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Abstract
We study the Nehari manifold N associated to the boundary value

problem
−∆u = f(u) , u ∈ H1

0 (Ω) ,

where Ω is a bounded regular domain in Rn. Using elementary tools
from Differential Geometry, we provide a local description of N as
an hypersurface of the Sobolev space H1

0 (Ω). We prove that, at any
point u ∈ N , there exists an exterior tangent sphere whose curvature
is the limit of the increasing sequence of principal curvatures of N .
Also, the H1-norm of u ∈ N depends on the number of principal
negative curvatures. Finally, we study basic properties of an angle
decreasing flow on the Nehari manifold associated to homogeneous
non–linearities.

MSC: 35J15, 35J25, 35J50, 53A07 .

1 Introduction

The variational method introduced by Nehari in [9]–[10] was a significant
outcome of his research on the non–oscillating nature of solutions to certain
classes of second order equations. For instance, concerning the linear problem

y′′ + p(x)y = 0 , y(a) = y′(b) = 0 ,

where p is a continuous positive function, [Theorem 1, [8]] sets the equivalence
between the existence of a positive solution in [a,+∞[ and the fact that the
lowest eigenvalue

λ := min

∫ b
a y

′2 dx∫ b
a py

2 dx

∗This work is supported by F.B. 2008 ISFL-1-297 from FCT/MCTES/PT.
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satisfies λ > 1 for all b > a. In [7], a solution to the non–linear equation

y′′ + p(x)y2n+1 = 0 , y(a) = y(b) = 0

with a prescribed number m of intermediate zeros a < a1 < ... < am < b is
obtained by minimizing the functional

J̃(u; a1, ..., am) :=
m+1∑
ν=1

[J̃ν ]
1
n ,

where u ∈ C0,1
0 [a, b] satisfies u(a1) = ... = u(am) = 0 and

J̃ν(w) =

(∫ aν+1
aν

w′2 dx
)n+1

∫ aν+1
aν

pw2n+2 dx
.

is the Rayleigh coefficient on C0,1
0 ([aν , aν+1]). Similar ideas were later ex-

ploited in [14] and [15] although these works don’t mention Nehari’s early
contribution. In fact, as it was defined in [9], the “normalization condition”
(known a posteriori as the Nehari constrain)∫ b

a
y′

2
dx =

∫ b

a
y2F (y2, x) dx (u 6= 0) ,

was the basis of a more comprehensive method allowing the proof of the
existence of solutions to a second order non-linear equation of type

y′′ + yF (y2, x) = 0 ,

where the non-homogeneous linear term prevented the method of minimizing
a Rayleigh coefficient.

In the past few decades, the Nehari method has been extensively used on
the study of existence of ground–state, nodal, multi-spike or multi-bump solu-
tions, in what can be considered as a natural enlargement of Nehari’s concerns
about oscillatory aspects of second order non-linear differential equations (see
for instance [4],[5] and [12]). For the interested reader on an abstract treat-
ment of the Nehari method (or on further references about the subject) we
recommend the survey [13]. Our purpose to bring out a clearer picture of a
variational framework known since 1960 was, in some sense, stimulated by
the study of [2].

In section 1 we obtain classical estimates of the energy of a function satis-
fying the Nehari constrain and recall basic facts about the Nehari manifold.
In section 2 we use the notion of curvature to provide a local description of
the Nehari manifold N . Some regularity assumptions will be required both
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on the nonlinear term of the Nehari constrain as well as on the function
u ∈ N . In the last section, we propose an alternative flow on the Nehari
manifold (assuming an homogeneous nonlinearity) whose stable stationnary
points are, under appropriate conditions, solutions of the second order equa-
tion

−∆u = f(u) , u ∈ H1
0 (Ω) .

This work is a personal tribute to Nehari’s pioneering works [9]–[10] fifty
years after their publication. I thank Luis Sanchez and Pedro Girão for their
interest and support.

2 Preliminary results

Along this article we consider the space H1
0 (Ω), where Ω is a bounded and

regular domain of RN . We assume H1
0 (Ω) is endowed with the norm

‖u‖2 = 〈u, u〉 :=
∫
Ω
|∇u|2(x) dx .

As usual, we denote 2∗ = 2N
N−2

and 2∗ = +∞ if N = 2, so that the embedding

H1
0 (Ω) ⊂ Lq(Ω)

is compact for 1 ≤ q < 2∗. We introduce the classical Euler-Lagrange func-
tional

J(u) :=
1

2

∫
Ω
|∇u|2(x) dx−

∫
Ω
F (u)(x) dx , (2.1)

defined over H1
0 (Ω) where F (u) =

∫ u
0 f(s) ds. Critical points of J in H1

0 (Ω)
are classical solutions of the elliptic equation

−∆u = f(u) in Ω , u = 0 on ∂Ω , (2.2)

provided well known assumptions on the non-linear term f are verified (see,
for instance [11]). In our case, we require

(f1) f ∈ C2(R,R).

(f2) f(u)u ≤ βf ′(u)u2 where 0 < β < 1.

(f3) There exist positive constants ξ1 ≤ ξ2 such that

ξ1|u|p−2 ≤ f ′(u) ≤ ξ2|u|p−2 ,
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where 2 < p < 2∗.

Note that condition (f2) implies that f(0) = 0 as well as

ζF (u) ≤ f(u)u , (2.3)

for some ζ > 2, which is the classical Ambrosetti-Rabinowitz condition. Fur-
ther, we will require

(f3’) There exist positive constants ξ1 ≤ ξ2 such that

ξ1|u|p−2 ≤ f ′′(u)u ≤ ξ2|u|p−2 .

Condition (f3’) implies (f3) (adapting, if necessary, the constants ξ1 and ξ2).
We define a sequence (en) in H1

0 (Ω) in the following way. Let e1 be such that

‖e1‖2 = min
{
‖u‖2 :

∫
Ω
F (u)(x) dx = 1

}
,

and for n > 1

‖en‖2 = min
{
‖u‖2 :

∫
Ω
F (u)(x) dx = 1 , u ∈ ( span{e1, ..., en−1})⊥

}
.

