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1. Introduction

Testing if a covariance matrix has a circular or circulant symmetric structure is an in-
teresting problem in different areas of research, concerning different kinds of practical
applications. For example, in [7] the author makes a review of works involving circu-
lant matrices and gives examples of several practical problems involving these kind of
structures in different fields of interest such as “biological sciences, psychometry, quality
control, signal detection” as well as in spatial statisticsand engineering.

We will show that when the number of variables is odd, the exact distribution of the
negative logarithm of the likelihood ratio test statistic (l.r.t.) corresponds to a General-
ized Integer Gamma (GIG) distribution (see Coelho [4] and Appendix C) and when the
number of variables is even to an infinite mixture of Generalized Near-Integer Gamma
(GNIG) distributions (see Coelho [5] and Appendix C). For the case of an even number of
variables two kinds of near-exact distributions are developed for the logarithm of the l.r.t.
statistic and for the l.r.t. statistic. Numerical studies are conducted in order to analyze the
performance of the near-exact distributions developed. These studies show that both kinds
of near-exact distributions have very good asymptotic properties and that at the same time
are much more precise than the asymptotic approximation given in [10].
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We consider a sample of size N from ap-variate normal population,Np (µ,Σ) (see [1])
and we are interested in testing the null hypothesis

H0 : Σ =





b0 b1 . . . bp−1

bp−1 b0 . . . bp−2

...
...

...

b1 b2 . . . b0





vs H1 : Σ > 0 (1)

whereb j = bp− j for j = 1, . . . , ⌊p/2⌋ .
In [10] the authors derive the l.r.t. statistic,Λ,

Λ = 2N(p−m−1)





|V|
p∏

j=1
v j





N/2

(2)

whereV is given in (A1),v j are given by (A2) and (A3) in Appendix A and

m=
⌊ p
2

⌋

. (3)

The expression for theh-th null moment of the l.r.t. statistic,Λ, is given by (see [9, 10])

E
(

Λh
)

=
Γ
(

N−1
2

)m
Γ
(

N
2

)p−m−1

p−1∏

j=1
Γ
(

N− j−1
2

)

p−1∏

j=1
Γ
(

N− j−1
2 + Nh

2

)

Γ
(

N−1
2 +

Nh
2

)m
Γ
(

N
2 +

Nh
2

)p−m−1
. (4)

From the expression of theh-th null moment ofΛ we may easily derive the character-
istic function (c.f.) of the random variable (r.v.)W = − 2

N logΛ, in the following way

ΦW(t) = E
[

eit(− 2
N logΛ)

]

= E
[

Λ(− 2
N it)

]

=
Γ
(

N−1
2

)m
Γ
(

N
2

)p−m−1

p−1∏

j=1
Γ
(

N− j−1
2

)

p−1∏

j=1
Γ
(

N− j−1
2 − it

)

Γ
(

N−1
2 − it

)m
Γ
(

N
2 − it

)p−m−1
. (5)

We will use a factorization the c.f. ofW in (5) to derive the exact distribution of bothW
andΛ2/N for any value ofp as well as near-exact distributions for evenp.

2. The exact distribution ofΛ2/N

The next results show that the exact distribution of the logarithm ofΛ2/N, when the number
of variables is odd, corresponds to a GIG distribution and when the number of variables
is even corresponds to an infinite mixture of GNIG distributions. In [9], using a differ-
ent approach based on the inverse Mellin transform and the residue theorem, the authors
derived the exact distribution ofΛ2/N in series form, which for oddp even yields a fi-
nite representation. However, with our approach we will be able to obtain simpler explicit
expressions for the exact p.d.f. (probability density function) and c.d.f. (cumulative distri-
bution function) ofΛ2/N, which for oddp allow for an easy direct computation of exact
quantiles andp-values and which for evenp allow for an easy development of very accu-
rate and manageable near-exact distributions. These near-exact distributions allow for an
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easy computation of near-exact quantiles, which, given their high closeness to the exact
ones, may be used instead of these ones.

2.1. The case of an odd number of variables

Let us start with case wherep is odd.

