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Abstract

In this paper the authors show how, in parallel with what happens in the real case, it is possible to establish
a common structure for the exact distribution of the main likelihood ratio test (l.r.t.) statistics used in the
complex multivariate Normal setting. This leads to simple expressions for the exact distribution of some of
these statistics and to very well-performing approximations for the distribution of the other statistics. Easy
to implement near-exact distributions are developed for the l.r.t. statistics to test sphericity and the equality
of covariance matrices. Numerical studies show how these near-exact distributions outperform by far any
other available approximations.
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1. Introduction

In this paper we show that in the complex multivariate normal setting, just as in the real case (see [20, 7]),
the main likelihood ratio test (l.r.t.) statistics, which are: i) the l.r.t. statistic to test independence of sets of
variables, ii) the l.r.t. statistic to test equality of mean vectors, iii) the l.r.t. statistic to test the nullity of
an expected value matrix, iv) the l.r.t. statistic to test sphericity, and v) the l.r.t. statistic to test equality of
covariance matrices, all have a common structure for their exact distribution, which for some s ∈ N and
u ∈ N0, may be stated as

Λ
st
∼

 p−1∏
j=1

e−Z j

 ×
 u∏

k=1

Yk

 , (1)
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where Λ represents the l.r.t. statistic, ‘ st
∼’ is to be read as ‘is stochastically equivalent to’, or ’is distributed

as’, and where,

Z j ∼ Γ

(
r j,

n − 1 − j
n

)
, with r j ∈ N, and Yk ∼ Beta(ak, bk) j = 1, . . . , p − 1; k = 1, . . . , u (2)

are independent r.v.’s (random variables). In (2), n is the sample size and p represents the number of variables
involved in the tests in i), iv) and v) and the sum of the number of variables plus the number of vectors, minus
1, for the test in ii) or the sum of the number of variables involved plus the number of rows in the matrix, for
the test in iii). Also, in (2), we have u = 0 for the l.r.t. statistics in i), ii) and iii).

Indeed we will be able to show that the similarities among the distributions of the l.r.t. statistics in i)-v)
above are even more impressive in the complex case than in the real case.

From the exact expression (1) for the distribution of these statistics we may then obtain

• very simple expressions for the exact p.d.f. and c.d.f. of the statistics in i), ii) and iii)

• very well-fitting manageable near-exact distributions for the statistics in iv) and v).

We will use the definition of the complex multivariate Normal distribution in [34, 11][3, sec. 4.2][1, prob.
2.64]. We will thus say that the random vector X (p×1) has a complex multivariate Normal distribution, with
expected value µ and Hermitian variance-covariance matrix Σ if the p.d.f. of X is

fX(x) = π−p|Σ|−1 e−(x−µ)′Σ−1(x−µ) ,

where (x − µ) denotes the complex conjugate of (x − µ) and the prime denotes the transpose. In this case we
will write

X ∼ CNp(µ,Σ) . (3)

The complex multivariate Normal distribution has applications in a wide range of areas, from crystallog-
raphy [26] to spectral analysis in time series [16, 4, 3, 4, 29, 11, 33, 19] and to studies on the performance
of radar receivers [9].

In Section 2 we derive the exact distributions for the l.r.t. statistics in i), ii) and iii) and show that they
have simple closed form expressions, without involving any infinite sums. In Sections 3 and 4 we obtain
respectively the exact distribution of the l.r.t. statistics in iv) and v) in the form in (1), specifying the value of
u and the parameters in the distributions of the r.v.’s Yk. In Section 5 we derive near-exact distributions for
these statistics and in Section 6 we carry out some numerical studies which show the very good performance
of the near-exact distributions developed.

2. The exact distribution of the l.r.t. statistics to test independence, the equality of mean vectors and
the nullity of an expected value matrix

In these three cases the exact distribution of the l.r.t. statistics has already been obtained in the form
(1), with u = 0, in [2]. However, we will take the opportunity to obtain these distributions using a slightly
different approach, which has much in common with the procedures used to obtain the exact distributions
in the next section for the l.r.t. statistics in iv) and v) above. Moreover the details of this development will
highlight the fact that the distribution which will be obtained for the l.r.t. statistic to test the nullity of an
expected value matrix in subsection 2.3 is not the same as that obtained in [18] in which reference, as we
will see, there is a small mistake.
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The difference from the real case is that in the complex case we are able to obtain the exact distribution
for the negative logarithm of the l.r.t. statistics to test independence, the equality of mean vectors or the
nullity of an expected value matrix as GIG distributions [5][20, App. B], for any number of variables or
mean vectors involved. In this way we are able to obtain very simple expressions for the exact p.d.f. and
c.d.f. of the logarithm of the l.r.t. statistics as well as for the l.r.t. statistics themselves. The simplicity of
the expressions obtained is quite striking when compared with the expressions obtained by other authors
[10, 15, 18, 19, 27, 30], and although bearing some resemblance with the expressions in [31], they have in
contrast to these, the advantage of involving only finite sums. Even when compared with the quite close
representations in [13, 21, 14], they have the advantage of being more general and with coefficients which
have much simpler expressions. This is especially the case with respect to the representation in [14], while
in [13] the author did not obtain explicit expressions for such coefficients.

2.1. The l.r.t. statistic to test independence among sets of variables

Let us suppose that the random vector X in (3) is split into m subvectors Xk (k = 1, . . . ,m). This will
induce the following partitioning of Σ

Σ =



Σ11 · · · Σ1k · · · Σ1m
...

. . .
...

...
Σk1 · · · Σkk · · · Σkm
...

...
. . .

...
Σm1 · · · Σmk · · · Σmm


where Σkk = Var(Xk) (k = 1, . . . ,m) and Σi j = Cov(Xi, X j) (i, j ∈ {1, . . . ,m}). We wish to test the hypothesis
of mutual independence of the random subvectors Xk,

H0 : Σ = diag(Σ11, . . . ,Σkk, . . . ,Σmm) ≡ Σi j = 0, for all i , j . (4)

Let us further suppose that, for each k, Xk has pk variables, with

p =

m∑
k=1

pk .

Then, for a sample of size n, the l.r.t. statistic to test H0 in (4), which may be derived in much the same
manner as it is in the real case, is

Λ1 =

(
|A|∏m

k=1 |Akk |

)n

, (5)

where A is the maximum likelihood estimator (m.l.e.) of Σ and Akk its k-th diagonal block (k = 1, . . . ,m),
with

A =

 X −
1
n

EnnX
′ (X − 1

n
EnnX

)
(6)

where, once again the bar denotes the complex conjugate, X is the n×p sample matrix and Enp is an n×p
unitary matrix (see [11] and [1, problem 3.11] for references concerning the maximum likelihood estimators
of Σ in the complex case).

Following a similar procedure to that used in the real case we may show that:
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i) we may write the statistic Λ1 in (5) as

Λ1 =

m−1∏
k=1

Λ1k(k+1,...,m)

where Λ1k(k+1,...,m) is the l.r.t. statistic to test the null hypothesis of independence between the k-th set
and the set formed by joining the sets k + 1 through m, and

ii) under H0 in (4) the m − 1 statistics Λ1k(k+1,...,m) are independent.

In addition, in much the same manner as in the real case, we may show that each statistic Λ1k(k+1,...,m) has, in
the complex case, the same distribution as

pk∏
j=1

(Y j)n

where Y j are pk independent r.v.’s with

Y j ∼ Beta (n − qk − j, qk) ,

where qk = pk+1 + · · · + pm.
This way we have

E
(
Λh

1

)
=

m−1∏
k=1

pk∏
j=1

Γ (n − j)
Γ(n − qk − j)

Γ(n − qk − j + nh)
Γ(n − j + nh)

and thus, for

W1 = − log Λ1 , (7)

we have

ΦW1
(t) = E

(
eitW1

)
= E

(
Λ−it

1

)
=

m−1∏
k=1

pk∏
j=1

Γ (n − j)
Γ(n − qk − j)

Γ(n − qk − j − itn)
Γ(n − j − itn)

.
(8)

We should remark that the above expression for E
(
Λh

1

)
matches the expressions in [19, 10].

Theorem 1. The exact distribution of W1 in (7) is a GIG distribution of depth p − 1 (see Appendix A) with
p.d.f.

fW1
(w) = f GIG

(
w

∣∣∣ r j;
n − 1 − j

n
; j = 1, . . . , p − 1

)
and c.d.f.

