C™ (ﬁ; Rd) satisfies

vuhk ]k,C Lﬂi\)‘ UNTIRIZS) lim sup FEhk (uhk,jk) < G(“’ﬁ K, “2)' (3'55)

k—oo

Finally, consider the sequence {wp, }pen C BV(Q; Rd) defined by

wr i 4 Wi if h = hy, for some k € N,
L 9 if h # hy, for all k € N,

where {vp, then C BV(Q;Rd) is a sequence such that Dvh?’;%)\m”l#2 (which exists by Proposition 2.1).
Then th%)\u#l)“w and so by (3.55)

FSC(”leNZ) < hhnligf Feh (wh) < limsuP FE;Lk (uhlmjk) < G(uv :ulal"’Q)'

k—o0
This concludes the proof of Theorem 3.1. O

The next theorem concerns the first equality in (1.14) relating the three-scale homogenized functional, F*¢,
and the effective energy, Fom™.

Theorem 3.7. Under the hypotheses of Theorem 3.1, assume further that the length scales 01, po satisfy
the condition (1.3). Then, for all u € BV (Q;R?),

FPo™(u) = inf F(u, py, o).
MleM*(Sz;BV#(Yl;Rd))
o €My (X Y1 BVy (YoiRD))

PRrOOF. Let u € BV (Q; Rd) be given. We will proceed in two steps.

Step 1. We prove that
FPo™ (u) > inf F(u, py, o). (3.56)

1 €M (QBViy (Y15RD))
u2eM*(Q><Y1;Bv#(y2;wd))

Let {en}nen be an arbitrary sequence of positive numbers converging to zero as h — oo, and let

{uptnen C BV(Q;Rd) be a sequence weakly-* converging to u in BV(Q;Rd) as h — oco. By (F3), (F4)*

and (3.2), liminfy .o Fr, (up) € R. Using Theorem 1.3, we can find a subsequence hy < h and measures

By € My (9 BVy (Y1;R)), iy € M, (9 X Yy; BV (Y3 R?)), such that

lim F., (un,)=liminf F., (up), wp, 25wl g @ L2V
k— o0 k h—oo

=SC
€hy, Y1,y2° Duhk Au NP

Chy
Hence, taking into account Theorem 3.1 (see (3.37)),

inf Fsc(uv)u’lal"@) g Fsc(u7ﬁ'1vﬂ2) g lihmianEh (’Lth)
L — 00

1 €M (2B Viy (Y5RD))
o €M (X Y15 BVy (YoiR))

Taking the infimum over all sequences {up, }ren as above, we deduce that (3.56) holds.

Step 2. We show that
FPo™ (u) < inf Fo(u, py, o). (3.57)

HleM*(Q:BV#(Yl;]Rd))
u2eM*(Q><y1;Bv#(y2;wd))

Let {en}neny be an arbitrary sequence of positive numbers converging to zero as h — oo, and take
ny € M*(Q;BV# (Yl;Rd)), Hny € M*(Q x Y1; BVy (Yg;Rd)). Reasoning as in the proof of (3.45), we
can find a subsequence hj, < h and a sequence {vtren C C™(€;R?) such that (see (3.46) and (3.55))

lim |vk —u|dx =0, Vvk/leﬁx\u Lty hrnsupF6 ( k) < F(u, g, po)-

k—o0 k—o00
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Consequently, we also have that Dv, = Du weakly-x in M(Q;RdXN ) as k — oco. Finally, define

,_{vk if h = hy, for some k € N,
up = .
u  otherwise.

Then u;, = u weakly- in BV(Q;Rd) as h — o0, so that

Fhom(y) < lihmianEh(u ) < limsup e, (vi) < F*(u, py, pa),

k— o0

from which we get (3.57) by taking the infimum over all p, € M, (Q;BV# (Yl;Rd)) and p, € M*(Q X
Yl;BV#(YQ;Rd)). O

Remark 3.8. We observe that Theorems 3.1 and 3.7 hold if (F4)* is replaced by (F4) (see also
Remark 1.8 (1)).

In order to establish the integral representation for the effective energy F"°™ stated in Theorem 1.6 we will
need some auxiliary results. The first one is a measurable selection criterion (see [31, Lemma 3.10]; see also

[18]).

Lemma 3.9. Let Z be a separable metric space, let T be a measurable space and let T : T — 2%
be a multifunction such that for every t € T, T'(t) C Z is nonempty and open, and for every z € Z,
{t € T: z € I'(t)} is measurable. Then I' admits a measurable selection, i.e., there exists a measurable
function v : T'— Z such that for allt € T, v(t) € I'(t).

Next, we observe that the following result is a simple consequence of [35, Thm. 6] (see also [23] in the case
where d = 1 and g is coercive).

Lemma 3.10. Assume that Q C RY is an open and bounded set with OS2 Lipschitz, and let g : RN — R
be a convex function such that for all ¢ € RN and for some constant M > 0, |g(&)] < M (1 + |£]). Then,
for all § > 0 and for all u € BV(Q;RdXN), there exists a sequence {u;j}jen C WH1 (Q;RdXN) such that

Uj X u weakly-x in BV(Q;RdXN) as j — oo, and

Jaunae s [ (G0t @) diDul@ + o> in [ o

The next two lemmas provide sufficient conditions under which equality (ghom)®® = (¢°°)hom holds.