Theorem 2.1 : When p is odd, the c.f. of the r.v. W= − 2
N logΛmay be written as

ΦW(t) =
p∏

j=2

θ
r j

j

(

θ j − it
)−r j

(6)

with

r j = 1+
⌊ p− j

2

⌋

and θ j =
N
2
− j

2
. (7)

Proof : See Appendix B �

The c.f. ofW in (6) corresponds to the c.f. of the sum ofp−1 independent Gamma r.v.’s
with integer shape parametersr j and rate parametersθ j , all different, that is, corresponds
to a GIG distribution with depthp − 1, with those shape and rate parameters. The p.d.f.
and c.d.f. ofΛ2/N are thus obtained by simple transformation and they are given in the
next Corollary.

Corollary 2.2: When p is odd, using the notation in Appendix C, the exact p.d.f. ofΛ2/N

is

f GIG
(

− logz | r2, . . . , rp ; θ2, . . . , θp ; p− 1
) 1

z
(8)

and the c.d.f. is given by

1− FGIG
(

− logz | r2, . . . , rp ; θ2, . . . , θp ; p− 1
)

, (9)

with r j andθ j given in(7) and where0 < z< 1 represents the running value of the statistic
Λ2/N = e−W.

Proof : We only need to consider the relation

FΛ2/N(z) = 1− FW(− logz)

whereFΛ2/N(·) is the cumulative distribution function ofΛ2/N andFW(·) is the cumulative
distribution function ofW = − 2

N logΛ. �

In Figure 1 we present some examples of plots for p.d.f.’s and c.d.f.’s ofΛ2/N for p = 5
and for different values ofN.

Figure 1. Plots for the exact p.d.f.’s and c.d.f.’s ofΛ2/N for p=5
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These results confirm the results obtained in [2] and enable us to easily compute exact
quantiles for virtually any combination of values ofp andN. In Tables D1–D6 of Ap-
pendix D we present the exact quantiles ofΛ2/N for different values ofp ≥ 8 andN,
which complement the quantiles given in [9].

2.2. The case of an even number of variables

Let us now consider the case where the number of variables is even.

Theorem 2.3 : When p is even the c.f. of W= − 2
N logΛmay be written as

ΦW(t) =
p∏

j=2

θ
r∗j
j

(

θ j − it
)−r∗j

︸                ︷︷                ︸

ΦW1(t)

×
Γ
(

N−1
2

)

Γ
(

N
2 − 1− it

)

Γ
(

N
2 − 1

)

Γ
(

N−1
2 − it

)

︸                      ︷︷                      ︸

ΦW2(t)

(10)

where

r∗j =






p−2
2 , j=2

r j , j=3,. . . ,p
(11)

with θ j and rj given by(7).

Proof : See Appendix B. �

In expression (10) we have thatΦW1(t) is the c.f. of a GIG distribution with dephp− 1
andΦW2(t) is the c.f. of a single r.v. with a Logbeta distribution with parametersN2 −1 and
1
2.

Using the results in [12] we will show how is it possible to write the exact distribution
of Λ2/N as an infinite mixture of GNIG distributions. From the two first expressions in
section 5 of [12] and expressions (11) and (14) in the same paper, we may write

Γ(a− it)
Γ(a+ b− it)

=

∞∑

k=0

pk(b)(a− it)−b−k (12)

wherepk(b) is a polynomial of degreek in b with

pk(b) =
1
k

k−1∑

m=0

(

Γ(1− b−m)
Γ(−b− k)(k−m+ 1)!