FW1
(w) = FGIG

(
w

∣∣∣ r j;
n − 1 − j

n
; j = 1, . . . , p − 1

)
,
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where

r j =

 h j j = 1

h j + r j−1 j = 2, . . . , p − 1
(9)

with

h j = (number of pk greater or equal to j) − 1 , j = 1, . . . , p − 1 . (10)

Proof. From (8), using the relation

Γ(z + a)
Γ(z)

=

a−1∏
`=0

(z + `) , (for any complex z and positive integer a), (11)

we may write

ΦW1
(t) =

m−1∏
k=1

pk∏
j=1

qk−1∏
`=0

(n − qk − j + `) (n − qk − j + ` − itn)−1

=

p−1∏
j=1

(n − 1 − j)r j (n − 1 − j − itn)−r j

=

p−1∏
j=1

(
n − 1 − j

n

)r j
(

n − 1 − j
n

− it
)−r j

, (12)

with r j given by (9) and (10) in the body of the Theorem. From (12) we may see that the distribution
of W1 is indeed a GIG distribution of depth p − 1, with shape parameters r j and rate parameters n−1− j

n
( j = 1, . . . , p − 1). �

Then the following Corollary gives the exact p.d.f. and c.d.f. of Λ1 = e−W1 .

Corollary 1. The exact p.d.f. and c.d.f. of the statistic Λ1 = e−W1 in (5) are

fΛ1
(`) = f GIG

(
− log `

∣∣∣ r j;
n − 1 − j

n
; j = 1, . . . , p − 1

)
1
`

and

FΛ1
(`) = 1 − FGIG

(
− log `

∣∣∣ r j;
n − 1 − j

n
; j = 1, . . . , p − 1

)
,

for r j given by (9) and (10).

The exact distribution of Λ1 is thus of the form (1), with u = 0.
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2.2. The l.r.t. statistic to test the equality of several mean vectors

Let us suppose that

X j ∼ CNp(µ
j
,Σ j) , j = 1, . . . , q

and that, assuming Σ1 = · · · = Σq(= Σ), we want to test the null hypothesis

H0 : µ
1

= · · · = µ
q
, (13)

based on q independent samples, the j-th of which is from X j, with size n j. Let us also suppose that the j-th
sample is stored in the n j×p matrix X j.

Then, once again, using a procedure similar to the one used in the real case, it is not hard to determine
that the l.r.t. statistic used to test H0 in (13) is given by

Λ2 =

(
|A|
|A + B|

)n

(14)

where n =
∑q

j=1 n j,

A =

q∑
j=1

(
X j − En j1X̃

′

j

)′ (
X j − En j1X̃

′

j

)
and

B =

q∑
j=1

n j

(
X̃ j − X̃

) (
X̃ j − X̃

)′
where once again the bar denotes the complex conjugate and

X̃ j =
1
n j

X′jEn j1

is the vector of sample means from the j-th sample, and

X̃ =
1
n

q∑
j=1

n j X̃ j .

The p×p matrix A has what is called a complex Wishart distribution [11, 12] with n − q degrees of
freedom and parameter matrix Σ. We will denote this fact by

A ∼ CWp(n − q,Σ) .

Under H0 in (13),

B ∼ CWp(q − 1,Σ) .

But then, given the independence, for Normal r.v.’s, of the m.l.e.’s of the mean and variance, the matrices A
and B are independent and thus

A + B ∼ CWp(n − 1,Σ) .
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It then follows that (see [12]),

2p |A| ∼ |Σ|
p∏

j=1

W j and 2p |A + B| ∼ |Σ|
p∏

j=1

Z j

where W j ( j = 1, . . . , p) and Z j ( j = 1, . . . , p) are two independent sets of p independent r.v.’s, with

W j ∼ χ
2
2(n−q− j+1) and Z j = W j + W∗j ∼ χ

2
2(n−1− j+1) , j = 1, . . . , p ,

where each

W∗j ∼ χ
2
2(q−1) , j = 1, . . . , p ,

is independent of W j ( j = 1, . . . , p).
Thus, under H0 in (13),

Λ2 ∼

p∏
j=1

(Y j)n where Y j ∼ Beta (n − q − j + 1, q − 1) , j = 1, . . . , p
are p independent r.v.’s.

But then,

E
(
Λh

2

)
=

p−1∏
j=0

Γ(n − 1 − j)
Γ(n − q − j)

Γ(n − q − j + nh)
Γ(n − 1 − j + nh)

(
h > p+q

n − 1
)

so that the c.f. of

W2 = − log Λ2 (15)

may be written as

ΦW2
(t) = E

(
eitW2

)
= E

(
Λ−it

2

)
=

p−1∏
j=0

Γ(n − 1 − j)
Γ(n − q − j)

Γ(n − q − j − itn)
Γ(n − 1 − j − itn)

. (16)

We have thus the following Theorem.

Theorem 2. The exact distribution of W2 in (15) is a GIG distribution of depth p + q − 2 (see Appendix A)
with p.d.f.

fW2
(w) = f GIG

(
w

∣∣∣ r j;
n − 1 − j

n
; j = 1, . . . , p + q − 2

)
and c.d.f.

FW2
(w) = FGIG

(
w

∣∣∣ r j;
n − 1 − j

n
; j = 1, . . . , p + q − 2

)
,

where

r j =

 h j j = 1

h j + r j−1 j = 2, . . . , p + q − 2
(17)

with, for j = 1, . . . , p + q − 2,

h j = (number of elements in {p, q − 1} greater or equal to j) − 1 . (18)
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Proof. From (16), using the relation in (11), we may write

ΦW2
(t) =

p−1∏
j=0

q−2∏
`=0

(n − q − j + `) (n − q − j + ` − itn)−1

=

p+q−2∏
j=1

(n − 1 − j)r j (n − 1 − j − itn)−r j

=

p+q−2∏
j=1

(
n − 1 − j

n

)r j
(

n − 1 − j
n

− it
)−r j

, (19)

with r j given by (17) and (18) in the body of the Theorem. From (19) we may see that the distribution
of W2 is indeed a GIG distribution of depth p + q − 2, with shape parameters r j and rate parameters n−1− j

n
( j = 1, . . . , p + q − 2). �

Then the following Corollary gives the exact p.d.f. and c.d.f. of Λ2 = e−W2 .

Corollary 2. The exact p.d.f. and c.d.f. of the statistic Λ2 = e−W2 in (14) are

fΛ2
(`) = f GIG

(
− log `

∣∣∣ r j;
n − 1 − j

n
; j = 1, . . . , p + q − 2

)
1
`

and

FΛ2
(`) = 1 − FGIG

(
− log `

∣∣∣ r j;
n − 1 − j

n
; j = 1, . . . , p + q − 2

)
,

for r j given by (17) and (18).

Once again, the distribution of Λ2 is of the form (1) with u = 0.

2.3. The l.r.t. statistic to test nullity of an expected value matrix
We will address in this subsection the test developed in section 3.2 of [18]. Let Z (p×n) be a matrix with

a complex multivariate Normal distribution with expected value µM, where µ is a p×q complex matrix and
M is q×n of rank q (≤ n), and variance In ⊗ Σ, that is, with var(vec(Z)) = In ⊗ Σ. We will denote this fact by

Zp×n ∼ CNp×n(µM, In ⊗ Σ) . (20)

Let us then suppose that we want to test the hypothesis

H0 : µ(p×q) = 0(p×q) . (21)

Then, according to [18], the l..r.t. statistic to test H0 is

Λ3 =

 |Ψ|∣∣∣∣Ψ + 1
nβ(MM

′
)β
′
∣∣∣∣


n

(22)

where

Ψ =
1
n

Z
(
In − M

′ (
MM

′)−1
M

)
Z
′

=
1
n

[
ZZ
′
− β

(
MM

′)
β
′]
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and

β = ZM
′ (

MM
′)−1

are respectively the m.l.e.’s of Σ and µ, and as such independent.

But then, since
(
In − M

′ (
MM

′)−1
M

)
is the projector on the null space of the columns of M, and since it

is idempotent with

rank
(
In − M

′ (
MM

′)−1
M

)
= tr

(
In − M

′ (
MM

′)−1
M

)
= n − q ,

and given the distribution of Z in (20), we have

Ψ =
1
n

Z
(
In − M

′ (
MM

′)−1
M

)
Z
′
∼ CWp

(
n − q,

1
n

Σ

)
.

From (20) we may easily see that

β = ZM
′ (

MM
′)−1

∼ CNp×q

(
µ,

(
MM

′)−1
⊗ Σ

)
,

so that

β
(
MM

′)1/2
∼ CNp×q

(
µ
(
MM

′)1/2
, Iq ⊗ Σ

)
,

where, under H0 in (21), µ
(
MM

′)1/2
= 0. Consequently under H0 in (21),

β
(
MM

′)
β
′
∼ CWp(q, Σ) ,

independent of Ψ, so that, under H0 in (21),

Ψ +
1
n
β(MM

′
)β
′

=
1
n

ZZ
′
∼ CWp

(
n,

1
n

Σ

)
.