Lemma 3.11. Let g : RY x RN x RN — R be a Borel function satisfying conditions (F1)-(F4) and (F8).
Then,

(9hom)™ = (9% )hom- (3.58)

PROOF. We start by observing that, arguing as in [6, Thm. 4], we can prove a similar result to [13,
Lemme 3.5]: If b : RY x RN x RN — R is a Borel function satisfying hypotheses (F1)-(F4), then for all
y1 € RV, ¥ € RN (see (1.7) and (1.9)),

(Fonom, )" (91, 67) = \PzeE#.(Yz,]Rde)/ R (y1, 92, € + Wa(y2)) dye (3.59)
where, for k € N,
Ey (Yk;RdXN) = {\II = (\IJU) EL;o(Yk;RdXN):

/ U(yx)dyr =0, div¥;. =0 for all i € {1,~-~,d}}.
Yy

25



Feb 25, 2011

Similarly, since hnom, : RY x RN — R is also a Borel function satisfying conditions (F1)-(F4), we have
that for all £* € R¥*N

h om EF) = i f h omso * 9 * \Ij d . .
e €)= i o). €° + 1) (3.0)

Moreover, for all y;,y2 € RV, £ € RN (see, for example, [39, Thm. 13.3, Lemma 7.42]),

h>(y1,y2,§) = sup £:8% (hnom,) ™ (y1,€) = sup §:¢" (3.61)

(y1,y2,€*)€ domh* (y1,6*)€ dome (Phomy ) *

If, in addition, h* is bounded from above in dom.h*, then we claim that for all y;,ys € RN, £* € RN,

(h) (1,2, €7 = {0 1 (01,02, ) € dlomch, (3.62)
oo otherwise.

Indeed, under this additional hypothesis, we have that for each y1,y2 € RY the set {¢* € RN (y, 95, £%) €
dom.h*} is convex and closed. Hence (see, for example, [28], [39]), the indicator function Xdom, s+, that is,
the function defined by

*\ L 0 if (ylayZug*) € domeh*7
Xdom.h* (ylay2a§ ) Ea {OO otherwise,

coincides with its biconjugate function (Xdom,n+)**. On the other hand, defining for each ¢ > 0,

h(y1,y2,t&) — h(y1,y2,0)

t y Y1,Y2 ERNageRdXNa

ht(y17y27§) =

due to the convexity hypothesis we have that for all yi,ys € RV, ¢ € RN ¢t € RY s hy(y1,10,€) is
nondecreasing and

sup he(y1,y2,6) = lim hy(y1,y2,€) = R (y1,92,§)-
t>0 t—oo
Furthermore, it can be shown that for all yi,y» € RV, &, &% € RV,
inf h:(ylv Y2, 5*) = lim h: (yla Y2, f*) = Xdom,h* (yh Y2, 5*)7
t>0 t— 00

(%gghr)**(ylay%g) = (iglg ht)*(yl,y%g) = (hoc)*(yl,y%g),

so that (3.62) follows from the equality (Xdom.n*)™™ = Xdom,h*-

We now establish equality (3.58) in two steps. Notice that both gnom, and gnom, as well as their respective
recession functions, are real-valued Borel functions satisfying similar conditions to (F1)—(F4).

Step 1. We prove that (ghoms )™ = (6°°)homs,-

Inequality (ghom, )™ < (9°°)hom, follows from the definitions of both functions and using Lebesgue Dominated
Convergence Theorem taking into account (F3) and (F4).

We claim that to prove that (ghom, )™ = (9°° )homs, it suffices to show that

*

dome (ghomz)* o dome((goo)homg) . (363)
In fact, if (3.63) holds then by (3.61) we have that
(ghomz)oo 2 ((goo)homg)oo- (364)
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o0

Since (¢°)hom, is positively 1-homogeneous in the last variable, we have that ((¢°)homs) = (9°)homs:

which together with (3.64) yields (ghoms )™ = (6°°)homs,-

We now prove (3.63). Let (y1,&*) € dom, ((goo)homQ)*. Then, by (3.59) (with g replaced by ¢g°°), there exists
Uy € Bu (Yg; ]RdXN) such that

/Y (%) (0142, + T (y2)) dys < 00,

and so (3.62) ensures that for a.e. y2 € Y2 we have (y1,y2,* + ¥a(y2)) € dom.g*. From (3.59) and (F8) we
conclude that

(Ghoms )" (41,6%) < / 0" (1, 92, €+ Ta(y2)) dy < C < oo,

Y2

Thus, (y1,£*) € dome(ghom, )™, which proves (3.63). S0, (ghoms)™ = (4°°)hom, and, consequently,

( (gmom )OO) hom;

where in the last equality we used definition (1.10).

((gm)homg) = (97 )hom, (3.65)

homy

Step 2. We prove that (ghom)® = (¢°°)hom-

It suffices to observe that (F3), (F8) and (3.59) imply that (ghom,)™ is also bounded on its effective domain.
Hence, reasoning as before and in view of (3.60),

((ghoma)"") = ((ghomQ)homl)oo = (hom)™- (3.66)

homy

Thus, from (3.65)—(3.66) we conclude that (ghom)™ = (9°°)hom- |

Lemma 3.12. Let g : RN x RY x RN — R be a Borel function satisfying conditions (F1), (F3), (F4)’
and (F7). Then (ghom)> = (9°°)hom-

PrOOF. Note that (F7) is equivalent to requiring that there exist constants C,L > 0 and a € (0,1) such
that given yy, y» € RY and ¢ € RN arbitrarily, then for all ¢ € R such that t[¢| > L,

g(y17y27t£) < C|£|l—a.

. <oen (3.67)

goo(ylvy%f) -

We now prove that
(ghomz)oo = (goo)homz- (368)

Inequality (ghoms,)® < (9°°)hom, follows from the definitions of both functions and Fatou’s Lemma taking
into account (F3) and (F4)’.