+ (−1)k+mbk−m+1

)

pm(b) (13)

where

p0(b) = 1. (14)

ThenΦW2(t) in (10) may be written as

ΦW2(t) =
Γ
(

N
2 − 1+ 1

2

)

Γ
(

N
2 − 1− it

)

Γ
(

N
2 − 1

)

Γ
(

N
2 − 1+ 1

2 − it
) (15)

=

∞∑

k=0

p∗k

(N
2
− 1

) 1
2+k (N

2
− 1− it

)−( 1
2+k)

(16)
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with

p∗k =
Γ
(

N
2 − 1+ 1

2

)

Γ
(

N
2 − 1

)

pk

(
1
2

)

(
N
2 − 1

) 1
2+k
, (17)

what shows that the c.f.ΦW2(t) may be written as the c.f. of an infinite mixture of Gamma
distributions with shape parameters1

2 + k, all with the same rate parameterN
2 − 1, with

weightsp∗k with pk given by (13) and (14). Then, the c.f. ofW in (10) may be written as

ΦW(t) =
p∏

j=2

θ
r∗j
j

(

θ j − it
)−r∗j

︸                ︷︷                ︸

ΦW1(t)

∞∑

k=0

p∗k

(N
2
− 1

) 1
2+k (N

2
− 1− it

)−( 1
2+k)

︸                                          ︷︷                                          ︸

ΦW2(t)

=

∞∑

k=0

p∗k






p∏

j=2

θ
r∗j
j

(

θ j − it
)−r∗j

(N
2
− 1

) 1
2+k (N

2
− 1− it

)−( 1
2+k)






,

which is the c.f. of an infinite mixture of Generalized Near-Integer Gamma distributions
with depthp− 1. We thus have the following Corollary.

Corollary 2.4: When p is even, using the notation in Appendix C, the exact p.d.f. ofΛ2/N

is given by
∞∑

k=0

p∗k f GNIG

(

− logz | r∗3, . . . , r
∗
p, r
∗
2 +

1
2
+ k ; θ3, . . . , θp,

N
2
− 1 ; p− 1

)

1
z

(18)

and the c.d.f. by

1−
∞∑

k=0

p∗kFGNIG

(

− logz | r∗3, . . . , r
∗
p, r
∗
2 +

1
2
+ k ; θ3, . . . , θp,

N
2
− 1 ; p− 1

)

(19)

with r∗j andθ j given respectively by(11)and(7), and p∗k given by(17)and where0 < z< 1
represents the running value of the statisticΛ2/N = e−W.

Proof : The proof is similar to the one of Corollary 2.2. �

3. Near-exact distributions forW when the number of variables is even

The exact c.d.f. ofΛ2/N, when p is even, is given in expression (19) in the form of an
infinite mixture of GNIG distributions, what makes its use a bit hard in practical terms.
For this reason we will now derive two kinds of near-exact distributions forW and for
Λ2/N, which will be asymptotic both forn andp and which, by construction, will equate
a given number of the first exact moments.

3.1. Near-exact distributions - Type I

The c.f.’s of these near-exact distributions will have the following form

ΦW1(t)
︸ ︷︷ ︸

GIG dist.

×ΦMG(t) , (20)

whereΦW1(t) is given in (10), whileΦMG(t), for this kind of near-exact distributions, may
be either the c.f. of a single Gamma distribution or of a mixture of two or three Gamma
distributions, depending on the number of exact moments we want to match. The c.f.
ΦMG(t) will have, accordingly, the same 2, 4 or 6 first derivatives (with respect tot at
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t = 0) asΦW2(t) in (10), that is

d j

dt j
ΦMG(t)

∣
∣
∣
∣
∣
∣
t=0

=
d j

dt j
ΦW2(t)

∣
∣
∣
∣
∣
∣
t=0

, j = 1, . . . , h (21)

for h = 2,4 or 6, according to the case ofΦMG(t) being the c.f. of a single Gamma
distribution, or the c.f. of a mixture of 2 or 3 Gamma distributions with the same rate
parameter, that is,

ΦMG(t) =
h/2∑

k=1

ωk λ
sk (λ − it)−sk , (22)

with weightsωk > 0 (k = 1, . . . , h/2) and
h/2∑

k=1
ωk = 1.

Since as shown in (16),ΦW2(t) may be seen as the c.f. of an infinite mixture of Gamma
distributions, all with the same rate parameter, as alreadyremarked in [8], the replacement
of a Logbeta random variable by a single Gamma distribution ora mixture of two or three
Gamma distributions, all with the same rate parameter, matching the first 2, 4 or 6 exact
moments is a much adequate decision.