(2.4)

We have the following fact whose proof we postpone to the Appendix.

Lemma 1 The sequence (en) is an orthogonal basis of H1
0 (Ω). Also (‖en‖)

is non-decreasing and
lim

n→∞
‖en‖ = ∞.

Remark 1 Each en satisfies the relation

−∆en = λnnf(en) +
n−1∑
i=1

λni(−∆ei) (2.5)

for some Lagrange multipliers λni. In particular, en ∈ C3,α(Ω) ∩ C0(Ω).
Multiplying (2.5) by en, and integrating by parts we conclude

λnn =
‖en‖2∫

Ω f(en)en (x) dx
> 0 .

A similar argument yields, for all m > n,

0 =
∫
Ω
∇en∇em(x) dx = λnn

∫
Ω
f(en)em(x) dx. (2.6)

Then (2.6) implies

for all m > n 〈∇J(en), em〉 = 0 .
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The Nehari manifold is defined as

N := {u ∈ H1
0 (Ω) : u 6= 0 and 〈∇J(u), u〉 = 0}. (2.7)

Condition 〈∇J(u), u〉 = 0 writes∫
Ω
|∇u|2(x) dx−

∫
Ω
f(u)u(x) dx = 0 . (2.8)

In the next Proposition we obtain estimates on a function u ∈ N based
on the dimension of a space where the second derivative of J at u is negative
definite.

Proposition 1 Assume f ∈ C1(R,R) satisfies (f2)–(f3). Let u ∈ N and Vj

be a j-dimensional subspace of H1
0 (Ω) such that

D2Jvv(u) ≤ 0 for all v ∈ Vj . (2.9)

Then
J(u) ≥ max{C1‖ej‖

2p
p−2 , C2},

where ej was defined in (2.4) and C1, C2 are positive constants independent
of u.

Proof. By (2.8), our assumptions on f and Sobolev’s Embedding Theorem
we have, for some constant cp,

‖u‖2 ≤ ξ2
p− 1

∫
Ω
|u|p(x) dx ≤ ξ2cp

p− 1
‖u‖p (2.10)

Then, for C =
(

p−1
ξ2cp

) 1
p−2 , we conclude

‖u‖ ≥ C . (2.11)

By (2.1), (2.3) and (2.8),

J(u) ≥
(

1

2
− 1

ζ

)
‖u‖2 . (2.12)

The previous estimates prove that J(u) ≥ C2 with C2 = (1/2− 1/ζ)C2.
Let

S = {v ∈ Vj : ‖v‖ = 1} .
We have γ(S) = j where γ is the the genus of a closed symmetric set (see
[11]). Let

Ej = (span{e1, ..., ej−1})⊥ .
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Since γ(S) > codimension Ej, we conclude by [Proposition 7.8, [11]] that

S ∩ Ej 6= ∅ .

We may therefore choose v ∈ Vj ∩ Ej and, multiplying if necessary by an
appropriate constant, assume

∫
Ω F (v)(x) dx = 1. We have

D2Jvv(u) =
∫
Ω
|∇v|2(x) dx−

∫
Ω
f ′(u)v2(x) dx ≤ 0 . (2.13)

By (2.13), Holder inequality and (f3),

∫
Ω
|∇v|2(x) ≤

(∫
Ω
|f ′(u)|

p
p−2 (x) dx

) p−2
p
(∫

Ω
|v|p(x) dx

) 2
p

≤

C
(∫

Ω
|u|p(x) dx

) p−2
p
(∫

Ω
F (v)(x) dx

) 2
p

= C
(∫

Ω
|u|p(x) dx

) p−2
p

.

(2.14)

where C = ξ
p−2

p

2

(
(p−1)p

ξ1

) 2
p . By the definition of (en) and our assumptions on

v we have, ∫
Ω
|∇v|2(x) dx ≥

∫
Ω
|∇ej|2(x) dx. (2.15)

We conclude, by (2.12), (2.14) and (2.15)

J(u) ≥
(

1

2
− 1

ζ

)∫
Ω
|∇u|2(x) dx =

(
1

2
− 1

ζ

)∫
Ω
f(u)u(x) dx ≥ (2.16)(

1

2
− 1

ζ

)
ξ1

p− 1

∫
Ω
|u|p(x) dx ≥ C1‖ej‖

2p
p−2

where C1 = C−p/(p−2)
(

1
2
− 1

ζ

)
ξ1

p−1
.

Remark 2 We conclude from Proposition 1 and Lemma 1 that if (uj) is a
sequence in N such that, for each uj, there exists a j-dimensional space Vj

verifying (2.9) then
‖uj‖ → ∞ .

Given u ∈ N the tangent space Tu to N at u consists on the functions
v ∈ H1

0 (Ω) such that

2
∫
Ω
∇u∇v (x) dx−

∫
Ω
f ′(u)uv(x) dx−

∫
Ω
f(u)v(x) dx = 0 . (2.17)

The next proposition sets some well–known facts.
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Proposition 2 Assume f satisfies (f1)–(f3). There exists C ′ > 0 such that

u ∈ N ⇒ ‖u‖ ≥ C ′ . (2.18)

Moreover, N is locally diffeomorphic to

S := {u ∈ H1
0 (Ω), ‖u‖ = 1} .

Given u ∈ N ,
∇J(u) = 0 ⇔ Πu(∇J(u)) = 0 , (2.19)

where Πu is the orthogonal projection on Tu.

Proof. Condition (2.18) was already proved in Proposition 1. Given u ∈
H1

0 (Ω)\{0}, consider the function

g(t) := 〈∇J(tu), tu〉 = t2
∫
Ω
|∇u(x)|2 dx−

∫
Ω
tf(tu)u (x) dx .

By (f2)–(f3), we have g(t) > 0 if 0 < t < ε for ε sufficiently small. Also

lim
t→+∞

g(t) = −∞ .

Therefore there exists t0 > 0 such that g(t0) = 0. By (2.8) and (f2),

g′(t0) = 2t0

∫
Ω
|∇u(x)|2 dx−

∫
Ω
f(t0u)u+ f ′(t0u)u

2 dx < 0 .