Thus, following similar steps to those in subsection 3.2, we may verify that

Λ3 ∼

p∏
j=1

(
Y j

)n
where Y j ∼ Beta (n − q − j + 1, q) ( j = 1, . . . , p)

are p independent r.v.’s
(23)

for n > q + p − 1, so that

E
(
Λh

3

)
=

p∏
j=1

Γ(n + 1 − j)
Γ(n + 1 − q − j)

Γ(n + 1 − q − j + nh)
Γ(n + 1 − j + nh)

(
h > q+p−1

n − 1
)
.

Thus, for

W3 = − log Λ3 , (24)

we have

ΦW3
(t) = E

(
eitW3

)
= E

(
Λ−it

3

)
=

p∏
j=1

Γ(n + 1 − j)
Γ(n + 1 − q − j)

Γ(n + 1 − q − j − nit)
Γ(n + 1 − j − nit)

(25)
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=

p∏
j=1

q−1∏
`=0

(n + 1 − q − j + `) (n + 1 − q − j + ` − nit)−1

=

p+q−1∏
j=1

(n − j)r j (n − j − nit)−r j

=

p+q−1∏
j=1

(n − j
n

)r j (n − j
n
− it

)−r j

(26)

for r j given by (17) and (18) in Theorem 2, with q replaced by q + 1.
When we compare (23) with (5.2.2) and (5.2.3) and (25) with (5.3.1) and (5.3.3) in [18] we see that there

is a small mistake in Khatri’s paper, in that q has to be subtracted from the first argument of the Beta r.v.’s in
(5.2.2) and (5.2.3) and also from the arguments of all Gamma functions in (5.3.1) of [18].

From (26) we have the following Theorem and Corollary.

Theorem 3. The exact distribution of W3 in (24) is a GIG distribution of depth p + q − 1 (see Appendix A)
with p.d.f.

fW3
(w) = f GIG

(
w

∣∣∣ r j;
n − j

n
; j = 1, . . . , p + q − 1

)
and c.d.f.

FW3
(w) = FGIG

(
w

∣∣∣ r j;
n − j

n
; j = 1, . . . , p + q − 1

)
,

where r j ( j = 1, . . . , p) are given by (17) and (18) in Theorem 2.

Corollary 3. The exact p.d.f. and c.d.f. of the statistic Λ3 = e−W3 in (22) are

fΛ3
(`) = f GIG

(
− log `

∣∣∣ r j;
n − j

n
; j = 1, . . . , p + q − 1

) 1
`

and

FΛ3
(`) = 1 − FGIG

(
− log `

∣∣∣ r j;
n − j

n
; j = 1, . . . , p + q − 1

)
,

for r j given by (17) and (18).

3. The exact distribution of the l.r.t. statistic to test sphericity of the covariance matrix

Let us suppose that

X ∼ CNp(µ, Σ) ,

and that we want to test the hypothesis

H0 : Σ = σ2Ip (for some unspecified σ2 > 0). (27)
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Then, using similar procedures to the ones used in the real case, for a sample of size n, we may show that
the l.r.t. statistic to test H0 in (27), is,

Λ4 =

 |A|(
tr 1

p A
)p


n

, (28)

where A is the m.l.e. of Σ (see (6) and the note after this expression for references on the m.l.e. of Σ), with

Λ4 ∼

p−1∏
j=1

(
Y j

)n
,

where Y j ∼ Beta
(
n − j − 1, j

p + j
)

are p − 1 independent r.v.’s.
But then, for h > p

n − 1,

E
(
Λh

4

)
=

p−1∏
j=1

Γ
(
n − 1 +

j
p

)
Γ(n − j − 1)

Γ(n − j − 1 + nh)

Γ
(
n − 1 +

j
p + nh

) , (29)

which, on using the Gamma multiplication formula,

Γ(nz) = (2π)
1
2 (1−n) nnz− 1

2

n−1∏
k=0

Γ

(
z +

k
n

)
, (30)

yields an expression which in fact agrees with expressions (4.2) in [28] and (2.10) in [19], taking into account
that the first of these expressions is designed to yield the non-null moments and that the statistic used in both
papers above is indeed the n-th power of the l.r.t. statistic. In the first of these expressions one has to use
k = 0, Σ = Ip and the definition of the complex multivariate gamma function in [17].

Then, if we take W4 = − log Λ4, since the expression in (29) is well-defined for h in a neighborhood of
zero, we may write,

ΦW4
(t) = E

(
eitW4

)
= E

(
Λ−it

4

)
=

p−1∏
j=1

Γ
(
n − 1 +

j
p

)
Γ(n − j − 1)

Γ(n − j − 1 − nit)

Γ
(
n − 1 +

j
p − nit

)
=

p−1∏
j=1

Γ (n − 1)
Γ(n − j − 1)

Γ(n − j − 1 − nit)
Γ (n − 1 − nit)

Γ
(
n − 1 +

j
p

)
Γ(n − 1)

Γ(n − 1 − nit)

Γ
(
n − 1 +

j
p − nit

)
=

p−1∏
j=1

 j−1∏
`=0

(n − j − 1 + `) (n − j − 1 + ` − nit)−1

 Γ
(
n − 1 +

j
p

)
Γ(n − 1)

Γ(n − 1 − nit)

Γ
(
n − 1 +

j
p − nit

)
=


p−1∏
j=1

(n − j − 1)p− j (n − j − 1 − nit)−(p− j)




p−1∏
j=1

Γ
(
n − 1 +

j
p

)
Γ(n − 1)

Γ(n − 1 − nit)

Γ
(
n − 1 +

j
p − nit

)


=


p−1∏
j=1

(
n − j − 1

n

)p− j (n − j − 1
n

− it
)−(p− j)

︸                                                  ︷︷                                                  ︸
Φ1,W4

(t)


p−1∏
j=1

Γ
(
n − 1 +

j
p

)
Γ(n − 1)

Γ(n − 1 − nit)

Γ
(
n − 1 +

j
p − nit

)
︸                                               ︷︷                                               ︸

Φ2,W4
(t)

(31)
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which shows that the exact distribution of W4 is the same as the distribution of the sum of a GIG distributed
r.v. with depth p − 1, with shape parameters r j = p − j and rate parameters n− j−1

n ( j = 1, . . . , p − 1), with
p − 1 independent Logbeta

(
n − 1, j

p

)
r.v.’s ( j = 1, . . . , p − 1). This shows that the distribution of Λ4 is thus

of the form (1), with u = p − 1. The possibility of expressing the exact distribution of Λ4 in this form will
enable us to develop a very well-fitting near-exact distribution for Λ4 in the Section 5.1.

4. The exact distribution of the l.r.t. statistic to test equality of several covariance matrices

In this section we will only address the case of equal sample sizes. The case of unequal sample sizes,
given its compexity, will only be addressed in the next section.

Hence, let us suppose that

Xk ∼ CNp(µ
k
, Σk) , k = 1, . . . , q ,

and that, based on q independent samples, each of size n, we want to test the hypothesis

H0 : Σ1 = · · · = Σq .

Then, the l.r.t. statistic is

Λ5 =

qpq

∏q
k=1 |Ak |

|A|q

n

, (32)

where Ak is the m.l.e. of Σk (k = 1, . . . , q), and A = A1 + · · · + Aq (see (6) and the note after this expression
for references on the m.l.e.’s of Σk), with

Λ5 ∼

p∏
j=1

q∏
k=1

(except for j=k=1)

(
Y jk

)n

where Y jk ∼ Beta
(
n − j, j − 1 +

k− j
q

)
. But then, either from this fact or from (2.14) in [19], taking d = 1,

Ni = n and making the corresponding changes resulting from replacing in (2.13) all the ni by n, and then
using (30), we may write

E
(
Λh

5

)
= qpqnh

p∏
j=1

 Γ((n − 1)q + 1 − j)
Γ((n − 1)q + 1 − j + nqh)

q∏
k=1

Γ(n − j + nh)
Γ(n − j)


=

p∏
j=1

q∏
k=1

Γ
(
n − 1 +

k− j
q

)
Γ
(
n − 1 +

k− j
q + nh

) Γ(n − j + nh)
Γ(n − j)

.