This allows us to write the near-exact c.f. of the negative logarithm of the l.r.t. statistic in
the form in (20) withΦMG(t) given by (22), being thus the near-exact distributions obtained
in this way, either a GNIG distribution, or a mixture of two orthree GNIG distributions,
which have very manageable expressions, allowing this way for an easy computation of
very accurate near-exact quantiles.

Theorem 3.1 : If we replaceΦW2(t) in (10)byΦMG(t) given by(22), we obtain, by simple
transformation, near-exact distributions forΛ2/N with p.d.f.’s given by

h/2∑

ν=1

ων f GNIG
(

− logz | r∗2, . . . , r
∗
p, sν; θ2, . . . , θp, λ ; p

)1
z

(23)

and c.d.f.’s

1−
h/2∑

ν=1

ων F GNIG
(

− logz | r∗2, . . . , r
∗
p, sν ; θ2, . . . , θp, λ ; p

)

(24)

where0 < z< 1 represents the running value of the statisticΛ2/N = e−W, with r∗j given in
(11)andθ j in (7). The values ofων, sν andλ are obtained from the numerical solution of
the system of equations in(21), withωh/2 = 1−

∑h/2−1
k=1 ωk, for h = 2,4 or 6 (according to

the case ofΦMG(t) being the c.f. of a single Gamma distribution, or the c.f. of amixture of
2 or 3 Gamma distributions with the same rate parameter).

Proof : See Appendix B. �

In Figure 2 we present some examples of plots for c.d.f.’s and p.d.f.’s of the type I
near-exact distributions forΛ2/N whenh = 6, p = 4 and for different values ofN.

Figure 2. Plots for the near-exact p.d.f.’s and c.d.f.’s ofΛ2/N for h = 6 andp=4
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3.2. Near-exact distributions - Type II

The c.f.’s of these near-exact distributions will have the form

ΦW1(t)
︸ ︷︷ ︸

GIG dist.

×Φ∗MG
(t) . (25)

In this case,Φ∗MG
(t) will have a similar structure to the representation ofΦW2(t) in (16),

and as such it will be the c.f. of a mixture ofm∗ + 1 Gamma distributions, all with rate
parametersN/2 − 1 and with shape parameters 1/2 + k with k = 0, . . . ,m∗. That is, we
will take

Φ∗MG
(t) =

m∗∑

k=0

ω∗k

(N
2
− 1

) 1
2+k (N

2
− 1− it

)− 1
2−k

, (26)

with

d j

dt j
Φ∗MG

(t)

∣
∣
∣
∣
∣
∣
t=0

=
d j

dt j
ΦW2(t)

∣
∣
∣
∣
∣
∣
t=0

, j = 1, . . . ,m∗ , (27)

being thus the weightsω∗k (k = 0, . . . ,m∗−1) in (26) determined in such a way thatΦ∗MG
(t)

has the same firstm∗ derivatives (with respect tot at t = 0) asΦW2(t), with
m∗∑

k=0
ω∗k = 1 and

where the expression forΦW2(t) to be used is the one in (15).
We should note that, since the system of equation in (26) has in every case a unique

solution and as such is very easy to determine, using this approach we may consider in
Φ∗MG

(t) a mixture of Gamma distributions with as many terms as we wish, that is, we may
obtain near-exact distributions which equate as many of theexact moments as we wish.

The near-exact c.f.’s for the negative logarithm of the l.r.t. statistic will have the form
in (25) withΦ∗MG

(t) given by (26), being thus the near-exact distributions obtained in this
way, mixtures ofm∗ + 1 GNIG distributions. The type II near-exact distributions forΛ2/N

are given in the following Theorem.