Consequently, t0 > 0 is uniquely determined. Also, by the Implicit Function
Theorem,

t0(u) ∈ C2(H1
0 (Ω)\{0}),R\{0}) .

Consider the C2–application

PN : H1
0 (Ω)\{0} 7→ N u→ t0(u)u .

Clearly, the restriction
PN |S 7→ N

is a local diffeomorphism.
We now turn to (2.19). The first implication is trivial. Consider the

constraint φ(u) := 〈∇J(u), u〉 = 0. By (f2), for any u ∈ N ,

〈∇φ(u), u〉 =
∫
Ω
|∇u|2(x) dx−

∫
Ω

f ′(u)u2(x) dx =
∫
Ω

f(u)u− f ′(u)u2(x) dx < 0 ,

i.e., u /∈ Tu. Then, Πu(∇J(u)) = 0 and 〈∇J(u), u〉 = 0 imply ∇J(u) = 0.
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3 Local geometry of the Nehari manifold

We use basic notions of Differential Geometry to describe the Nehari manifold
as an hypersurface of H1

0 (Ω) (see for instance, [1] and [6]). In the sequence,
we will assume that assumptions (f1), (f2) and (f3’) are verified. By the Riesz
representation of a linear functional in H1

0 (Ω) and (2.17), the tangent space
can also be characterized as

Tu := {v ∈ H1
0 (Ω) : 〈N(u), v〉 = 0 } ,

with N(u) = 2u+ ∆−1(h(u)) and

h(u) = f ′(u)u+ f(u) . (3.1)

Prescribe

n(u) =
N(u)

‖N(u)‖
,

as unitary normal to Tu. By (f2),

〈n(u), u〉 < 0 (3.2)

for all u ∈ N . Our assumptions on f imply that the map u → n(u) is of
class C1 in H1

0 (Ω)\{0}. Given u ∈ N , we formally define a Weingarten map

Lu : Tu 7→ Tu Lu(v) = Dn(u)[v] .

In fact, given u ∈ N , v ∈ Tu and a regular path γ such that

γ : ]− 1, 1[7→ N , γ(0) = u , γ′(0) = v,

we have
〈n(γ(t)), n(γ(t))〉 = 1 ∀t ∈]− 1, 1[ .

In particular
〈Dn(γ(0))[γ′(0)], n(γ(0))〉 = 0 ,

i.e.
Dn(u)[v] ∈ Tu

for all v ∈ Tu. We also recall the classical formula

Dn(u)[v] = −DΠu(v, n(u)) . (3.3)

Computing,

Dn(u)[v] =
1

‖N(u)‖

(
2v + ∆−1(h′(u)v)− n(u)

〈
2v + ∆−1(h′(u)v) , n(u)

〉)
.

(3.4)
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If we assume u ∈ W 1,∞
0 ⊂ H1

0 (Ω) the operator

Lu(v) := Dn(u)[v] =
1

‖N(u)‖
(2I + Tu)

where
Tu(v) = ∆−1(h′(u)v)− n(u)

〈
2v + ∆−1(h′(u)v) , n(u)

〉
is well-defined for all v ∈ H1

0 (Ω). Moreover the operator

Tu : Tu 7→ Tu

is self-adjoint and compact (note that the term 〈2v + ∆−1(h′(u)v) , n(u)〉
maps into R). We may therefore provide an orthogonal basis for Tu of
eigenvectors of Tu. To an eigenvector v of Tu with associated eigenvalue
λ corresponds the same eigenvector v of Lu with associated eigenvalue

k =
2 + λ

‖N(u)‖
. (3.5)

Remark 3 Of course, the assumption that u ∈ W 1,∞
0 (Ω) may be weakened.

For instance, if Ω is a bounded regular subset of R2, as H1
0 (Ω) ⊂ Lq(Ω)

for any q ∈ [1,+∞[ with compact embedding, the principal curvatures are
defined for all u ∈ H1

0 (Ω) ∩ N . However, the class of functions in W 1,∞
0 (Ω)

is of special interest regarding its invariance property for a significant class
of energy decreasing flows associated to Euler-Lagrange functionals.

We have the following property of the non-zero eigenvalues of the compact
operator Tu.

Lemma 2 Given u ∈ N ∩W 1,∞
0 (Ω), the distinct non-zero eigenvalues of Tu

form an increasing sequence (λn(u)) converging to zero.

Proof. As usual, we determine the sequence of the non-zero eigenvalues
and corresponding eigenvectors of Tu by means of a recurrent sequence of
minimization problems:

λn := inf
{
〈Tu(v), v〉 : v ∈ Tu , ‖v‖ = 1 , v ∈ (span{v1, ..., vn−1})⊥

}
and a corresponding eigenvector vn is a function where the infimum is at-
tained. Necessarily, (λn) is an increasing sequence. In case λn+1 = λn the
eigenvalue λn has multiplicity greater than 1. Since 〈n(u), v〉 = 0, we have

〈Tn(v), v〉 = 〈∆−1(h′(u)v), v〉 = −
∫
Ω

h′(u)v2(x) dx ,
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and conclude λn ≤ 0 for all n ∈ N.
Assume, for some n that λn = 0 and λn−1 < 0. Then for any k ≥ n, we

have λk = 0 and the corresponding eigenfunction vk satisfies∫
h′(u)v2

k(x) dx = 0 .

Then, by (f3),
vk ≡ 0 in supp(u) ∀k ≥ n .

As any w such that
support(w) ⊂ support(u)

is orthogonal to vk with k ≥ n, w necessarily belongs to span{v1, ..., vn−1}.
This would imply, for any bounded regular domain ω such that ω ⊂ supp(u),(

H1
0 (ω) ∩ Tu

)
⊂ span{v1, ..., vn−1}

which is absurd since the first subspace is infinite dimensional.

If ∫
Ω
h′(u)v2(x) dx > 0 , ∀v ∈ Tu\{0} ,

the sequence (vi) of eigenvectors associated to the sequence of non-zero eigen-
values (λi) provides an Hilbert basis of Tu. This is the case if u(x) 6= 0 a.e.
in Ω. In general, we may write

Tu = Ker(Tu)⊕R(Tu) ,

where R(Tu) is the closure of the subspace generated by the family {vi}.