Conversely, fix y; € R, ¢ € RN By definition of infimum, for each ¢t > 1 we can find 1); € W;’l (Yg;]Rd)
such that

omz (Y1, 1
/ 9(y1, Y2, 1€ + 1V (y2)) dyy < 1, t8) 1 (3.69)
v t t t
In particular, (3.69), together with (F3) and (F4)’, yields
€+ Vi (y2)| dyo < C(1+ [€]), (3.70)

Y>
for some positive constant C' independent of t.
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By definition of (¢°°)noms,,

(6% homs (41, €) < / (Y1, y2, € + Ve (y2)) dys

Y2

CL /
<=+
b Fan{yes tle+ Vo) > L}
where we used the fact that in view of (F3), ¢°°(y1,y2,£) < C|¢|. Invoking, in addition, (3.67), (F4)’ and
(3.69), in this order, we have

(9% homs (y1,€) < oL, 91,92, 1+ 1Vu(y2)) | €+ v%wﬂl_a |

t ~/Yzﬂ{y2it|§+v¢t(y2)>L} ¢ t

C C
(Lt+ 1) _"_/Y2 g(ylay27t§:tv¢t(y2)) dyg + t_a/ |£+th(y2)|1—a dy2 (371)

< C(L+1)+1 + ghomQ(ylatg)

S

9% (Y1, y2, € + Vo (y2)) dye,

<

; : +t (CO+en)

where in the last estimate we also used Holder’s Inequality together with (3.70). Letting ¢ — oo, we conclude
that (6°°)homs < (Jhom, ). Thus, (3.68) holds. Consequently,

((ghom)Oo)hom1 - ((gm)homg)hom1 = (9% Jhom-

Next we show that
= ((ghomg)homl) 3 (372)

((ghom )°O>

which will finish the proof since, by definition, ((ghomz)homl)OO = (ghom )™

hom;

In view of the hypotheses on g and using definition (1.9), it can be shown that gnom, : RY x RN — R is
a Borel function satisfying conditions (F1), (F3) and (F4)’. If we prove that gnom, also satisfies (F7) then,
reasoning as in the proof of (3.68), we deduce that (3.72) holds.

Let C,L > 0 and « € (0,1) be given by (F7) for g. Fix y1 € RY and £ € R™¥ such that |¢| = 1. Let
t > L :=max{1, L}. Using (3.68) and (3.71), we have

YJhom, (yl, tg) Ghoms (yl, tf) C(L + ]-) +1 C =\ 1—« < 01

- (goc)homz (ylvg) - < + *(20)

(ghoms) > (y1,€) —

t t t to =g
(3.73)
where (' is a positive constant independent of ¢.
Conversely, for each 0 < § < 1 we can find 5 € W;&’l (Yg7 ]Rd) such that
/Y 9% (1,92, € + Vb5 (y2)) dyz < (97 )noms (41, €) + 6, (3.74)
2
so that, in view of (F3) and (F4)’,
1
G | 16+ Vis(y)ldye < ClE[+6 <O+ 1. (3.75)
Y>
From (3.68), (3.74) and (3.67), and taking into account that ¢g> > 0, we conclude that
Ghoms (Y1, 1§ o
% - (ghomz) (ylag)
Yo, tE + 1tV
< / 9v, 92,4 ; Yolv2)) — 9% W1, y2,§ + Vbs(y2)) dy2 + 6
v (3.76)
1 a t t :
¥ te Yari{ys: 1+ Vs (42)|<L} t
C{C?+CO)  C(1+1L)
e o t+ s
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where in the last inequality we also used Holder’s Inequality together with (3.75), and (F3). Letting 6 — 0
in (3.76), using the fact that ¢ > ¢t whenever ¢ > 1 together with (3.73), we deduce that gnom, satisfies
(F7). O

We now prove Proposition 1.4.

PrROOF OF PROPOSITION 1.4. Without loss of generality we may assume that the parameter n > 0 takes
values on a sequence of positive numbers converging to zero.

(i) We start by observing that for fixed yi,y2 € RN, £ € RPN the sequences {f,(y1,y2,€)} >0

{()* (W1, 92, ) b0 and {((f5)**)®(y1, Y2, &) }n>0 are decreasing (as n — 01), so that the respective limits
as ) — 07 exist and are given by the infimum in 7 > 0.

Recalling definition (1.8) and in view of (F3) and (F4), we have that the biconjugate function f** of f
is such that for all y;,y2 € RY, f**(y;,v2,-) is a convex function which coincides with the convex envelop
Cf(y1,y2,-) of f(y1,ya,") (see, for example, [32, Thm. 4.92]). Precisely, for all (y;,ya,&) € RY x RN x RN

P12, €) = Cf (y1,52,€) :=sup {g(€): g: RN — R convex, g(-) < f(y1,92.7)}- (3.77)

Note that the same holds true for (f,)**. Consequently, ((f,)**)> is a convex function, since the recession
function of a convex function is a convex function. Moreover, for all > 0, we have that

Fr< ()™ < (3.78)

and so, using the fact that the pointwise limit of a sequence of convex functions is a convex function, passing
(3.78) to the limit as  — 0T we get

(fn)**(ylvy%g) = f**(ylvy%g)' (379)

lim

'r]~>0+
In view of (3.78), (f**)>° < ((f,)**)>° < (f,)°; thus, letting n — 0 and observing that (f,))>(y1,y2,&) =
7 (y1,y2,€) + n|&|, we have

() (1,92, 6) < ((for)™) ™ (01,42, 6) < (F7°) (w1, 42, 6), (3.80)

where we also used the fact that both functions (f**)>° and ((fo+)**)°° are convex in the last variable, since
the recession function of a convex function is also a convex function. We further observe that ((fo+)**)>°
is positively 1-homogeneous in the last variable because it is the pointwise limit of a sequence of positively
1-homogeneous functions in the last variable.

(i)—a) If, in addition, f also satisfies (F2), then (f**)°° = f°° = (f°°)**, which, together with (3.80), implies
that ((fo-)*) = /.