Theorem 3.2 : If we replaceΦW2(t) given in(15)byΦ∗MG
(t) in (26)we obtain near-exact

distributions forΛ2/N with c.d.f.’s given by

1−
m∗∑

k=0

ω∗kFGNIG

(

− logz | r∗3, . . . , r
∗
p, r
∗
2 +

1
2
+ k ; θ3, . . . , θp,

N
2
− 1 ; p− 1

)

(28)

and p.d.f.’s

m∗∑

k=0

ω∗k f GNIG

(

− logz | r∗3, . . . , r
∗
p, r
∗
2 +

1
2
+ k ; θ3, . . . , θp,

N
2
− 1 ; p− 1

)

1
z

(29)

where0 < z < 1 represents the running value of the statisticΛ2/N = e−W, with r∗j given
in (11)andθ j in (7) and the values ofω∗k are obtained from the numerical solution of the
system of equations in(27), that is

d j

dt j
Φ∗MG

(t)

∣
∣
∣
∣
∣
∣
t=0

=
d j

dt j
ΦW2(t)

∣
∣
∣
∣
∣
∣
t=0

, j = 1, . . . ,m∗ with ω∗m∗ = 1−
m∗−1∑

k=0

ω∗k .

Proof : Similar to the proof of Theorem 3.1. �

In Figure 3 we present some examples of plots for c.d.f.’s and p.d.f.’s of the type II
near-exact distributions forΛ2/N whenp = 6 andm∗ = 4, for different values ofN.

In Tables E1–E7 of Appendix E we present near-exact quantiles of Λ2/N for different
values ofp and N. In these Tables we used the type II near-exact distributionwhich,
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Figure 3. Plots for the near-exact p.d.f.’s and c.d.f.’s ofΛ2/N for p=6 andm∗ = 4
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matching the least number of exact moments, also matches at least 10 significant decimal
digits of the corresponding exact quantile. We have chosen to use the type II near-exact
distributions because they are more manageable, in the sense that we can match as many
exact moments as we wish, and because, as we will see in the next Section, these kind
of near-exact distributions reveals a higher level of precision than the type I near-exact
distributions, when the same number of exact moments is matched.

4. Numerical studies

In order to evaluate the quality of the near-exact approximations developed in this work,
for the case of an even number of variables, we will use a measure of proximity between
c.f.’s which is also a measure of proximity between c.d.f.’s. This measure is,

∆ =
1
2π

∫ ∞

−∞

∣
∣
∣
∣
∣

ΦW(t) − Φne(t)
t

∣
∣
∣
∣
∣

dt , (30)

whereΦW(t) represents the exact c.f. of the negative logarithm of the l.r.t. statistic and
Φne(t) represents an approximate c.f. for the same statistic. Taking S for the support ofW,
we have,

max
w∈S
|FW(w) − Fne(w)| ≤ ∆ , (31)

whereFW(·) represents the exact c.d.f. ofW andFne(·) represents the c.d.f. corresponding
toΦne(t).

The relation in (31) may be derived directly from inversion formulas and was already
used in [6, 8] to study the accuracy of near-exact approximations.

We will compute the values of the measure∆ between the exact distribution ofW =

− 2
N log Λ and the two kinds of near-exact distributions proposed, as well as between the

exact distribution and the asymptotic approximation obtained in [10] using a Box style
procedure (see [3]). In these calculations we will use the exact c.f. in (5) and the near-
exact c.f.’s in (20) and (22), corresponding to the type I near-exact distributions given in
Theorem 3.1, forh = 2,4 or 6, and the near-exact c.f.’s in (25) and (26), corresponding to
the type II near-exact distributions in Theorem 3.2, form∗ = 2,4,6 or 12. We will denote
respectively by “GNIG”, “ M2GNIG” and “M3GNIG” the type I near-exact distributions
corresponding toh = 2,4 and 6 and we will denote by “MKGNIG∗”, the type II near-
exact distributions corresponding to the mixture ofK GNIG distributions, withK = 3,5,7
or 13, by taking respectivelym∗ = 2,4,6 or 12 in (25) and (26). We will also denote, in
our Tables, the asymptotic approximation obtained in [10] by “ Box”.