In view of (3.5), we will refer an eigenvalue ki of Lu as a (signed) principal
curvature of N at u if the corresponding eigenvalue λi of Tu satisfies λi < 0.
The sequence (ki) is increasing and converges to 2/‖N(u)‖. We denote by
Ku the set of all eigenvalues of Lu. We have

Ku ⊆ {ki}i∈N ∪ {2/‖N(u)‖} , (3.6)

with equality of sets in the degenerate case Ker(Tu) 6= {0}. In particular, at
any point u ∈ N , the principal curvatures are positive, except at most for a
finite number.

Let P be a plane containing the inward normal n(u) and a direction v(u)
associated to a positive curvature. Using the reference frame of center u and
vectors v(u) and n(u), if w ∈ P ∩N\{u} is sufficiently close to u, then

w = x v(u) + y n(u) with (x, y) ∈ R2 , y < 0 .
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Remark 4 We may describe the above mentionned property saying that, at
any point u ∈ N ∩W 1,∞

0 (Ω), there exists an “exterior” tangent sphere to the
Nehari manifold, with center

C(u) = u− ‖N(u)‖
2

· n(u) = −1

2
∆−1(h(u)) ,

and radius ‖N(u)‖/2, whose curvature is approximated by the sequence of
principal curvatures of the Nehari manifold.

We have the following estimates on the curvatures of the Nehari manifold.

Lemma 3 There exists C > 0 such that, for every u ∈ W 1,∞
0 (Ω) ∩ N and

i ∈ N
− C(2 + ‖u‖2(p−2)/p)

‖u‖
≤ ki(u) ≤

C

‖u‖
(3.7)

Proof. As

〈N(u), u〉 = 2‖u‖2 −
∫
f(u)u dx−

∫
f ′(u)u2 dx

by (2.8) and (f2)

|〈N(u), u〉| ≥ 1− β

β
· ‖u‖2 ,

and, by Schwarz inequality,

‖N(u)‖ ≥ 1− β

β
‖u‖ . (3.8)

In view of (3.5), we conclude from Lemma 2 and (3.8) the right hand-side of
(3.7). In order to prove the complete estimate it suffices to set the inequality
to k1. Assume ‖v‖ = 1. Necessarily

λ1 ≥ λ := min
‖v‖=1

−
∫
Ω
h′(u)v2(x) dx .

By (f3’) and (3.1),
h′(u) ≤ C1 |u|p−2

for C1 = ξ2/(p−1). Then, by Holder inequality, (2.8) and Sobolev Imbedding
Theorem, for some constant C2 > 0∫

Ω
h′(u)v2(x) dx ≤ C1

(∫
Ω
|u|p(x) dx

) p−2
p
(∫

Ω
|v|p(x) dx

) 2
p

≤ C2

(∫
Ω
f(u)u(x) dx

)2(p−2)/p

= C2‖u‖2(p−2)/p , (3.9)

thereby proving inequality (3.7).
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Remark 5 Note that, if p ≤ 4, the curvatures are uniformly bounded below
on the Nehari manifold by a negative constant. In particular, there exists
K > 0 such that, for all u ∈ N ,

|ki(u)| ≤ K ∀i ∈ N .

Analogously to Proposition 1, we obtain lower bounds on the the en-
ergy of u ∈ N based on the number of negative principal curvatures of the
Weingarten map Lu.

Proposition 3 Assume (f1)-(f2)-(f3’). Let u ∈ N ∩W 1,∞
0 (Ω) be such that

ki(u) ≤ 0 , i = 1, ..., j .

Then, there exist positive constants C1 and C2 independent of u such that

J(u) ≥ max{C1‖ej‖
2p

p−2 , C2} ,

where ej was defined in (2.4).

Proof. The proof is similar to the proof of Proposition 1 so we omit the
details. Consider the subspaces

Vj := span{v1, ...vj̄} and Ej = (span{e1, ..., ej−1})⊥

where the vi’s are eigenvectors associated to k1, ..., kj (necessarily, j̄ ≥ j).
For any v ∈ Vj,

〈Dnu(v), v〉 =
1

‖N(u)‖
〈2v + Tu(v), v〉 =

1
‖N(u)‖

(
2‖v‖2 −

∫
Ω

h′(u)v2(x) dx

)
≤ 0 ,

(3.10)
or

‖v‖2 − 1

2

∫
Ω
h′(u)v2(x) dx ≤ 0 .

As in Lemma 1, we may choose v ∈ Vj ∩ Ej such that
∫
ΩH(v)(x) dx = 1 for

H(v) =
∫ v
0 h(s) ds. Recalling that, by (3.1), h′(u) = 2f ′(u)+ f ′′(u)u, we may

estimate as in (2.14)–(2.16) and conclude the proof.

Remark 6 We may assert the existence of points on the Nehari manifold
with an arbitrarily large number of negative principal curvatures. In fact, let
us consider a multi-bump function

u :=
n∑

k=1

vk
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where, for i 6= j,
support (vi) ∩ support (vj) = ∅

and
vk ∈ N ∩W 1,∞

0 (Ω)

for all k = 1, ..., n. Since

2‖vi‖2 −
∫
Ω
h′(u)v2

i (x) dx = 2‖vi‖2 −
∫
Ω
h′(u)v2

i (x) dx

and the set of functions {vi}i=1,...,n is orthogonal, we conclude that

k1 < ... < kn−1 < 0 ,

where ki is the sequence of eigenvalues of Lu.

4 An angle-decreasing flow.

In the next section, we assume

f(u) =

c1|u|p−2u if u ≤ 0

c2|u|p−2u , if u > 0 ,
(4.1)

where c1, c2 > 0. In case where the non-linearity f is as in (4.1), then

J(u) =

(
1

2
− 1

p

)
‖u‖2 ∀u ∈ N .

In particular, critical points of the distance functional u 7→ ‖u‖ constrained
to N are solutions of (2.2).