(i)-b) Assume that d = 1 and that, in addition, f also satisfies (F7).

In the scalar case d = 1 the notions of convexity and quasiconvexity agree (see, for example, [22, Thms. 5.3,
6.9]), therefore f** is alternatively given by

(1, 2, €) = inf { [ Hnme+ Vot ay: o WMY)} (3.81)

for (y1,y2,€) € RV x RN x RV,

Since f,, is a Borel function satisfying conditions (F1), (F3), (F4)’ and (F7), using (3.81) and arguing as
in the proof of Lemma 3.12, it can be shown that (f;,)** also satisfies (F7) and that ((f,;)**)> = ((f,)>°)**.
Consequently,

((fO‘*’)**)OO(yl,yQag) = nli}r(r)h((fn)**)oo(ylvy?ag) = 7]1 m ((fn)oo)**(ylvy%g) = (foo)**(ylvy%g)v (382)

i
—0+
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where the last equality may be proved in a similar way as (3.79) (with f replaced by f°°).

(i) Just as (i) above, we can be shown that the limit (1.12) exists and defines a positively 1-homogeneous
convex function (((f0+)**)hom)oo ‘RN - R.

By (1.9), (F3) and (F4), there exists a constant M > 0 such that for all y;, yo € RY, ¢ € RN,

[f (1,42, O S MA+[E]), [ froms (Y1, )] < M+ [E]), | from (€] < M(1+[£]). (3.83)

Using in addition (3.79), Lebesgue Dominated Convergence Theorem yields

lim ((fn)**)homz (¥1,€) < (f" )hom,>

n—0+
which, together with inequality ((f,)**)hom, = (f**)hom,, implies that

lm ()™ Jhoms (¥1,§) = (f ™ hom, (41, £)-

0+
Similar arguments ensure that
nlirg+((fn)**)hom(€) = nlirg+(((fn)**>hom2)hom1 (&) = ((f")noms Jnom, (§) = (/™ )hom (&), (3.84)
and that
e (((F)™)%) pom©) = (((F0+)™)%) o (©) < ((F%)™) o (€)- (3.85)

with ((fo+)**)>° the function defined by (1.11), where in the last inequality we used (3.80).

Using the fact that if ¢ is a function satisfying (F3) and (F4) then (ghom)™ < (¢°°)hom, passing to the limit
as 7 — 0T the chain of inequalities

((Fmom) ™ < () mom) ™ < (1)) o

from (3.85) we obtain
(" hom) ™ (€) < (((For ) hom) ™ (€) < (((F0+)™)™) o (€) < (7)) om (6)- (3.86)

(ii)—a) Assume that, in addition, f also satisfies (F2) and (F38).

In this case, from (3.86) we get
(fhom)oc g (fO*,hom)oo < (foo)homa (387)

where (fo+ nom)™ = (((f()+)**)hmn)OO = nli]%l+ ((f,,)hom)oo(f), since (f,))** = f,. To conclude that
(fo+ hom)™ = (from)™ = (f°°)hom it suffices to apply Lemma 3.11 to f, taking into account (3.87).

(ii)-b) Assume that, in addition, f also satisfies (F2) and (F7).

As before, using (1.9), equality (f,)°(y1,¥2,&) = £ (1, y2,&) +n/¢|, and Lebesgue Dominated Convergence
Theorem together with (3.83), we obtain

lim ((fn)oo)hom(g) = (foo)hom(g)- (388)

n—07+

By Lemma 3.12 applied to f,, we conclude that for all 7 > 0, ((f;)hom)™ = ((f5)°°)hom, Which, together
with (3.88), yields (fo+ hom)™ = (/" )hom-

(ii)—c) Assume that d = 1 and that, in addition, f also satisfies (F7) (with d = 1).
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As we observed in (i)-b), (f,;)** is a Borel function satisfying conditions (F1), (F3), (F4) and (FT).
Applying Lemma 3.12 to (f,)**, using the first equality in (3.85) and by (3.82),

(o) hom) () = Tim_ () hom) ™ (€) = Lm_ (((£2))>) o (6)

n—0+ n—0+
= (o)) hom &) = ((F2)™) pom (6)-
This concludes the proof of Proposition 1.4. |

We finally prove Theorem 1.6.

PROOF OF THEOREM 1.6. By Theorem 3.1 and Remark 3.8, we have that (1.13) holds.

We observe that in view of (F1)—(F4), we have that both fiom, and fhom are real-valued Borel functions,
satisfying (F1)-(F4), and we can find a constant M > 0 such that for all g1, yo € RN, £ € RN

|f (1,92, )] < ML+ [ED)s [ froms (y1, )] < ML+ [E]),  [from(€)] < M(1+ [€]). (3-89)
Moreover, since (F4) holds for fhom,
1|i§r|n inf £ h‘“g'(f) > 0. (3.90)

The first equality in (1.14) is given by Theorem 3.7 (see also Remark 3.8). To prove the second equality in
(1.14) we will proceed in several steps.

Step 1. We show that for all u € BV (Q;R?),

inf P (o) > [ from (V@) do + [ (o)™ (G50 (@) A0l @) 1)

K1 €M (2BViy (Y15RD))
Mo €My (X Y13 BVy (Yo:RD))
Fix (u,py, py) € BV(Q;R?Y) x M, (2 BV (Y1;RY)) x M, (Q x Y1; BV (Y2;RY)), and let {u;}jen C
Co(@RY), {piV} L C C2(QCx (ViiRY)) and {$7} L C C(Q05 (V1 x Ya;RY)) be sequences
given by Proposition 2.3.