Then, if we take W5 = − log Λ5, we have

ΦW5
(t) = E

(
e−itW5

)
= E

(
Λ−it

5

)
=

p∏
j=1

q∏
k=1

Γ
(
n − 1 +

k− j
q

)
Γ
(
n − 1 +

k− j
q − nit

) Γ (n − j − nit)
Γ (n − j)

12



=

p∏
j=1

q∏
k=1

Γ
(
n − 1 +

⌊
k− j

q

⌋)
Γ (n − j)

Γ (n − j − nit)

Γ
(
n − 1 +

⌊
k− j

q

⌋
− nit

)
Γ
(
n − 1 +

k− j
q

)
Γ
(
n − 1 +

⌊
k− j

q

⌋) Γ
(
n − 1 +

⌊
k− j

q

⌋
− nit

)
Γ
(
n − 1 +

k− j
q − nit

)
=

p∏
j=1

q∏
k=1


j−2+

⌊
k− j

q

⌋∏
`=0

(n − j + `) (n − j + ` − nit)−1


Γ
(
n − 1 +

k− j
q

)
Γ
(
n − 1 +

⌊
k− j

q

⌋) Γ
(
n − 1 +

⌊
k− j

q

⌋
− nit

)
Γ
(
n − 1 +

k− j
q − nit

)
=

p∏
j=1

q∏
k=1


j−2+

⌊
k− j

q

⌋∏
`=0

n − j + `

n

(
n − j + `

n
− it

)−1


Γ
(
n − 1 +

k− j
q

)
Γ
(
n − 1 +

⌊
k− j

q

⌋) Γ
(
n − 1 +

⌊
k− j

q

⌋
− nit

)
Γ
(
n − 1 +

k− j
q − nit

)
=


p−1∏
j=1

(
n − 1 − j

n

)r j
(

n − 1 − j
n

− it
)−r j

︸                                            ︷︷                                            ︸
Φ1,W5

(t) 
p∏

j=1

q∏
k=1

Γ
(
n − 1 +

k− j
q

)
Γ
(
n − 1 +

⌊
k− j

q

⌋) Γ
(
n − 1 +

⌊
k− j

q

⌋
− nit

)
Γ
(
n − 1 +

k− j
q − nit

)
︸                                                              ︷︷                                                              ︸

Φ2,W5
(t)

(33)

for

r j =


q(q − 1)

(
j − 1

2

)
j = 1, . . . ,

⌈
p−1

q

⌉
− 1

1
2

(
p − p2 + 2 jpq + q − 3 jq − q2( j − 1)2

)
j =

⌈
p−1

q

⌉
q(p − j) j =

⌈
p−1

q

⌉
+ 1, . . . , p − 1 ,

(34)

which shows that the exact distribution of Λ5 is of the form (1), with u = pq. As a consequence, as it happens
with the statistic in the previous section, very well-fitting near-exact distributions can be developed for Λ5.
See Section 5.2.

5. Near-exact distributions

Given the complexity of the exact distributions of the statistics in sections 3 and 4, or rather, of the
expressions that might be obtained for their exact p.d.f.’s and c.d.f.’s and the concomitant issues related with
their manageability, the development of near-exact distributions for such statistics arises as an sensible goal.
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Let then, as a general notation W stand for the negative logarithm of the l.r.t. statistics in sections 3 and 4.
The near-exact distributions that we will develop in this section will assume the form of mixtures of GNIG
(Generalized Near-Integer Gamma) distributions (see Appendix A), which for the negative logarithm of the
l.r.t. statistics in sections 3 and 4 will have p.d.f.’s and c.d.f.’s respectively of the form

fW (w) =

m∗∑
`=0

π` f GNIG

(
w | r1, . . . , rp−1, r + `;

n − 2
n

, . . . ,
n − p

n
, λ; p∗

)
(35)

and

FW (w) =

m∗∑
`=0

π` FGNIG

(
w | r1, . . . , rp−1, r + `;

n − 2
n

, . . . ,
n − p

n
, λ; p∗

)
, (36)

for some m∗ ∈ N, where r1, . . . , rp−1 ∈ N and, for the statistic in Section 3,

r =
p − 1

2
, λ =

n − 1
n

, r j = p − j ( j = 1, . . . , p − 1) , and p∗ = p (37)

while for the statistic in section 4,

r = p
q − 1

2
, and p∗ = p + q

where λ∗ is the rate parameter in

Φ∗W5
(t) = Φ1,W5

(t)
(
p1(λ∗)s1 (λ∗ − it)−s1 + (1 − p1) (λ∗)s2 (λ∗ − it)−s2

)
, (38)

which is determined together with s1, s2 and p1 in such a way that the first 4 derivatives of Φ∗W5
(t) and ΦW5

(t)
in (33) at t = 0 are the same. For further details please see Section 5.2.

These near-exact distributions are built by leaving Φ1,W4 (t) and Φ1,W5 (t), respectively in (31) and (33)
unchanged and then asymptotically approximating the Logbeta distributions whose c.f.’s are represented
in Φ2,W4 (t) and Φ2,W5 (t) in the same expressions by infinite mixtures of Gamma distributions. Indeed any
Logbeta(a, b) distribution may, for non-integer b, be asymptotically replaced by an infinite mixture of Γ(b +

`, a) (` = 0, 1, . . . ) distributions, since based on expressions (12) and (14) from [32], which for z = a − it,
α = 0 and non-integer β = b may be written as

Γ(a − it)
Γ(a + b − it)

≈

∞∑
`=0

p`(b) (a − it)−(b+k) (as a→ ∞)

with

p`(b) =
1
k

k−1∑
m=0

(
Γ(1 − b − m)

Γ(−b − `)(` − m + 1)!
+ (−1)`+mb`−m+1

)
pm(b) , ` = 1, 2, . . . ,

and p0(b) = 1, we may then write the c.f. of Y = − log X where X ∼ Beta(a, b) as

ΦY (t) =
Γ(a + b)

Γ(a)
Γ(a − it)

Γ(a + b − it)
≈

∞∑
`=0

Γ(a + b)
Γ(a)

p`(b)
ab+`︸            ︷︷            ︸

p∗
`
(a,b)

ab+`(a − it)−(b+`) . (39)

It happens then that the right hand side of (39) is the c.f. of an infinite mixture, with weights p∗`(a, b) of
Γ(b + `, a) (` = 0, 1, . . . ) distributions.

14



Then we truncate the infinite sum in (39) and instead of the weights p∗`(a, b) we use the weights π`
(` = 0, . . . ,m∗), determined in such a way that

∂h

∂th ΦWk
(t)

∣∣∣∣∣∣
t=0

=
∂h

∂th

Φ1,Wk
(t)

m∗∑
`=0

π`ab+`(a − it)−(b+`)


∣∣∣∣∣∣∣
t=0

, k = 4, 5 , h = 1, . . . ,m∗ ,

with πm∗ = 1−
∑m∗−1
`=0 π`. This way these near-exact distributions have, by construction, the first m∗ moments

equal to the first m∗ exact moments.
Further details on the construction of these near-exact distributions are given in the subsections ahead.

5.1. Near-exact distribution for the l.r.t. statistic in section 3
Using (39) we will as a first step replace Φ2,W4

(t) in (31), which is the c.f. of the sum of p−1 independent

Logbeta
(
n − 1, j

p

)
r.v.’s ( j = 1, . . . , p − 1), multiplied by n, by the c.f. of the sum of p − 1 independent

infinite mixtures of Γ
(

j
p + `, n − 1

)
distributions (` = 0, 1, . . . ), multiplied by n, which is the c.f. of the sum

of p − 1 independent infinite mixtures of Γ
(

j
p + `, n−1

n

)
distributions (` = 0, 1, . . . ), and which in turn, and

given that the rate parameters of the Gamma distributions are not functions of either j or `, is an infinite
mixture of Γ

((∑p−1
j=1

j
p

)
+ `, n−1

n

)
distributions, where

∑p−1
j=1

j
p =

p−1
2 . We may note that in this way we obtain

a representation of the exact distribution which bears some resemblance with the representations in [23, 24,
31], however with coefficients which are much simpler to compute, and having the advantage of allowing
for the easy development of very accurate near-exact approximations, as we will see next. Moreover, our
representation does not have any parameters that are not well-defined, in contrast to the representation in
[31].

In this way, in order to obtain a near-exact distribution for W4 we will replace Φ2,W4
(t) in (31) by the c.f.

of a finite mixture of Γ
(

p−1
2 + `, n−1

n

)
distributions, for ` = 0, . . . ,m∗,

Φ∗2,W4
(t) =

m∗∑
`=0

π`

(
n − 1

n

) p−1
2 +` (n − 1

n
− it

)−( p−1
2 +`

)
(40)

where the weights π` are determined in such a way that the first m∗ derivatives of Φ∗2,W4
(t) and Φ2,W4

(t) with
respect to t, at t = 0, are equal, that is, π0, . . . , πm∗−1 are determined as the numerical solution of the system
of m∗ equations

∂h

∂th Φ∗2,W4
(t)

∣∣∣∣∣∣
t=0

=
∂h

∂th Φ2,W4
(t)

∣∣∣∣∣∣
t=0

, h = 1, . . . ,m∗ (41)

and with πm∗ = 1 −
∑m∗−1
`=0 π`, and we will then use

Φ∗W4
(t) = Φ1,W4 (t) Φ∗2,W4

(t) ,

with Φ1,W4
(t) given by (31) and Φ∗2,W4

(t) given by (40) above, as a near-exact c.f. for W4, to which correspond
the p.d.f. and the c.d.f. in (35) and (36), with r, λ and p∗ given by (37).