We introduce an auxiliary functional on the Nehari manifold:

θu ≡ θ(u) =:

〈
n(u),

u

‖u‖

〉
.

The functional θ is the restriction toN of a functional of class C1(H1
0 (Ω)\{0}, R)

that we will denote by θ. Note that, by (3.2) and Schwarz inequality

θ(N ) ⊂ [−1, 0[ .

Also, arccos(θu) corresponds to the angle between the vectors u and n(u).
Assuming u ∈ W 1,∞

0 (Ω), we use our previous decomposition of the tangent
space Tu to calculate

Πu(∇θu) .
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For any v ∈ Tu,

〈∇θu, v〉 = Dθu(v) =

〈
Dn(u)[v],

u

‖u‖

〉
− 〈n(u), u〉〈u, v〉

‖u‖3
(4.2)

Choosing v an eigenvector with corresponding eigenvalue k, as 〈n, v〉 = 0 we
obtain by (3.4),

〈∇θu, v〉 =

(
k − θu

‖u‖

)〈
v,

u

‖u‖

〉
. (4.3)

We may write, in the non-degenerate case Ker(Tu) = {0},

Πu(∇θu) =
1

‖u‖

∞∑
i=1

(
ki −

θu

‖u‖

)
〈vi, u〉 · vi . (4.4)

More generally, denoting by Π0
u the projection on Ker(Tu) ⊂ Tu,

Πu(∇θu) =
1

‖u‖

∞∑
i=1

(
ki −

θu

‖u‖

)
〈vi, u〉 · vi +

2− θu

‖u‖2
· Π0

u(u) (4.5)

Remark 7 Using (4.4)–(4.5) and Lemma 3, a simple estimate shows that,
for some C > 0 ,

‖Πu(∇θu)‖ ≤ C‖u‖(p−4)/p ≤ C‖u‖ , ∀u ∈ N .

In case ∇J(u) = 0 then ∇θu = 0 but the inverse is not true. However, in
case θu/‖u‖ /∈ Ku,

∇J(u) = 0 ⇔ ∇θu = 0 .

Note that eventually unstable stationary points of the H1–distance decreas-
ing flow on the Nehari–manifold are minimizers of the angle functional. We
have the following

Proposition 4 Let

Φ : W 1,∞
0 (Ω) ∩N 7→ W 1,∞

0 (Ω) , Φ(u) = Πu(∇θu) .

Given u0 ∈ N ∩W 1,∞
0 (Ω), the initial value problem

η(0, u0) = u0 ,
dη

dt
(t) = −Φ(η(t, u0)) . (4.6)

has a unique solution
η : N × [0, τ0[ 7→ N ,

for some τ0 > 0. In case Ω is a bounded regular domain of R2 then τ0 = +∞
for all u0 ∈ N . Moreover, for 0 < t1 < t2

θ(η(t1, u0)) ≥ θ(η(t2, u0)) . (4.7)
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The proof of Proposition 4 will follow from the next lemmas.

Lemma 4 Let f : R → R be a locally Lipschitz function. Define

Ψ : W 1,∞
0 (Ω) 7→ W 1,∞

0 (Ω) , u→ ∆−1(f(u)) .

Then Ψ is locally Lipschitz continuous.

Proof. Trivially, W 1,∞
0 (Ω) ⊂ C0 (Ω) with continuous injection. By standard

regularity theory (see [3], theorems 8.33-8.34) we have ∆−1(f(u)) ∈ C1,α
0

(
Ω
)

so Ψ is well-defined.

Let Bε(u) be the ball of radius ε and center u in C0 (Ω). By our assump-
tions on f , for any v ∈ Bε(u), we have

|f(u)− f(v)| ≤ Kε|u− v| ,

for some Kε > 0. We conclude that the functional

ψ : W 1,∞
0 (Ω) 7→ C

(
Ω
)
, u→ f(u)

is locally Lipschitz continuous. Since ∆−1 : C
(
Ω
)
7→ C1,α

0 (Ω) is Lipschitz

continuous, we conclude that Ψ = ∆−1 ◦ ψ is locally Lipschitz continuous.
The proof is complete.

Remark 8 With similar arguments, we may prove that, for locally Lipschitz
functions f, g : R 7→ R,

u 7→ ∆−1[∆−1(f(u))g(u)]

is locally Lipschitz continuous in W 1,∞
0 (Ω).

Lemma 5 Let

Φ : W 1,∞
0 (Ω) ∩N 7→ W 1,∞

0 (Ω) , Φ(u) = Πu(∇θu) .

For any u1 ∈ W 1,∞
0 (Ω) ∩ N , there exists a W 1,∞-ball B1 centered at u1 and

a Lipschitz continuous function

F : B1 ∩W 1,∞
0 (Ω) 7→ W 1,∞

0 (Ω)

such that
F (u) = Φ(u) , ∀u ∈ B1 ∩W 1,∞

0 (Ω) ∩N .
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Proof. Let B1 be a W 1,∞-ball centered at u1 such that ‖u‖ and ‖N(u)‖
are uniformly bounded below by a positive constant in B1. We consider the
following extensions N, n : B1 7→ W 1,∞

0 (Ω) and θ : B1 7→ R,

N(u) = 2u+ ∆−1(h(u)) , n(u) =
N(u)

‖N(u)‖
, θ(u) =

〈
n(u),

u

‖u‖

〉
.

In the homogeneous case, h(u) = f(u) + f ′(u)u = pf(u). Then,

θ(u) =
1

‖N(u)‖ · ‖u‖

(
2‖u‖2 − p

∫
Ω
f(u)u dx

)
.