JEN

By (1.13), applying Lemma 3.5 to U := Qx Y7 xYs and g(z,y1,¥2,&) := [f(y1,y2, ) (see also Remark 1.8 (ii)),
and using the definitions of fhom, and fnom together with Fubini’s Theorem, we conclude that

ac

dxe
Fo(u, py, py) = / f(yh Yo, M(ﬂi,yuyz)) dedy;dys

QXY XY d£3N
d\?
+/ [ y1,y2aw($,yhy2) d|[As, (2,91, y2)
QXY xYa ( Al | ) ok
= lim Fyn, e, Vg () + (Vi 08 (@, 00) + (V4,082 (2, 91, 92)) dedyidys

7= JOxY; xYs

J—00

> lim inf/ Jhoms (yl7 Vu;(x) + (Vyle(-l))(a:, yl)) dxdy,
QxY;

J—00

> liminf/ from (Vu;(z)) do
Q

dD%u
> [ fron(Fute) de+ [ (Grow)™ (100 0)) D"l 2),
/Q 0 d[| D ull
where in the last inequality we have used [32, Thm. 5.21] (see also Remark 1.8 (i)) taking into account
that VujﬁNLQ X Du weakly-x in M(Q;RdXN) as j — o0, and that fuon is a real-valued convex
function satisfying (3.90). Taking the infimum over all p; € M, (Q; BV4(Y1;R?)) and py € M, (Q x
Yi; BVy (Yg;Rd)), we obtain (3.91).
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Step 2. We prove that for all u € W11 (Q; Rd),

inf F(u, pay, ) < /Q From (Vu(2)) da. (3.92)

M1 €M (QBVy (Y15RD))
}LQEM*(QXYl;BV#(YQ;]Rd))

Fix 7 > 0, and let 0 < 7 < 1) be such that for all measurable sets D C Q with £V (D) < 7,

/D (1+ [Vu(@))) de < n. (3.93)

In view of (3.83), without loss of generality we may assume that for all = € €,
Joom(Vu(z)) € R. (3.94)

Fix 0 < § < 7, and consider the multifunction F? Q- ZWQI(YI R defined, for each = € Q, by

Id(z) := {1/;1 e Wyt (Vi RY): Froms (Y1, Vu(z) + Vor (11)) dyr < from (Vu(z)) + 5}.

Y1

By (3.94), for all x € Q one has T'{(z) # (. Moreover, if {1;}jen C W#l(Yl;Rd)\F‘f(m) is a sequence
converging in W;l (Y1;R?) to some 1, then, taking into account (3.83) and the continuity of fhom,(y1,-),
by Lebesgue Dominated Convergence Theorem we deduce that ¢ € W* (Y1; RY)\I'9(x). Thus, T9(x) is an
open subset of W;’l (Y1;R%). Furthermore, given 11 € W;l (Y1;R?), the measurability of the function

T +— v fhomg (yh VU(ZC) + vwl(yl)) dyl - fhom(vu(x)) -0

ensures the measurability of the set {z € Q: 1 € I'{(x)}. Thus, by Lemma 3.9 we can find a measurable
selection ¢; : Q — W;l (Yl;Rd) of T'Y. Moreover, by Lusin’s Theorem, ¢); € L' (95; W;’l (Yl;]Rd)) for a
suitable measurable set 5 C Q such that £V (Q\Qs) < §. Since for a.e. 2 € Qs one has ¢ (x) € I'{(x), in
view of (3.83) and (3.93) we obtain

/Q o 41, V@) + 31, 31)) dadys < /Q From(Vu(a)) dz + My + LN (9), (3.95)

where we also used the fact that 0 < § <7 <.
Similarly, let 0 < 7 < § be such that for all measurable sets £ C Qs x Y with L2V (E) < 7,

[0+ 19ula) + Vs ) dady <. (3.96)

As before, we may assume without loss of generality that for all (z,y1) € Q5 x Y1 we have from, (y1, Vu(z) +

Vi ¥1(z, 1)) € R. Moreover, fixed 0 < v < 7, the multifunction ' : Q5 x Y3 — oWy (2R defined, for
each (z,y1) € Qs x Y1, by

LY (z, 1) = {¢2 € W;’I(E;Rd) : f 1, y2, Vu(@)+Vy, 1 (2, y1) + Viba(y2)) dya
Y2

< Fromy (1, V() + V. 61 (2, 31)) + v},

is such that for all (z,y1) € Q5 x Y1, I'J(x,y1) is a nonempty and open subset of W;l (Y2;RY), and for
all 19 € W%lgl(i/'g;Rd)7 the set {(x,y1) € Qs x Y1: 1y € I'J(z,y1)} is measurable. Hence, by Lemma 3.9

32



Feb 25, 2011

we can find a measurable selection 5 : Q5 x Y] — W#l(YQ;Rd) of I'J. Moreover, by Lusin’s Theorem,
Wy € LT (EW;W;}l(}/Q;Rd)) for a suitable measurable set E, C Qs x Y7 such that LN (Qs x YiI\E,) < 7.
Since for a.e. (z,y1) € E. one has ¢s(z,y1) € T3 (z,41), in view of (3.83) and (3.96) we get

/ fyr,y2, Vu(@) + Vb1 (2, 41) + Vi, the (2, y192)) dedyidys
By x¥2 (3.97)

< / Fuoms (41, V() + ¥y, By (2, 1)) dzdyy + My + 1LY ().
QgXYl

Finally, define 1, € L' (Q; W' (Y13 R?)), ¢y € L' (Qx Yy Wy (Ya; RY)) by setting oy (x) 1= 1 (2) if & € Qs
P(x) == 0if z € Q\Qy5, Yoz, y1) = Yo(z,y1) if (z,y1) € Ey, and o(z,y1) := 0 if (z,11) € (2 x Y1)\ E,.
Using the usual identification of an integrable function with a measure, elements of L' (Q; W;ﬁ’l (Y1; Rd)) and
Lt (Q X Y71; W;l (Yg;Rd)) can be seen as elements of M, (Q; BV (Yl;]Rd)) and M*(Q x Y1; BVy (Yg;Rd)),
respectively. Considering this identification (see also (1.4)), we have