From Tables 1 and 2 we may observe that the values of∆ for both kinds of near-exact
distributions are, in every case considered, substantially smaller than the ones for the
asymptotic approximation presented in [10]. Moreover, thenear-exact approximations re-
veal good asymptotic properties not only for increasing values ofN but also for increasing
values ofp. We may also see that the type I near-exact distributions have larger values of
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Table 1. Values of∆ for the approximating distributions forW = − 2
N logΛ

Measure∆

p N GNIG M2GNIG M3GNIG M3GNIG∗ M5GNIG∗ M7GNIG∗ M13GNIG∗ Box

8 10 1.4× 10−6 2.6× 10−9 1.3× 10−11 1.2× 10−7 1.0× 10−10 1.9× 10−13 4.5× 10−18 8.5× 10−2

10 12 3.4× 10−7 3.2× 10−10 4.5× 10−13 2.5× 10−8 9.8× 10−12 3.1× 10−15 3.2× 10−21 1.4× 10−1

12 14 1.1× 10−7 5.9× 10−11 2.7× 10−14 7.2× 10−9 1.4× 10−12 5.0× 10−16 8.7× 10−23 2.1× 10−1

14 16 4.4× 10−8 1.4× 10−11 2.0× 10−15 2.5× 10−9 2.5× 10−13 6.6× 10−17 1.6× 10−24 2.7× 10−1

16 18 2.0× 10−8 4.1× 10−12 1.7× 10−15 1.0× 10−9 5.8× 10−14 9.9× 10−18 4.0× 10−26 3.5× 10−1

18 20 9.9× 10−9 1.4× 10−12 1.3× 10−17 4.6× 10−10 1.6× 10−14 1.8× 10−18 1.3× 10−27 4.3× 10−1

20 22 5.3× 10−9 5.3× 10−13 7.6× 10−17 2.3× 10−10 5.0× 10−15 3.8× 10−19 5.9× 10−29 5.1× 10−1

22 24 3.1× 10−9 2.2× 10−13 4.4× 10−17 1.2× 10−10 1.7× 10−15 9.1× 10−20 3.3× 10−30 5.9× 10−1

24 26 1.9× 10−9 1.0× 10−13 2.5× 10−18 6.7× 10−11 6.7× 10−16 2.5× 10−20 2.2× 10−31 6.7× 10−1

30 32 5.2× 10−10 1.3× 10−14 2.3× 10−19 1.5× 10−11 5.7× 10−17 8.5× 10−22 1.4× 10−34 9.0× 10−1

50 52 2.9× 10−11 1.4× 10−16 6.5× 10−22 5.3× 10−13 2.2× 10−19 3.6× 10−25 1.4× 10−40 1.5× 10 0

100 102 6.6× 10−13 3.2× 10−19 1.9× 10−25 6.0× 10−15 1.2× 10−22 1.1× 10−29 9.2× 10−49 2.9× 10 0

Table 2. Values of∆ for the approximating distributions forW = − 2
N logΛ

Measure∆

p N GNIG M2GNIG M3GNIG M3GNIG∗ M5GNIG∗ M7GNIG∗ M13GNIG∗ Box

8 10 1.4× 10−6 2.6× 10−9 1.3× 10−11 1.2× 10−7 1.0× 10−10 1.9× 10−13 4.5× 10−18 8.5× 10−2

8 15 1.1× 10−6 2.5× 10−9 3.1× 10−12 6.1× 10−8 4.4× 10−11 6.7× 10−14 2.3× 10−19 7.1× 10−3

8 20 6.6× 10−7 1.4× 10−9 4.1× 10−13 2.9× 10−8 1.3× 10−11 1.8× 10−14 1.1× 10−20 1.8× 10−3

8 30 3.1× 10−7 5.0× 10−10 4.9× 10−13 9.0× 10−9 2.0× 10−12 1.5× 10−15 2.2× 10−23 3.6× 10−4

8 50 1.1× 10−7 1.2× 10−10 1.2× 10−13 2.0× 10−9 1.6× 10−13 4.8× 10−17 5.1× 10−26 5.7× 10−5

8 100 2.8× 10−8 1.6× 10−11 9.8× 10−15 2.5× 10−10 5.0× 10−15 3.8× 10−19 1.2× 10−29 5.8× 10−6

∆ when compared with the values of the type II near-exact distributions that match the
same number of exact moments, that is, when we compare the values of∆ for theGNIG,
M2GNIG andM3GNIGdistributions with the values of∆ for theM3GNIG∗, M5GNIG∗

andM7GNIG∗ distributions. We should however note that when the two kinds of near-
exact distributions equate the same number of exact moments, the type I near-exact dis-
tributions have a much simpler structure, with less terms inthe mixture. The system of
equations (27) used to evaluate the parameters of the type IInear-exact distributions is
much simpler to solve than the one in (21) and it has always a unique solution which
makes possible to match as many exact moments as we wish.