We have thus the following Theorem and Corollary.

Theorem 4. Let W4 = − log Λ4, where Λ4 is the l.r.t. statistic in (28). Then, for some m∗ ∈ N, distributions
with p.d.f.

f (w) =

m∗∑
`=0

π` f GNIG

(
w | r1, . . . , rp−1,

p − 1
2

+ `;
n − 2

n
, . . . ,

n − p
n

,
n − 1

n
; p

)
(w > 0)
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and c.d.f.

F(w) =

m∗∑
`=0

π` FGNIG

(
w | r1, . . . , rp−1,

p − 1
2

+ `;
n − 2

n
, . . . ,

n − p
n

,
n − 1

n
; p

)
(w > 0)

where r j = p − j ( j = 1, . . . , p − 1) and π0, . . . , πm∗−1 are determined from (41) above, with Φ∗2,W4
(t) given by

(40) and πm∗ = 1 −
∑m∗−1
`=0 π`, are near-exact distributions for W4.

From the above Theorem we may then easily obtain the following Corollary.

Corollary 4. Let Λ4 be the l.r.t. statistic in (28). Then distributions with p.d.f.

f (z) =

m∗∑
`=0

π` f GNIG

(
log z | r1, . . . , rp−1,

p − 1
2

+ `;
n − 2

n
, . . . ,

n − p
n

,
n − 1

n
; p

)
1
z

(0 < z < 1)

and c.d.f.

F(z) =

m∗∑
`=0

π`

(
1 − FGNIG

(
log z | r1, . . . , rp−1,

p − 1
2

+ `;
n − 2

n
, . . . ,

n − p
n

,
n − 1

n
; p

))
(0 < z < 1)

where 0 < z < 1 represents the running value for Λ4 and r j ( j = 1, . . . , p − 1) and π` (` = 0, . . . ,m∗) are
defined as in the previous Theorem, are near-exact distributions for Λ4.

We should note that although for generality the components of the mixtures in the previous Theorem and
Corollary were denoted as GNIG distributions, since for odd p, r =

p−1
2 is indeed an integer, in this case the

components of the mixtures are GIG distributions.
These near-exact distributions are asymptotic not only for increasing sample sizes but also for increas-

ing number of variables involved, as it is shown by the numerical studies carried out in the next Section.
These studies also show the extreme closeness of these near-exact distributions to the corresponding exact
distributions, which is, in general, even more striking than for the real case.

These near-exact distributions are very flexible, their parameters are very simple to determine and their
implementation is very easy with the help of adequate software.

5.2. Near-exact distribution for the l.r.t. statistic in section 4
5.2.1. The case of equal sample sizes

For the statistic Λ5 in Section 4, in the case where all q samples have size n, using (39) we may asymptoti-
cally replace Φ2,W5

(t) in (33), which is the c.f. of the sum of pq − min(p, q) independent

Logbeta
(
n − 1 +

⌊
k− j

q

⌋
, k− j

q −
⌊

k− j
q

⌋)
r.v.’s ( j = 1, . . . , p; k = 1, . . . , q; j , k), multiplied by n, by the c.f. of

the sum of pq−min(p, q) independent infinite mixtures of Γ
(

k− j
q −

⌊
k− j

q

⌋
+ `, 1

n

(
n − 1 +

⌊
k− j

q

⌋))
distributions

(` = 0, 1, . . . ). If it were the case that the rate parameters in these Gamma distributions were functions of
neither j nor k, as happened in the previous subsection, then this sum of mixtures would yield a simple
mixture of Gamma distributions. However, since now the rate parameters of the Gamma distributions in the
sum of mixtures are functions of both j and k, it renders it difficult to add the different mixtures of Gamma
distributions. For this reason we decide to use as an asymptotic replacement for Φ2,W5

(t) in (33) the c.f. of a

finite mixture of m∗ + 1 c.f.’s of Γ
(∑p

j=1
∑q

k=1
k− j

q −
⌊

k− j
q

⌋
+ `, λ∗

)
distributions (` = 0, . . . ,m∗), which is

Φ∗2,W5
(t) =

m∗∑
`=0

π`(λ∗)r+`(λ∗ − it)−(r+`) , (42)
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with

r =

p∑
j=1

q∑
k=1

k − j
q
−

⌊
k − j

q

⌋
= p

q − 1
2

, (43)

and where λ∗ is the common rate parameter of a mixture of two Gamma distributions whose first four
moments match the first four moments of the sum of independent Logbeta r.v.’s whose c.f. is Φ2,W5 (t) in
(33), that is, where λ∗ is the rate parameter in (38), which is determined together with s1, s2 and p1 in such
a way that, for Φ∗W5

(t) in (38),

∂h

∂th Φ∗W5
(t)

∣∣∣∣∣∣
t=0

=
∂h

∂th ΦW5
(t)

∣∣∣∣∣∣
t=0

, h = 1, . . . , 4 , (44)

and where the weights π` (` = 0, . . . ,m∗ − 1), are then determined in such a way that

∂h

∂th Φ∗2,W5
(t)

∣∣∣∣∣∣
t=0

=
∂h

∂th Φ2,W5
(t)

∣∣∣∣∣∣
t=0

, h = 1, . . . ,m∗ , (45)

with πm∗ = 1 −
∑m∗−1
`=0 π`.

This way, we will then use

Φ∗W5
(t) = Φ1,W5 (t) Φ∗2,W5

(t) ,

with Φ1,W5
(t) given by (33) and Φ∗2,W5

(t) given by (42) above, as a near-exact c.f. for W5, and as such we may
thus enunciate the results summarized in the following Theorem and Corollary.

Theorem 5. Let W5 = − log Λ5, where Λ5 is the l.r.t. statistic in (32). Then, for some m∗ ∈ N, distributions
with p.d.f.

f (w) =

m∗∑
`=0

π` f GNIG

(
w | r1, . . . , rp−1, r + `;

n − 2
n

, . . . ,
n − p

n
, λ∗; p

)
(w > 0) (46)

and c.d.f.

F(w) =

m∗∑
`=0

π` FGNIG

(
w | r1, . . . , rp−1, r + `;

n − 2
n

, . . . ,
n − p

n
, λ∗; p

)
(w > 0) (47)

where r j ( j = 1, . . . , p − 1) are given by (34), r given by (43), λ∗ by solving (44) in order to λ∗, s1, s2 and p1,
and π0, . . . , πm∗−1 are determined from (45) above, with Φ∗2,W5

(t) given by (42) and πm∗ = 1 −
∑m∗−1
`=0 π`, are

near-exact distributions for W5.

From the above Theorem we may then easily obtain the following Corollary, by simple transformation
of the r.v.’s involved, taking into account that Λ5 = e−W5 .

Corollary 5. Let Λ5 be the l.r.t. statistic in (32). Then distributions with p.d.f.

f (z) =

m∗∑
`=0

π` f GNIG

(
log z | r1, . . . , rp−1, r + `;

n − 2
n

, . . . ,
n − p

n
, λ∗; p

)
1
z

(0 < z < 1) (48)
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and c.d.f.

F(z) =

m∗∑
`=0

π`

(
1 − FGNIG

(
log z | r1, . . . , rp−1, r + `;

n − 2
n

, . . . ,
n − p

n
, λ∗; p

))
(0 < z < 1) (49)

where 0 < z < 1 represents the running value for Λ5 and r j ( j = 1, . . . , p − 1), r, λ∗ and π` (` = 0, . . . ,m∗)
are defined as in the previous Theorem, are near-exact distributions for Λ5.

These near-exact distributions are asymptotic not only for increasing sample sizes but also for increasing
number of variables and increasing number of matrices involved, as it is shown by the numerical studies
carried out in the next section. As it happened with the near-exact distributions developed in the previous
subsection, these studies also show the extreme closeness of these near-exact distributions to the correspond-
ing exact distributions, in general, once again, even more accentuated than for the real case.

Once again, also these near-exact distributions are very flexible, their parameters very simple to deter-
mine and their implementation rendered very easy with the help of adequate software.