Auﬂl’lﬂl& [QxY1xYs vuz?ngl X Ya + vylwlﬁfngl X Ya + vysz'C?[ngl XYs* (3'98)
From (1.13), (3.98), (3.83), (3.93), (3.96), (3.97) and (3.95), in this order, we deduce that
inf Fee (U, K, “2)

HIGM*(SZ;BV#(YI;Rd))
o €My (2X Y13 BVy (YoiRD))
d)ec
_ : U,y s Ko
= inf / f(yh Y2, 3N (l‘, Y1, y2)) dxdyldy?
“16M*(Q:BV#(Y1:R‘1)) QOXY1XYo d,C
Mo € My (2X Y] BVy (Yo i;RD))

o] dAZ;/“"ly”Q s
+ f (ylay27 S (%?ﬂa?&)) d||)\u7#1’“2||(x7ylay2)
QXY xYs d”)‘ ”

Uy Ko

N

/ F1, 92, Vu(z) + Vi, ¥1(2, 1) + Vi, ¥2(2, 91, y2)) dedydy:
QXYl XYQ

f(y1,y2, Vu(r)) dedy dys

/(\Q\Q(;)Xyl ><Y2
+/ Fyr,y2, Vu(x) + Vy, 1 (x,91)) dedyi dys
((Qg XYl)\E—Y)XYQ

+ / 1,92, Vu(@) + Vb1 (z,91) + Vi, b2 (2, y192)) dzdy; dyo
E—YXYQ

< 2Mn+ /Q From (Vau(z)) da + 2(M7 + LN ().

Letting 7 — 0%, we obtain (3.92).
Step 3. We prove that if (F4) is satisfied, then the converse of (3.91) holds for all u € BV (Q; R?).

Indeed, let u € BV(Q;Rd). Since fhom : RN — R is a convex function satisfying (3.83), in view of
Lemma 3.10 for all n > 0 we can find a sequence {u;}jen C lel(Q;]Rd) weakly-x converging to u in
BV(Q; ]Rd) and such that

) w( dD%u s

[ From (V0 (@) 42 < [ rom (V@) dz 4 [ (fuom) (2 @) dl Dl () + 1.
Q Q d|| D ul

j—00 Q

Under the present hypotheses on f, it can be checked that F'™ is sequentially lower semicontinuous with
respect to the weak-+ convergence in BV(Q; Rd). Hence, using Theorem 3.7 and (3.92),

inf F*°(u, by, o) < liminf inf F™*(uj, py, ps)
p.leM*(Q;Bv#(Yl;Rd)) j—o0 /.LIGM*(Q;BV#(Yl;Rd))
/-LQEM*(QXYl;BV#(YZ;Rd)) /.LzeM*(QxYl;BV#(YZ;Rd))
. dD%u
< i | ron (Vs 4 < [ from(Fute)) de + [ (rom)™ (575007 (0) dID%ul @) +
J=oe Jo Q Q d[| Dsul|
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from which we conclude Step 3 by letting n — 0.
Step 4. We establish the second equality in (1.14).

Let v € BV(Q;Rd), and fix n > 0 (which, without loss of generality, we assume will take values on a
sequence of positive numbers converging to zero). Then f, (we recall, f,(y1,y2,&) == f(y1,v2,€) + nl¢])
satisfies conditions (F1)—(F3), (F4)’, (F5); condition (F6), which was only used in Lemma 3.2, reads
slightly different for f, than for f (see (3.8)), but it can be checked that this difference is innocuous. So, in
view of Steps 1, 2 and 3 applied to f,

inf F;C(u,ul,p@) = /an,hom(vu(l’))dl‘+/(fn,hom)°°<ﬂ(x)> d|| D*ul|(z),

K1 €My (23BVy (Y1 5RD)) Q d||DS'LLH
/.LQEM*(QXYl;BV#(YQ:Rd))

(3.99)
where F}¢ is the functional given by (3.44), and where f; hom := (f5)hom-

In order to pass (3.99) to the limit as 7 — 0T, we start by observing that for fixed (u,p,p,) €
BV(Q;Rd) X M*(Q;BV#(Yl;Rd)) X M*(Q X E;BV#(YQ;Rd)), Au,p, m, has finite total variation and
{5 (u, py, o) bi>0 is a bounded decreasing sequence, and so

lim inf L (u, py, py) = inf inf EpC(u, py, po)
N—=0T Wi €M (BVL(Y]RY)) n n>0 1 €M (2B Vg (Y15RD)) !
Ko € My (2X Y] BVy (Yo i;RD)) Mo €My (2X Y13 BViy (YoiRD)) (3 100)
= inf inf F7°(u, py, po) = inf F™(u, py, po).
H1 EML(2BVy (YiRD) >0 By €M (2B Vy (Y1:RD))
o €My (X Y13 BViy (YoiRD)) o €My (2X Y13 BViy (YoiRD))

Furthermore, using Lebesgue Dominated Convergence Theorem together with (3.89), in view of (3.84)
(observing that thanks to (F2), f** = f and (f,))** = f,) and of (1.12) we get

lim, /Q Fomom(Vau(z)) da = /Q From(Vu(z)) dz, (3.101)
and
dD? dD?®
Jim [ (Fuom) ™ (e () AID%l@) = / (o o) (g g @) AIDull@). (3102

From (3.99), (3.100), (3.101) and (3.102), we conclude Step 4.
Finally, we observe that
a) if, in addition, f satisfies (F4)’, then by Step 1-Step 4, we have that (fo+ nom)™ = (fhom)™;
b) if, in addition, f satisfies (F8), then by Proposition 1.4 (ii)-a), (fo+ hom)™ = (fhom)™ = (/°°)hom;
c) if, in addition, f satisfies (F7), then Proposition 1.4 (ii)-b) yields (fo+ hom)™ = (/*°)hom- O

4. Proof of Corollary 1.7

As in the previous section, below we will assume, without loss of generality ,that n = 2, since the
generalization to an arbitrary n € N does not bring any additional technical difficulties.