Define

J1(u) = ‖N(u)‖2 = 4‖u‖2 + 4p〈u,∆−1(f(u))〉+ p2‖∆−1(f(u))‖2 ,

and

J2(u) =

(
2‖u‖ − p

‖u‖

∫
Ω
f(u)u dx

)
,

so that

θ(u) =
J2(u)√
J1(u)

. (4.8)

By Lemma 4 J1 : W 1,∞
0 (Ω) → R is locally Lipschitz continuous. Moreover

〈∇J1(u), v〉 =

8〈u, v〉+ 4p〈v,∆−1(f(u))〉+
4p〈u,∆−1(f ′(u)v)〉+ 2p2〈∆−1(f ′(u)v),∆−1(f(u))〉 . (4.9)

As
〈u,∆−1(f ′(u)v)〉 = −

∫
Ω
f ′(u)uv dx = (p− 1)〈v,∆−1(f(u))〉 ,

and

〈∆−1(f ′(u)v),∆−1(f(u))〉 = (p− 1)〈v,∆−1[∆−1(f(u))f ′(u)]〉 ,

we conclude that

∇J1(u) = 8u+ 4p2∆−1(f(u)) + 2p2(p− 1)∆−1[∆−1(f(u))f ′(u)] . (4.10)

Then, by Remark 8, we conclude that ∇J1 : W 1,∞
0 (Ω) → W 1,∞

0 (Ω) is locally
Lipschitz continuous. Similarly, we may prove that J2 : W 1,∞

0 (Ω) → R and
∇J2 : W 1,∞

0 (Ω) → W 1,∞
0 (Ω) are locally Lipschitz continuous. We conclude
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from (4.8) that ∇θ : W 1,∞
0 (Ω) ∩ B1 → W 1,∞

0 (Ω) is Lipschitz continuous.
Finally, writing

F (u) := ∇θ(u)− 〈∇θ(u), n(u)〉n(u)

we conclude that
F : W 1,∞

0 (Ω) ∩B1 7→ W 1,∞
0 (Ω) ,

is Lipschitz continuous and

F (u) = Πu(∇θu) , ∀u ∈ N .

Proof of Proposition 4:

Assuming [0, τ0[ is the maximal domain of η(t, u0) in W 1,∞
0 (Ω), one easily

verifies that η(t, u0) ∈ N for all t ∈ [0, τ0[. Consider the case where Ω is
a bounded regular domain of R2. Suppose in view of a contradiction that
τ0 < ∞. Then, by Remark 7 and classical Gronwall estimates, as t → τ0
necessarily η(t, u0) → w ∈ N in H1-norm. Consider the H1-ball BR(w) cen-
tered at w and radius R = ‖w‖/2. Noting that BR(w) is bounded in Lq(Ω)
for arbitrarily large q, by standard regularity theory (see section 8.11–[3]),
we have, for all u ∈ BR(w),

‖∆−1(f(u))‖W 1,∞(Ω) ≤ ‖∆−1(f(u))‖C1,α(Ω) ≤ C

and

‖∆−1[∆−1(f(u))f ′(u)]‖W 1,∞(Ω) ≤ ‖∆−1[∆−1(f(u))f ′(u)]‖C1,α(Ω) ≤ C

for some C > 0. Also, ‖u‖ and ‖N(u)‖ are uniformly bounded below in
BR(w) by a positive constant. Adapting the arguments in Lemma 5 we may
consider F : BR(w) ∩W 1,∞

0 (Ω) → W 1,∞
0 (Ω) such that

Πη(∇θη) = F (η) , ∀η ∈ BR(w) ∩W 1,∞
0 (Ω) ∩N

and, for some KB > 0,

|F (w1)− F (w2)|W 1,∞ ≤ KB|w1 − w2|W 1,∞ , ∀w1, w2 ∈ BR(w) ∩W 1,∞
0 (Ω) .

Then there exists a constant ε such that, for any w′ ∈ BR/2(w) ∩W 1,∞
0 (Ω),

the maximal domain of definition in W 1,∞
0 (Ω) of η(w′, t) contains [0, ε[. This

implies that the maximal domain of η(t, u0) contains [0, τ0 + ε[, contradicting
our assumption on τ0. Finally, since

d

dt
θ(η(t)) = 〈∇θ(η),−Πη(∇θ(η))〉 ≤ 0,

we conclude the monotone property (4.7).
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As η([0, τ0[) ⊂ N ∩W 1,∞
0 (Ω), for any u ∈ η([0, τ0[) we may provide an

orthonormal basis of Tu consisting of eigenvectors of Lu. Let us study how
the norm of the projection Πη(η) and of the normal component 〈η, n〉 · n
evolve along the flow defined in (4.6). For simplicity of notation, we assume
Ker(Tu) = {0} although minor changes provide the more general case.

d

dt

(
1

2
‖Πη(t)η(t)‖2

)
=〈

DΠη(t)(η
′(t), η(t)),Πη(t)(η(t))

〉
+
〈
Πη(t)(η

′(t)),Πη(t)(η(t))
〉

(4.11)

Denoting η(t) = u and n(u) = n, we have, by (4.4),

〈
Πη(t)(η

′(t)),Πη(t)(η(t))
〉

= 〈−Πu(∇θu), u〉 =
1

‖u‖

∞∑
i=1

(
−ki +

θu

‖u‖

)
〈vi, u〉2 .

(4.12)

Also〈
DΠη(t)(η

′(t), η(t)),Πη(t)(η(t))
〉

= 〈DΠu(−Πu(∇θu), u),Πu(u)〉 . (4.13)

We decompose

DΠu(−Πu(∇θu), u) = DΠu(−Πu(∇θu),Πu(u) + 〈u, n〉n) =

DΠu(−Πu(∇θu),Πu(u)) + 〈u, n〉DΠu(−Πu(∇θu), n)

and observe that
DΠu(−Πu(∇θu),Πu(u)) ∈ T⊥u

(since it is the second fundamental form of N at u). Then, by (3.3), we may
re-write (4.13)

〈DΠu(−Πu(∇θu), u),Πu(u)〉 =〈u, n〉〈Dn(u)[Πu(∇θu)], u〉 =
∞∑
i=1

θuki

(
ki −

θu

‖u‖

)
〈u, vi〉2 . (4.14)

Combining (4.11), (4.12) and (4.14) we obtain, for u = η(t),

d

dt

(
1

2
‖Πηη‖2

)
=

∞∑
i=1

(
ki(η)−

θη

‖η‖

)(
θηki(η)−

1

‖η‖

)
〈η, vi(η)〉2 . (4.15)

Let us turn to the study of the normal component 〈η, n〉n. Differentiating
in t, assuming η(t) = u, we obtain

d

dt

(
1
2
〈η(t), n(η(t))〉2

)
= 〈u, n〉 (〈u, Dnu(−Πu(∇θu))〉+ 〈−Πu(∇θu), n〉) .
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Noting that 〈−Πu(∇θu), n〉 = 0 , we may write, for u = η(t),

d

dt

(
1

2
〈η(t), n(η(t))〉2

)
=

∞∑
i=1

θηki(η)

(
−ki(η) +

θη

‖η‖

)
〈η, vi(η)〉2 . (4.16)

We have the following monotone property of the angle decreasing flow:

Proposition 5 Let u ∈ N ∩W 1,∞
0 (Ω). Consider the solution η(t, u) of (4.6)

and denote
η> = Πηη and η⊥ = η − η> .