5.2.2. The case of unequal sample sizes
When the samples have different sizes, with the k-th sample having size nk, the l.r.t. statistic Λ5 is now

Λ5 =
NN p

q∏
k=1

nnk p
k

q∏
k=1
|Ak |

nk

|A|N
,

where

N =

q∑
k=1

nk ,

and Ak (k = 1, . . . , q) and A are the same as in (32).
Then, from (2.14) in [19], taking d = 1 and Ni = ni (i = 1, . . . , q), the h-th moment of Λ5 is in this case,

for h > max1≤k≤q
p−nk

nk
,

E
(
Λh

5

)
=

N N ph∏q
k=1 n nk ph

k

p∏
j=1

 Γ(N − q + 1 − j)
Γ(N − q + 1 − j + Nh)

q∏
k=1

Γ(nk − j + nkh)
Γ(nk − j)

 ,

and the c.f. of W5 = − log Λ5 is thus

ΦW5
(t) = E

(
Λ−it

5

)
=

N −N pit∏q
k=1 n−nk pit

k

p∏
j=1

 Γ(N − q + 1 − j)
Γ(N − q + 1 − j − Nit)

q∏
k=1

Γ(nk − j − nkit)
Γ(nk − j)

 .

It happens that the exact distribution of Λ5 in (32) in this case of unequal sample sizes is quite compli-
cated and it is not even possible to give it a structure as the one in (1).

However, using a procedure similar to the one used in [8], we may write

ΦW5
(t) = Φ1,W5

(t)
ΦW5

(t)

Φ1,W5
(t)

,
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where Φ1,W5
(t) is given by (33), now with n = N/q, and, in order to build a near-exact approximation for W5

we will leave Φ1,W5
(t) unchanged and replace

ΦW5
(t)

Φ1,W5
(t) by Φ∗2,W5

(t), given by (42), once again with λ∗ defined

in a similar manner to the one used in the previous subsection and with r either equal to s1 in (33) or given
by (43). As we will see in the next section, while the first choice for r will yield near-exact distributions that
are asymptotic for increasing sample sizes as well as for increasing values of p and q, that is, respectively
the number of variables and matrices involved, the second choice may give slightly better approximations
for small values of p and even better approximations for large sample sizes. However, these latter near-exact
distributions will no longer be asymptotic for increasing values of p or q, but only for increasing sample
sizes.

As such, in terms of near-exact distribution, for this case of unequal sample sizes, similar results to the
ones in Theorem 5 and Corollary 5 still hold, with the due changes in the parameters, namely with all the
occurrences of n in expressions (46)-(49) changed to N/q.

6. Numerical studies

In order to assess the proximity of the near-exact distributions developed in the previous section to the
exact distribution and their performance in different situations, we will use the measure

∆ =
1

2π

∫ +∞

−∞

∣∣∣∣∣∣ΦW (t) − Φ∗W (t)
t

∣∣∣∣∣∣ dt ,

with

max w
∣∣∣FW (w) − F∗W (w)

∣∣∣ ≤ ∆ ,

where W represents generally either W4 or W5, ΦW (t) represents the exact c.f. of W and Φ∗W (t) its approx-
imate c.f. usually a near-exact c.f., but occasionally an asymptotic or other c.f., FW ( · ) the exact c.d.f. of
W, corresponding to ΦW (t), and F∗W ( · ) the c.d.f. corresponding to Φ∗W (t). Some further details on this mea-
sure and its relation with the Berry-Esseen bound are analyzed in [8]. We should note that, quite clearly, a
given value of this measure for any given approximation to the exact distribution of either W4 = − log Λ4
or W5 = − log Λ5, for any given combination of parameters, will have exactly the same value as the corre-
sponding measure concerning the corresponding approximation to the distribution of respectively either Λ4
or Λ5. In other words, computing the value of ∆ for a given approximation e.g. for W4 will be the same as
computing its value for the corresponding approximation for Λ4.

6.1. Numerical studies on the approximations for Λ4

In Table 1 we have the values of the measure ∆ for the statistic Λ4, for values of p, the number of variables
involved, ranging from 3 to 50 and sample sizes n which exceed p by 2, 12, 50 and 100. In order to compare
the performance of the near-exact distributions with other available approximations in the literature, we have
also used the Box type asymptotic distribution in [25] and the Pearson type I distribution used in [19]. The
Pearson type I distribution was fit, by matching the first four exact moments of Λ

1/nb
4 . In each case we have

used for b the positive integer value which would give a better fit, this way obtaining indeed much better
approximations than the ones obtained in [19]. These values of b are specified in Table 1, inside square
brackets, right after the value of ∆ for the Pearson type I approximation. We may note that this Pearson type
I approximation, with the slight change we introduced, has a much better performance than truncations, even
with a rather large number of terms, of any of the expansions in [24].
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Table 1 – Values of the measure ∆ for the near-exact and asymptotic distributions for the l.r.t.
statistic to test sphericity

Near-exact distribution
# of exact moments matched Box Pearson

p n 4 6 10 15 type I

3 5 1.09×10−8 2.74×10−11 3.57×10−13 9.28×10−16 5.75×10−2 2.17×10−3 [1]
15 6.27×10−11 1.21×10−13 1.39×10−18 4.27×10−23 9.12×10−3 2.78×10−5 [1]
53 2.21×10−11 3.42×10−14 1.19×10−18 7.73×10−23 2.88×10−3 6.85×10−7 [1]

103 1.08×10−12 6.43×10−16 1.16×10−21 2.71×10−27 1.52×10−3 9.58×10−8 [1]
6 8 9.23×10−14 2.15×10−17 7.93×10−24 1.31×10−30 3.43×10−1 7.60×10−4 [2]

18 8.88×10−14 3.39×10−17 7.24×10−24 1.37×10−30 1.14×10−1 3.37×10−6 [3]
56 1.71×10−14 4.07×10−18 7.35×10−25 6.12×10−32 3.20×10−2 9.33×10−8 [3]

106 2.02×10−15 2.32×10−19 1.00×10−26 7.68×10−35 1.64×10−2 1.33×10−8 [3]
10 12 3.54×10−16 2.18×10−20 2.61×10−28 2.39×10−37 8.07×10−1 3.56×10−4 [3]

22 2.19×10−15 7.50×10−20 2.26×10−27 1.64×10−35 3.52×10−1 2.17×10−6 [5]
60 1.21×10−15 3.02×10−20 7.29×10−28 2.04×10−36 1.16×10−1 7.88×10−8 [5]

110 9.24×10−17 7.55×10−22 3.06×10−30 2.87×10−40 6, 17×10−2 1.19×10−8 [5]
20 22 3.47×10−18 6.90×10−24 2.37×10−33 2.60×10−45 2.19×100 ——

32 6.80×10−16 3.46×10−22 3.56×10−30 1.18×10−39 1.19×100 2.51×10−6 [8]
70 5.49×10−16 7.14×10−23 1.73×10−30 2.02×10−40 4.90×10−1 3.42×10−8 [11]

120 1.48×10−16 4.59×10−24 8.87×10−32 1.01×10−42 3.04×10−1 6.07×10−9 [11]
50 52 6.91×10−18 3.35×10−25 8.87×10−35 8.46×10−47 6.48×100 ——

62 2.57×10−16 6.21×10−23 1.88×10−32 4.66×10−43 4.85×100 1.27×10−6 [16]
100 1.56×10−16 3.48×10−23 3.92×10−33 8.04×10−46 2.48×100 2.91×10−8 [24]
150 8.77×10−18 6.80×10−25 5.13×10−36 3.71×10−48 1.57×100 3.97×10−9 [27]

The results in Table 1 show that although the Pearson type I distribution, with the improvement we
introduced of finding the integer value of b which gives the best fit to the exact distribution, that is, the
smallest value of ∆, has a very good performance, with an asymptotic behavior not only for increasing
sample sizes but also for increasing values of p, it still is no match even for the near-exact distribution which
matches 4 moments. Besides, finding the integer value of b which gives the best fit for the Pearson type I
distribution is not always that easy of a task, and it was not possible to fit any such distribution for the cases
where p was larger and the sample size only exceeds p by 2. The Box type asymptotic distribution has the
poorest behavior of all the approximations. Its performance being worse for larger values of p, with values
of ∆ above 1, which shows that in these cases the asymptotic distribution yielded by the approximation is
not a true distribution. Moreover, it produces values of ∆ quite close to 1 for a number of other cases. This
asymptotic approximation has, however, as a virtue its simplicity.

The near-exact distributions always show a very good performance, with very low values of ∆. They
exhibit a very good performance even for the smaller sample sizes, always showing an asymptotic behavior
both for increasing sample sizes as well as for increasing values of p, and, of course, with the near-exact
distribution which match a larger number of exact moments showing an increasingly better performance.