In Tables 3–6 we present values of the tail probability error, that is, the absolute value
of the difference between the approximating probability and exact probability (α), we
also present the approximating quantiles - with all the decimal places, except the last one,
equal to the exact ones - for the near-exact distributions developed in this paper and for
the approximation based on Box (1949) method given in [10], for p = 8,12,16,20 and
N= p+ 1,50,100 and alsoN=200, only for p=16 andp=20. In order to evaluate the
approximating probabilities in Tables 3–6 we have determined the exact quantiles, for
the cases considered, from the numerical inversion of the c.f. of − 2

N logΛ by using the
Gil-Pelaez inversion formulas (see [11]) and the bisection method, which is not a prac-
tical method to use especially if we want to work with a considerable precision, owing
to the very long computation times involved. The approximating probability is then the
value given by the approximating c.d.f.’s at the exact quantile. Therefore in Tables 3–6 we
have, for each choice ofp andN, in the first line the difference between the approximat-
ing probability and exact probability (α = 0.01 or 0.05), and in the second line, for the
same choice ofN, the approximating quantile. From these Tables we may draw, from the
tail probability error and from the near-exact quantiles, similar conclusions that we have
reached by observing Tables 1 and 2, namely concerning the asymptotic characteristics
in terms of sample size and number of variables. Once again, we have good asymptotic
properties for both kinds of the near-exact distributions and we may also see that the type
I near-exact distributions present a slightly higher tail error probability when compared
we the type II near-exact distributions that equate the samenumber of exact moments.



10Table 3. Values of the tail probability error= |approx. probability -α| and values for the approximating quantiles (app. quantile) ofΛ2/N with the number of decimal places equal to the exact ones forp = 8

α = 0.01

N M3GNIG∗ M5GNIG∗ M7GNIG∗ M13GNIG∗

9 tail error 4.2× 10−9 6.8× 10−13 1.2× 10−15 1.8× 10−21

app. quantile 4.686555× 10−8 4.6865592237× 10−8 4.686559223097× 10−8 4.686559223098218506× 10−8

50 tail error 4.9× 10−10 3.6× 10−14 9.9× 10−18 4.3× 10−23

app. quantile 3.19134871× 10−1 3.191348725282× 10−1 3.191348725283870× 10−1 3.191348725283871055798× 10−1

100 tail error 6.2× 10−11 1.2× 10−15 8.5× 10−20 4.9× 10−31

app. quantile 5.797822350× 10−1 5.79782235171871× 10−1 5.797822351718742427× 10−1 5.7978223517187424298608475411× 10−1

α = 0.05

9 tail error 1.4× 10−8 2.3× 10−12 3.4× 10−15 4.0× 10−20

app. quantile 1.2515632× 10−6 1.2515639611× 10−6 1.25156396122× 10−6 1.251563961230040475× 10−6

50 tail error 3.3× 10−11 6.9× 10−16 1.3× 10−18 1.7× 10−24

app. quantile 3.737120292× 10−1 3.737120294907× 10−1 3.7371202949080183× 10−1 3.73712029490801840520033× 10−1

100 tail error 2.8× 10−10 2.6× 10−14 6.8× 10−21 3.6× 10−30

app. quantile 6.2511360441× 10−1 6.25113604433524× 10−1 6.2511360443352521341× 10−1 6.25113604433525213408419790614× 10−1