The proof of Corollary 1.7 relies on Theorems 1.6 and on the next lemma concerning properties inherited by

f** from f.

Lemma 4.1. Assume that f : RV x RN x RN — R is a function satisfying conditions (F1), (F3), (F4),
(F5) and (F6) with d = 1. Then the biconjugate function f** of f is a real-valued Borel function in
RN x RN x RN, and verifies conditions (F1), (F3), (F4)’, (F5) and (F6) with d = 1.
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PROOF. By (3.77) and since f; < fa implies that Cf; < Cfa, the only nontrivial condition to verify is (F5).

Fix (y1,95) € RN x RN and § > 0 arbitrarily. Set 0 := §/(1 +2C?), where C' is given by (F3) and (F4)’,
and let 7 = 7(y}, y5,9) be given by (F5) for f and for such ¢.

Fix ¢ € RY and (y1,y2) € RY x RY such that |(y},45) — (y1,v2)| < 7. By (3.81), for each € > 0 we can find
@ € Wy™(Y) such that

/Yf(ylay%g"_v@e(y))dygf**(y17y27£)+67 (41)

and so,

T W1 y9:8) = £ (y1,2,6) < / (f(yi7yé7€+V<pe(y))—f(y1,y27£+V<pe(y)))dy+e
Y (4.2)

< / 51+ 1€+ Vo)) dy + e,
Y

where in the last inequality we used (F5) for f.
In view of (4.1), (F3) and (F4)’, we have that &[|€ + V| 1 (y;rv) — C < C(1+ [€]) + €. Thus, from (4.2)
we deduce that

Py €) = 7 (y1,92,6) < O(L+ C*(2+ [€]) + (6C + D)e < 6(1+ [€]) + (6C + D)e.

Letting ¢ — 07, we conclude that

Interchanging the roles between (y1, y5,€) and (y1,ys2,&), we prove that f**(y1,y2,&) — [ (y], v5,&) < o(1+
|€]) also holds. Thus f** satisfies (F5). |

PrOOF OF COROLLARY 1.7. We proceed in two steps.

Step 1. We prove that if in addition f satisfies (F4)’, then (1.15) holds with (f;7)> replaced by (f**)*°,
and (1.16) holds with (((fo+)**)nom) " replaced by ((f**)nom) " -

Substep 1.1. We show that the infima (1.5) and (1.6) remain unchanged if we substitute f by its biconjugate
function f**.

Fix (u, iy, py) € BV (Q) x M, (€ BV(Y1)) X M, (€2 x Y1; BV4(Y2)), and define

F5(uy oy, pg) = inf{liminf FX*(ue) : ue € BV(Q), Dugﬁ\)\u’#h#z}

e—0+ €

and
Frehom () — inf { lim iIJ}f F**(uz): ue € BV(Q), ue 2. u weakly-+ in BV(Q)},

e—0
where F** is the functional given by (3.1) for d = 1 and with f replaced by f**.

Notice that by Lemma 4.1 and Remark 1.8 (ii), f** is a real-valued continuous function in RY x RY x RV
satisfying conditions (F1), (F3), (F4)’, (F5) and (F6) with d = 1.

Since f** < f, we have that F**5(u, py, o) < F5¢(u, poy, o) and F*ohom(y) < Fhom(y). To prove the
opposite inequalities, we start by observing that in view of (3.38)—(3.42) the following equalities hold:

Fo5(u, g, o) :inf{liminf F(ue) : ue € WHY(Q), vuchm%Au,m,“z}

e—0+

. .. sk X X . 1,1 N  3-sc
=int {1t [ (L5 i V) e € W@, VuL M A}
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Moreover, a similar argument to (3.38)—(3.42) ensures that also

prebom () —inf { liminf F2*(ue): we € WHH(Q), ue 2 w weakly—x in BV(Q)}

=inf { liminf/ﬂf**(gl( 7 nggf) ) Vug(x))dx: ue € WHH(Q), u. 2. u weakly-x in BV(Q)}.

e—0t

Fix 6 > 0. We can find a sequence {e}, } e of positive numbers converging to zero as h — oo, and a sequence
{uh}heN C Wl’l(Q) such that VU}LL‘,NLQ%A TN and

o1(en)’ 92( h)’

F**wsc(uvu’layﬁ)_'_(;} hm f**<
Q

h—o0

, Vup(x ))dx

On the other hand (see, for example, [36, Cor. 3.13]; see also [28, Chapter X]), since f is a continuous function
satisfying (F3) and (F4)’, for each h € N there exist a sequence {uEh)}
up, in WH(Q) and such that

jen C Wh(Q) weakly converging to

/Qf**( - ,L,Vuh(x))dx:hm Qf( * ’ ,Vu;h)(x))dx.