Since with the software and computers nowadays available it is not hard to implement such distributions
and since the computation of their parameters is really simple, they seem to be the right choice both in terms
of accuracy as well as in terms of convenience.

6.2. Numerical studies on the approximations for Λ5

Concerning the case of equal sample sizes, we have in Table 2 the values of the measure ∆ for the
statistic Λ5, for different values of p, q and n, respectively the number of variables involved, the number of
covariance matrices involved and the common sample size of the q independent samples. In order to compare
the performance of the near-exact distributions with other available approximations in the literature, we have
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also used the mixture of two Beta distributions in [10] and the Pearson type I distribution used by Krishnaiah
et al. [19]. These two distributions were fit by matching respectively the first two and four exact moments
of Λ

1/nb
5 , for the choice of b ∈ N which gives the lowest value of ∆. These values of b are specified in Table

2, inside square brackets, right after the value of ∆ for each of these approximations. The mixture of two
Beta distributions we used is a mixture of two Beta distributions with the same first parameter and a second
parameter given by expressions (4.7) and (4.9) in [10]. Then the first weight in the mixture and the first
parameter in the Beta distributions are determined by equating the two first exact moments of Λ

1/nb
5 and

the two first moments of the mixture. Although the mixture of two Beta distributions in [10] is indeed not
implemented exactly in this way, we decided to implement it the way we did since not only the definition
of the parameter s in (4.9) and (4.10) in [10] yields a conflicting definition for A2, as well as in defining the
parameters the way we did we think the approximation will indeed benefit from a much better performance.

From the results in Table 2 we may see how the Pearson type I approximation always outperforms the
mixture of two Beta distributions, mainly for the larger sample sizes. However, the Pearson type I distribu-
tion is always itself largely outperformed by the near-exact distribution which matches only 4 moments. The
near-exact distributions once again show not only a marked asymptotic behavior for increasing sample sizes
but also for increasing values of both p and q, as well as a consistent extremely good performance for very
small sample sizes, avoiding the cumbersomeness of the determination of the best value for the parameter b
in the Pearson type I and in the mixture of Betas approximations.

Table 2 – Values of the measure ∆ for the near-exact and asymptotic distributions for the l.r.t. statistic to test
the equality of q covariance matrices

Near-exact distribution
# of exact moments matched Mixture of Pearson

p q n 4 6 10 15 Beta dists. type I

5 3 7 7.26×10−9 3.05×10−11 1.07×10−15 7.40×10−21 9.63×10−5 [6] 1.36×10−5 [6]
50 4.57×10−13 1.23×10−17 1.12×10−25 1.55×10−34 7.67×10−6 [4] 4.78×10−9 [7]

100 4.03×10−15 8.06×10−20 4.38×10−29 1.95×10−39 2.68×10−7 [8] 5.54×10−10 [7]
10 7 2.15×10−10 1.13×10−13 4.19×10−20 1.20×10−27 1.29×10−4 [26] 3.24×10−6 [22]

50 1.67×10−14 2.41×10−19 5.06×10−25 6.29×10−39 6.12×10−8 [30] 1.56×10−9 [28]
100 5.02×10−16 1.84×10−21 3.52×10−32 7.86×10−44 2.18×10−8 [30] 1.50×10−10 [29]

15 7 1.53×10−10 7.06×10−14 2.29×10−20 4.14×10−28 6.80×10−6 [37] 1.60×10−6 [34]
50 1.33×10−14 1.63×10−19 3.60×10−29 1.03×10−40 5.16×10−8 [46] 7.25×10−10 [44]

100 4.05×10−16 1.26×10−21 1.77×10−32 1.16×10−45 6.09×10−9 [45] 8.85×10−11 [44]
10 3 12 1.50×10−10 9.18×10−14 6.08×10−20 5.39×10−27 6.63×10−4 [11] 2.22×10−5 [9]

50 3.13×10−14 1.66×10−18 4.69×10−26 1.67×10−35 4.93×10−6 [11] 1.32×10−8 [13]
100 1.65×10−15 5.46×10−20 4.26×10−29 3.38×10−40 2.98×10−9 [14] 1.41×10−9 [13]

10 12 8.52×10−14 2.94×10−18 3.29×10−26 2.75×10−36 2.96×10−4 [46] 3.23×10−6 [34]
50 8.63×10−16 7.48×10−21 4.20×10−31 3.96×10−44 1.90×10−7 [61] 2.17×10−9 [54]

100 4.07×10−17 8.32×10−23 3.05×10−34 3.61×10−46 1.55×10−8 [58] 2.01×10−10 [56]
15 12 5.10×10−13 2.25×10−17 5.19×10−26 1.33×10−36 5.33×10−5 [67] 1.69×10−6 [52]

50 1.03×10−15 5.51×10−21 1.73×10−31 2.25×10−44 2.97×10−7 [88] 1.08×10−9 [84]
100 2.47×10−17 3.68×10−23 8.45×10−35 5.78×10−48 1.07×10−8 [89] 1.09×10−10 [86]

15 3 17 6.72×10−11 3.03×10−14 1.11×10−20 2.50×10−28 4.02×10−4 [16] 1.67×10−5 [12]
50 6.52×10−13 5.25×10−17 5.90×10−25 2.30×10−34 3.07×10−6 [23] 1.90×10−8 [19]

100 1.15×10−14 2.35×10−19 1.67×10−28 3.89×10−39 4.69×10−7 [23] 1.26×10−9 [20]
10 17 9.66×10−14 2.56×10−18 2.54×10−27 2.57×10−38 3.99×10−4 [65] 2.88×10−6 [43]

50 1.51×10−15 1.03×10−20 6.47×10−31 2.57×10−43 1.29×10−6 [83] 2.78×10−9 [79]
100 3.45×10−17 6.79×10−23 3.46×10−34 1.29×10−47 8.30×10−8 [86] 2.27×10−10 [83]

15 17 6.17×10−15 2.48×10−20 6.27×10−30 1.43×10−41 6.35×10−5 [95] 1.76×10−6 [63]
50 5.09×10−17 5.13×10−22 1.13×10−32 4.75×10−46 1.27×10−7 [117] 1.64×10−9 [119]

100 6.36×10−18 9.02×10−24 1.21×10−35 1.85×10−50 6.96×10−7 [118] 1.25×10−10 [127]
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For these reasons we would strongly recommend the use of the near-exact distributions, particularly
because the present availability of fast computers and adequate software facilitates their computational im-
plementation.

Concerning the case of different sample sizes, we were not able to fit the Pearson type I approximation
to any case. Actually the authors in [19] have only used this approximation for the case of equal sample
sizes. However, it was possible to fit the mixture of two Beta distributions to powers of Λ

1/b
5 . But, it happens

that although surprisingly enough the numerical solutions of the systems of equations in order to determine
the first weight and the common first parameter in the Beta distributions seem to be more stable in this
different sample sizes case, when trying to find the best integer value of b we found what seemed to be
many local minima. Yet, since when using either the Pearson type I or the mixture of two Beta distributions
approximations we equate the moments of Λ

1/b
5 or Λ

1/nb
5 to the moments of these approximations, we cannot

find the value for b and the parameters in these approximations in one only single step but we have rather
to use a two step iterative process, rendering the whole process of determining the best value of b a very
frustrating and time consuming task. These facts, together with the facts that only for p = 5 and smaller
sample sizes it was possible to find a better value for the measure ∆ for the mixture of two Beta distributions
than for the near-exact distribution that matches four exact moments, and that the near-exact distributions
continue to have a very good performance also for these different sample size cases, for all sample sizes and
for all values of p and q, we think that it is indeed much preferable to use the near-exact approximations,
which seem to be the only approximations with a very good and consistent performance.

Table 3 – Values of the measure ∆ for the near-exact and asymptotic distributions for the l.r.t. statistic
to test the equality of q covariance matrices, for different sample sizes nk

Near-exact distribution
# of exact moments matched Mixture of

p q nk(*) 4 6 10 15 Beta dists.