If
Ku ∩

]
(θu‖u‖)−1, θu‖u‖−1

[
= ∅ ,

then d
dt
‖η>‖η=u ≤ 0. In case

Ku∩]θu/‖u‖, 0[ = ∅

then d
dt
‖η⊥‖η=u ≥ 0.

Proof. In the non-degenerate case, the proof follows from (4.16), (4.15),
recalling that θη < 0 for all η ∈ N . In the general case, we obtain

d

dt

(
1
2
‖Πηη‖2

)
=

∞∑
i=1

(
ki(η)− θη

‖η‖

)(
θηki(η)− 1

‖η‖

)
〈η, vi(η)〉2 + K1‖Π0

η(η)‖2 .

(4.17)
where K1 = (2/‖η‖ − θη‖η‖−1)(2θη/‖N(η)‖ − ‖η‖−1) < 0 and

d

dt

(
1
2
〈η(t), n(η(t))〉2

)
=

∞∑
i=1

θηki(η)
(
−ki(η) +

θη

‖η‖

)
〈η, vi(η)〉2 + K2‖Π0

η(η)‖2 .

(4.18)
where K2 = 2θη/‖N(η)‖ (−2/‖N(η)‖+ θη/‖η‖) > 0 and the proof follows
from similar estimates.

An Example. We will now study an example of convergence of the an-
gle decreasing flow η(t, u0) to a critical point of the distance functional on
N –i.e. a solution of (2.2). We assume Ω is a bounded regular domain of R2

so that, by Proposition 4, η(., u0) is defined in [0,+∞[. Moreover we assume
that, for all t > 0, Ker(Tη(t,u0)) = {0}. This last hypotheses may be removed
provided minor changes are added to the following assumptions. We shall
denote θ(u0) = c (recall −1 ≤ c < 0) and suppose the following:
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(N1) There exists a positive sequence (αn)n∈N such that∑∞
n=1 αn <∞ and

u ∈ η([0,+∞[, u0) ⇒ 〈u, vn(u)〉2 ≤ αn〈u, v1(u)〉2 .

(As usual, (vn(u)) is the basis of Tu composed by the eigenvectors of the
Weingarten map Lu.)

(N2) There exists K, ρ > 0 and n̄ such that, for all u ∈ η([0,+∞[, u0),

−K ≤ kn̄(u) ≤ −
(
ρ+

1

|c|

)
1

‖u‖
.

(N3) For (αn), n̄ and ρ defined in (N1)-(N2), for some C1 > 0,

−|c|ρ2 +
(

1

2c
− c

2

)2 ∞∑
i=n̄+1

αi ≤ −C1 ·
∞∑

n=1

αn (4.19)

|c|ρ2 − 1

4

∞∑
i=n̄+1

αi ≥ C1 (4.20)

Intuitively, assumptions (N1)–(N3) impose that, all along the flow, Πη(η)(t)
mainly concentrates on directions of the tangent space associated to certain
negative eigenvalues of Lu. We have the following convergence property.

Suppose conditions (N1)–(N3) are verified. Then, as t → ∞, η(t, u0)
converges in H1-norm to a critical point u∗ of J . Moreover, ‖η>(t, u0)‖ is a
decreasing function of t whereas ‖η⊥(t, u0)‖ is an increasing function of t .

The proof of the convergence will follow after a number of steps. For
simplicity, denote η(t) := η(t, u0). We have θη ≤ c so that, by (N1)

|〈η(t), vn(η(t))〉| ≤ αn|〈η(t), v1(η(t))〉| ∀n ∈ N ,∀t ∈ [0,+∞[ .

Step 1: Increasing of ‖η⊥(t)‖

We prove that the norm of the normal component is an increasing func-
tion of t. As usual, we shall denote ki := ki(η) and vi := vi(η). We have, by
(4.16),

d

dt

1

2
‖η⊥‖2 =

n̄∑
i=1

θηki

(
−ki +

θη

‖η‖

)
〈η, vi〉2 +

∞∑
i=n̄+1

θηki

(
−ki +

θη

‖η‖

)
〈η, vi〉2 .

(4.21)
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Note that, by (N1),

∞∑
i=n̄+1

θηki

(
−ki +

θη

‖η‖

)
〈η, vi〉2 ≥

∞∑
i=n̄+1

θ3
η

4‖η‖2
〈η, vi〉2

≥ − 1

4‖η‖2
〈η, v1〉2

∞∑
i=n̄+1

αi . (4.22)

By (N2), (4.20), (4.21) and (4.22)

d

dt

1

2
‖η⊥‖2 ≥

 |c|ρ2

‖η‖2
− 1

4‖η‖2

∞∑
i=n̄+1

αi

 〈u, v1〉2 ≥
C1

‖η‖2
〈u, v1〉2 ≥ 0 . (4.23)

Step 2: Decreasing of ‖η>(t)‖

By (4.15), (N1)–(N3) we write

d

dt

1

2
‖η>(t, u1)‖2 =

n̄∑
i=1

(
ki −

θη

‖η‖

)(
θηki −

1

‖η‖

)
〈η, vi〉2 +

∞∑
i=n̄+1

(
ki −

θη

‖η‖

)(
θηki −

1

‖η‖

)
〈η, vi〉2

≤ −|c|ρ
2

‖η‖2
〈η, v1〉2 +

γ

‖η‖2
〈η, v1〉2 ·

∞∑
i=n̄+1

αi ,

where

γ =
(
c

2
− 1

2c

)2

.