01(en)” 02(cn) Jj—oo
Hence,
*%,8C €z € h)
F*%(u, oy, +4> hm lim , ,Vu( x) )dx, 4.3
(1 a1 o2) h—o0 j—o0 Qf(91(€h) 02(en) ( )) (43)
and for all ¢ € Co(Q; Cx (Y7 x Yo; RY)),
. . x x (h) . X x
lim lim T, —r, -Vu;”(x)dr = lim z, , - Vup(x)de
i i [ o 0 ) V@ e = i fe(r o, SEs) - Vunte)

:/ @($»y17y2) 'd)‘u,ul,/.l,2(x7yl7y2>-
QXY XY

Using a diagonalization argument and the separability of Co(£2; Oy (Y7 % Y2; RY)), from (4.3), (4.4) and (F4)’

we can find a sequence {jp, tren such that j, — oo as h — oo, vy, := u( ) ewh (), V'UhACNLQ;A wyphy thy
and

X
F*55(u, oy, +6 > lim — , Vo > F*(u, py, o),
( 1251 I’LQ) oo Qf<Q1(€h) Q2<5h) h( )) ( 1251 “2)

where in the last inequality we used the definition of F*¢(u, py, ). Letting § — 0%, we conclude that
F**,Sc(u7/'l’1ay‘2) 2 FSC(“)NU#’Z)'

The proof of inequality F**P°™(y) > Fhom(y) is similar. Thus, we conclude that F**¢(u, pu,, uy) =
Fsc(u7ul7“2) and F**,hom( ) Fhom(u)

Substep 1.2. Finally, we observe that in view of Theorem 1.6 (i) and Lemma 4.1, we have that for all
(1, 1y z) € BV(©) % M, (2 BVi(Y)) x M. (Q x Yi: BVy(Y2),

F**,sc - * ok dAZ?ﬂuNz d d d
(U,M17N2) . f Y1,Y2, 3N (xayhyQ) ray1dys
QXY XY dc

*3k ) 0O dAZ M2 s
+ (f ) (ylzyQa d )\s (xayhyQ)) d||/\u,p1,u2||(xvylay2)
QXYlXYZ H Uy, /.L2||
and
F**,hom(u) — inf F**,SC(U7 N1>N2)

By EML(2BVg (Y1)
Ho €M (2XY1;BVy (V)

L om(uta)) o+ [

Q

(o)™ (e @) A" ),
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and this, together with Substep 1.1, completes the proof of Step 1.

Step 2. We establish Corollary 1.7.

Fix n > 0 (which, without loss of generality, we assume will take values on a sequence of positive numbers
converging to zero), and let ;¢ and Fé‘om be the functionals given by (1.5) and (1.6) for d = 1, respectively,
with f replaced by f;.

Assuming (F6) with o(1) replaced by —|o(1)] in (F6), it can be shown that we may use Step 1 for f,. Thus,
for every (1. 1y 1) € BV(Q) x Mo (5 BV (V1)) x M. (2 x Yi: BV(Y2)),

ac

SC ok d)\’U«’HpP'Q
FRe(u, o, po) = (fn) (y17y27 —(xay1>y2)) dzdyidys

QAxY; XY d‘CBN (4 5)
k% OO d)\fh#p#«z S '
- ()™ (2 T2 (@, ,92) ) NG (0 92,92)
QXY XY || u,/.l.l,uz”
and .
om _ : SC
Fn (U) - pleM*(lsIzl;fBV#(Yl)) Fn (’LL, 258 “2)
Mo €M, (QXY1: BV (Ya)) (4 6)

*% % oo dD%u s
= [ o (Vuta)) o+ [ () o)™ (g ) Dl @)

In order to pass (4.5) and (4.6) to the limit as n — 0%, we start by observing that for fixed
(u, oy, o) € BV(9) x M, (Q; BVy(Y1)) x M, (€ x Y1; BVy(Y2)), the sequences {F5(u, gy, py) }y>0 and
{Fgom(u, 1, o) }n>0 are decreasing (as ) — 07), so that the respective limits as n — 07 exist and are given
by the infimum in n > 0.

Let {uc}eso C BV(Q) be such that Du2%¢ )\, , .. Then {Du.}.>o is bounded in M(Q;RY) (see
Remark 22)3 and so since (fn)oo(yl’y%g) = foo(yl’ y?af) + 77|€|; we have

F:];C(u7 K, /"LQ) < hmlanE(uE) + nca
e—0t

where C is a constant independent of €. Letting 7 — 0% and then taking the infimum over all such sequences
{ue }e>0, we conclude that lim, o+ Fp¢(u, py, po) < F*(u, py, o). Conversely, since for all n > 0, f, > f,
we have that Fp¢(u, py, py) = F*(u, pq, py). Hence,

lim Fgc(uap’hu@) = FSC(lehaﬂz)- (47)
n—0+
Similar arguments ensure that
. hom _ hom
1711%1-*- F)O (u) = F (u). (4.8)
Moreover, as in (3.100),
lim inf Fpe(u, py, o) = inf FoC(u, oy, o). (4.9)
N—0F  HqeML(2BVL(Y1RD)) 1 €My (B Vy (Y1iRE))

/.LQEM*(QXYI;BV#(YZ;Rd)) /.LQEM*(QXYI;BV#(YQ;Rd))

So, letting n — 0 in (4.5) and (4.6), thanks to (4.7), (4.8), (4.9), (3.79), (3.80), (3.84), (3.86) and Lebesgue
Dominated Convergence Theorem together with (F3) and (F4), we obtain (1.15) and (1.16).

Finally, we observe that in view of Step 1, if f satisfies in addition (F4)’, then

((for)™)> = (f7)> and (((fo+)™ Inom) ™ = ((fIhom) "~ -

Moreover, if, in addition to (F1), (F3), (F4), (¥5) and (F6), with o(1) replaced by —|o(1)| in (F6), f
satisfies the condition (F7), then by Proposition 1.4 (i)-b) and (ii)—c),

((For)*)> = (£2) and (((for) ™ hom) ™ = ((F*)) o -
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