5 5 7(3)19 9.21×10−5 9.27×10−6 1.86×10−7 3.28×10−9 2.83×10−5 [68]
10 7(3)34 4.10×10−5 3.09×10−6 4.59×10−8 7.10×10−10 1.66×10−4 [212]
15 7(3)49 2.45×10−5 1.56×10−6 1.77×10−8 1.94×10−10 9.93×10−5 [400]

10 5 12(3)24 8.03×10−5 7.26×10−6 1.56×10−7 3.99×10−9 1.02×10−4 [254]
10 12(3)39 3.41×10−5 2.38×10−6 3.32×10−8 4.64×10−10 1.96×10−4 [650]
15 12(3)54 2.02×10−5 1.21×10−6 1.21×10−8 1.11×10−10 1.82×10−4 [1150]

15 5 17(3)29 6.60×10−5 5.50×10−6 1.06×10−7 2.32×10−9 1.25×10−4 [527]
10 17(3)44 2.81×10−5 1.84×10−6 2.23×10−8 2.60×10−10 6.78×10−5 [1233]
15 17(3)59 1.69×10−5 9.50×10−7 8.24×10−9 6.32×10−11 2.22×10−4 [2245]

5 5 37(3)49 4.85×10−9 2.97×10−10 3.40×10−12 3.96×10−14 8.68×10−9 [573]
10 37(3)64 3.74×10−9 1.04×10−10 2.74×10−13 5.56×10−16 7.23×10−5 [352]
15 37(3)79 3.21×10−9 5.78×10−11 6.66×10−14 4.98×10−17 8.38×10−6 [550]

10 5 42(3)54 3.97×10−9 5.03×10−11 3.74×10−14 1.69×10−17 8.83×10−8 [1358]
10 42(3)69 4.65×10−9 2.41×10−11 3.61×10−15 2.46×10−19 3.03×10−7 [3148]
15 42(3)84 4.78×10−9 1.57×10−11 9.21×10−16 2.20×10−20 5.36×10−7 [3288]

15 5 47(3)59 4.22×10−9 1.80×10−11 2.05×10−15 1.13×10−19 1.55×10−6 [2023]
10 47(3)74 6.79×10−9 1.38×10−11 1.96×10−16 1.29×10−21 2.09×10−7 [4050]
15 47(3)89 7.41×10−9 1.16×10−11 3.51×10−17 1.09×10−23 8.91×10−7 [7764]

(*) the notation ’i(s)f’ for sample sizes, indicates the initial value, the step and the ’final’ value, so that
for example, 7(3)19 stands for values of n1, . . . , n5 equal to 7,10,13,16,19.

In Table 3 we may see the values of ∆ for the near-exact distributions which use for λ∗ and r the values
of λ∗ and s1 in (38), obtained by solving the system of equations in (44) as well as the values of ∆ for the
mixture of two Beta distributions, with the indication, inside square brackets, of the value of b used, which
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is the integer value which would give the lowest value of ∆. We may see how the near-exact distributions
exhibit a very good performance even for the smaller sample sizes and a clear asymptotic behavior not only
for increasing sample sizes but also for increasing values of p and q, and how the near-exact distributions
which match four exact moments always outperform the mixture of two Beta distributions except for the
smaller sample sizes for p = 5, with the measures for this mixture exhibiting a bit erratic behavior.

In Table 4 we have the values of ∆ for the near-exact distributions which use the same value of λ∗ as the
ones in Table 3, but use for r the value given by (43). Although these near-exact distributions give better
values than the ones considered previously, for the smaller sample sizes, only for p = 5, and for all the larger
sample sizes, they have lost their asymptotic character for increasing values of p, the number of variables
involved. It seems that these near-exact distributions will be adequate for small values of p as long as the
sample sizes considered are rather small or for larger values of sample sizes, for any p.

Table 4 – Values of the measure ∆ for a second version of near-exact distributions
for the l.r.t. statistic to test the equality of q covariance matrices,
for different sample sizes nk

# of exact moments matched by the near-exact dist.
p q nk(*) 4 6 10 15

5 5 7(3)19 2.94×10−5 1.75×10−6 7.20×10−8 1.67×10−9

10 7(3)34 2.23×10−5 5.41×10−7 1.63×10−8 2.66×10−10

15 7(3)49 1.59×10−5 2.51×10−7 5.65×10−9 6.41×10−11

5 5 37(3)49 1.76×10−10 1.65×10−13 3.27×10−19 6.24×10−26

10 37(3)64 2.16×10−10 1.40×10−13 1.12×10−19 6.24×10−27

15 37(3)79 2.34×10−10 1.36×10−13 7.19×10−20 2.04×10−27

10 5 42(3)54 8.32×10−10 1.14×10−12 4.80×10−18 2.49×10−24

10 42(3)69 1.30×10−9 1.52×10−12 3.24×10−18 5.12×10−25

15 42(3)84 1.14×10−9 1.38×10−12 2.39×10−18 2.21×10−25

15 5 47(3)59 1.80×10−9 2.96×10−12 1.65×10−17 1.13×10−23

10 47(3)74 1.67×10−9 3.35×10−12 1.33×10−17 3.58×10−24

15 47(3)89 2.92×10−9 2.68×10−12 5.50×10−19 1.42×10−24

(*) please see the note after Table 3.

7. Conclusions

Once we work towards and succeed in giving the exact distribution of the l.r.t. statistics under study
a form of the type in (1) we may readily not only show that actually there is a common structure for the
exact distribution of these l.r.t. statistics which goes beyond the fact that their exact distribution may be
represented as the distribution of the product of independent Beta r.v.’s but we also get a much deeper insight
into the true structure of such distributions and are then able to obtain quite simple expressions for the
exact distributions of the l.r.t. statistics to test the independence of several groups of variables, the equality
of several mean vectors and the nullity of an expected value matrix and to develop very well-fitting near-
exact approximations for the l.r.t. statistics to test sphericity and the equality of covariance matrices. These
near-exact approximations show very good performances even for very small sample sizes and display an
asymptotic behavior not only for increasing sample sizes as well as for increasing number of variables and
matrices involved, outperforming by far any other available approximations. Although they may seem at
first sight somewhat complicated to implement, with the present availability of fast computers and adequate
software, their practical implementation is rendered very simple. Moreover, the numerical determination of
their parameters is well defined and numerically stable. Benefiting from all these features, the near-exact
approximations can be recommended whenever the exact distributions exhibit a very complicated structure,
especially if this structure involves infinite series representations.
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Appendix A. The GIG and GNIG distributions

We will say that the r.v. X has a Gamma distribution with rate parameter λ > 0 and shape parameter
r > 0, if its p.d.f. may be written as

fX(x) =
λr

Γ(r)
e−λx xr−1 , (x > 0)

and we will denote this fact by

X ∼ Γ(r, λ) .

Let
X j ∼ Γ(r j, λ j) j = 1, . . . , p

be p independent r.v.’s with Gamma distributions with shape parameters r j ∈ N and rate parameters λ j > 0,
with λ j , λ j′ , for all j, j′ ∈ {1, . . . , p}. We will say that then the r.v.

Y =

p∑
j=1

X j

has a GIG (Generalized Integer Gamma) distribution of depth p, with shape parameters r j and rate parame-
ters λ j, ( j = 1, . . . , p), and we will denote this fact by

Y ∼ GIG(r j, λ j; p) .

The p.d.f. and c.d.f. of Y are respectively given by (see [5])

f GIG( y | r1, . . . , rp; λ1, . . . , λp; p) = K
p∑

j=1

P j(y) e−λ j y , (y > 0)

and

FGIG( y | r1, . . . , r j; λ1, . . . , λp; p) = 1 − K
p∑

j=1

P∗j(y) e−λ j y , (y > 0)

where K is given by (5) in Coelho (1998), and P j(y) and P∗j(y) are given by (7) and (16) in the same reference.
The GNIG (Generalized Near-Integer Gamma) distribution of depth p + 1 (see Coe04) is the distribution

of the r.v.

Z = Y1 + Y2
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where Y1 and Y2 are independent, Y1 having a GIG distribution of depth p and Y2 with a Gamma distribution
with a non-integer shape parameter r and a rate parameter λ , λ j ( j = 1, . . . , p). The p.d.f. of Z is given by

f GNIG( z | r1, . . . , rp, r; λ1, . . . , λp, λ; p + 1) =

Kλr
p∑

j=1

e−λ jz
r j∑

k=1

{
c j,k

Γ(k)
Γ(k+r)

zk+r−1
1F1(r, k+r,−(λ−λ j)z)

}
, (z > 0)

and the c.d.f. given by

FGNIG( z | r1, . . . , rp, r; λ1, . . . , λp, λ; p+1) =
λr zr

Γ(r+1) 1F1(r, r+1,−λz)

−Kλr
p∑

j=1

e−λ jz
r j∑

k=1

c∗j,k

k−1∑
i=0

zr+iλi
j

Γ(r+1+i) 1F1(r, r+1+i,−(λ − λ j)z), (z > 0)

where

c∗j,k =
c j,k

λk
j

Γ(k)

with c j,k given by (11) through (13) in Coelho (1998). In the above expressions 1F1(a, b; z) is the Kummer
confluent hypergeometric function. This function typically has very good convergence properties and is
nowadays easily handled by a number of software packages.
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