Therefore, by (4.19),

d

dt

1

2
‖η>(t)‖2 ≤ −C1

∑∞
n=1 αn

‖η(t)‖2
〈η(t), v1〉2 .

As 〈η, v1〉2 ≥ (
∑∞

n=1 αn)−1 ‖η>‖2, we conclude

d

dt

1

2
‖η>(t)‖2 ≤ − C1

‖η(t)‖2
‖η>(t)‖2 . (4.24)

Step 3: Convergence of η(t) to a global minimum of θ

By the previous steps, we have
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d

dt
‖η‖2 =

d

dt
‖η⊥‖2 +

d

dt
‖η>‖2 ≤ d

dt
‖η⊥‖2 , (4.25)

and, by (N2) and (4.21), for some K such that |ki| ≤ K,

d

dt
‖η⊥‖2 ≤ K

2‖η>‖2 . (4.26)

We conclude from (4.25)–(4.26)

d

dt
‖η‖2 ≤ K

2‖η>‖2 .

or

‖η‖2(t) ≤ ‖η‖2(0) +K
2
∫ t

0
‖η>‖2(s) ds .

Then, by (4.24),

d

dt
‖η>(t)‖2 ≤ − 2C1‖η>(t)‖2

‖η(0)‖2 +K
2 ∫ t

0 ‖η>‖2(s) ds
.

By Lemma 7 (Appendix), we conclude that∫ +∞

0
‖η>‖(t) dt ≤ C(C1, ‖η(0)‖, K) .

In particular, by (2.18)and (4.4),

‖η′(t)‖ = ‖Πη(∇θη)‖ ≤
K

‖η‖
‖η>‖ ≤M‖η>‖ (4.27)

for an adequate constant M independent of η. Then∫ +∞

0
‖η′(t)‖ dt ≤ C(C1, ‖η(0)‖, K) ,

and the flow η(t) necessarily converges in H1-norm to u∗. By (N1) and (4.23),
using a simple approximation argument, one concludes that Πu∗(u

∗) = 0.
Then θ(u∗) = −1, u∗ is a critical point of the distance functional on the
Nehari Manifold and a solution to (2.2).

Remark 9 Note that, in view of Remark 7 and estimate (4.27), the H1-
convergence of η(t) and η⊥(t) are equivalent.
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5 Appendix

5.1 A suitable basis of H1
0(Ω) .

Let F ∈ C(R,R) be such that F (0) = 0, F (u) > 0 if u 6= 0. Moreover,
assume

lim
u→±∞

F (u) = +∞ , (5.1)

and

lim
u→±∞

F (u)

|u|q
= 0 , (5.2)

for some 1 ≤ q < 2∗.
We define by recurrence a family of orthogonal vectors. Consider the

following minimization problem:

min
{∫

Ω
|∇u|2(x) dx : u ∈ H1

0 (Ω),
∫
Ω
F (u)(x) dx = 1

}
. (5.3)

By (5.1)–(5.2), a minimizer exists, that we shall denote by e1. More gen-
erally, we define en to be a minimizer of the Dirichlet integral

∫
Ω |∇u|2(x) dx

over the weakly closed set{
u ∈ H1

0 (Ω) :
∫
Ω
F (u)(x) dx = 1 and u ∈ 〈e1, ..., en−1〉⊥

}
.

Lemma 6 The sequence (en) is an orthogonal basis of H1
0 (Ω). Also (‖en‖)

is non-decreasing and
lim

n→∞
‖en‖ = ∞.

Proof.
Trivially, the sequence (‖en‖) is non-decreasing. We assert that

lim
n→∞

‖en‖ = ∞ .

Suppose, in view of a contradiction, the existence of C > 0 such that ‖en‖ ≤
C for all n ∈ N. Passing to a weakly convergent subsequence, denoted by
(enj

), we have

enj
⇀ v and

∫
Ω
F (v)(x) dx = 1 . (5.4)

Let nj ∈ N be fixed. We have

〈v, enj
〉 = lim

k→∞
〈enk

, enj
〉 = 0 .
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Now letting nj →∞ we conclude ‖v‖ = 0 and contradict (5.4). The assertion
is proved.

Let w ∈ H1
0 (Ω) be such that

〈w, ei〉 = 0 for all i ∈ N . (5.5)

If w 6= 0 assume (without loss of generality)∫
Ω
F (w)(x) dx = 1 .

The previous assertion, together with (5.5), imply that there exists n ∈ N
such that ‖en−1‖ ≤ ‖w‖ < ‖en‖. This, contradicts the definition of the
function en. Then w = 0 and the proof is complete.

5.2 A Gronwall type estimate

Lemma 7 Let f ∈ C1([0,+∞[,R+) be such that

f ′(t) ≤ − f(t)

a+ b
∫ t
0 f(u) du

(5.6)

for some a, b > 0. Then∫ ∞

0

√
f(u) du ≤ C(a, b, f(0)) . (5.7)

Proof. Integrating equation (5.6),

f(t)− f(0) ≤ −1

b

[
ln
(
a+ b

∫ s

0
f(u)du

)]t
0
,

or

f(t) +
1

b
ln
(
a+ b

∫ t

0
f(u) du

)
≤ f(0) +

ln(a)

b

and, as f(t) ≥ 0, we conclude, by passing to the limit in t,

ln
(
a+ b

∫ +∞

0
f(u) du

)
≤ bf(0) + ln(a)

or ∫ +∞

0
f(u) du ≤ C1 (5.8)

where C1 = (aebf(0) − a)/b. Writing f(t) = h2(t) with h(t) > 0, inequality
(5.6) becomes

2h(t)h′(t) ≤ − h2(t)

a+ b
∫ t
0 f(u) du

.
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By (5.6)–(5.8), we conclude

h′(t) ≤ − h(t)

2(a+ bC1)

or
h(t) ≤

√
f(0)e−C2t ,

where C2 = (2(a+ bC1))
−1. This proves the lemma.
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