α = 0.01

N GNIG M2GNIG M3GNIG Box

9 tail error 4.1× 10−8 1.3× 10−11 1.1× 10−14 9.9× 10−3

app. quantile 4.68652× 10−8 4.68655921× 10−8 4.68655922308× 10−8 ————–
50 tail error 2.4× 10−8 1.4× 10−11 4.3× 10−15 9.1× 10−7

app. quantile 3.1913480× 10−1 3.1913487256× 10−1 3.1913487252837× 10−1 3.1916× 10−1

100 tail error 6.1× 10−9 1.9× 10−12 5.1× 10−16 1.0× 10−5

app. quantile 5.7978221× 10−1 5.79782235176× 10−1 5.79782235171872× 10−1 5.79784× 10−1

α = 0.05

9 tail error 1.4× 10−7 2.7× 10−11 1.2× 10−13 4.8× 10−2

app. quantile 1.25155× 10−6 1.251563962× 10−6 1.25156396122× 10−6 ————–
50 tail error 6.0× 10−9 4.3× 10−12 2.4× 10−15 2.8× 10−5

app. quantile 3.7371200× 10−1 3.737120295× 10−1 3.737120294907× 10−1 3.7373× 10−1

100 tail error 2.4× 10−8 −3.3× 10−11 2.8× 10−14 2.7× 10−6

app. quantile 6.25113600× 10−1 6.25113604436× 10−1 6.25113604433523× 10−1 6.25115× 10−1
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Table 4. Values of the tail probability error= |approx. probability -α| and values for the approximating quantiles (app. quantile) ofΛ2/N with the number of decimal places equal to the exact ones forp = 12

α = 0.01

N M3GNIG∗ M5GNIG∗ M7GNIG∗ M13GNIG∗

13 tail error 2.6× 10−10 1.1× 10−14 4.8× 10−19 6.0× 10−27

app. quantile 5.2608253× 10−10 5.26082563311× 10−10 5.2608256331063615× 10−10 5.26082563310636103177993× 10−10

50 tail error 1.4× 10−10 3.5× 10−15 2.8× 10−19 4.0× 10−29

app. quantile 1.00633144× 10−1 1.00633145162002× 10−1 1.006331451620065703× 10−1 1.006331451620065707536966603× 10−1

100 tail error 1.9× 10−11 1.4× 10−16 3.4× 10−21 2.0× 10−32

app. quantile 3.4067949402× 10−1 3.40679494063601× 10−1 3.40679494063602016781× 10−1 3.406794940636020167880527881306× 10−1

α = 0.05

13 tail error 8.6× 10−10 2.7× 10−14 5.1× 10−18 9.9× 10−26

app. quantile 1.43203× 10−8 1.43204002485× 10−8 1.4320400248600756× 10−8 1.43204002486007531381658× 10−8

50 tail error 1.4× 10−10 7.1× 10−15 9.8× 10−19 9.7× 10−30

app. quantile 1.26083992× 10−1 1.2608399304088× 10−1 1.260839930408908825× 10−1 1.2608399304089088293035045× 10−1

100 tail error 1.7× 10−11 2.4× 10−16 8.5× 10−21 1.3× 10−32

app. quantile 3.7858770382× 10−1 3.785877038373587× 10−1 3.7858770383735886710× 10−1 3.78587703837358867110747571647458× 10−1

α = 0.01

N GNIG M2GNIG M3GNIG Box

13 tail error 3.5× 10−9 3.9× 10−13 2.9× 10−17 1.0× 10−2

app. quantile 5.260821× 10−10 5.260825632× 10−10 5.26082563310633× 10−10 ————–
50 tail error 6.9× 10−9 1.2× 10−12 1.4× 10−16 6.9× 10−5

app. quantile 1.0063313× 10−1 1.00633145163× 10−1 1.006331451620067× 10−1 1.007× 10−1

100 tail error 1.9× 10−9 1.9× 10−13 5.7× 10−18 5.3× 10−6

app. quantile 3.40679490× 10−1 3.406794940639× 10−1 3.4067949406360202× 10−1 3.4069× 10−1

α = 0.05

13 tail error 1.2× 10−8 6.4× 10−13 3.8× 10−16 5.0× 10−2

app. quantile 1.43203× 10−8 1.43204002489× 10−8 1.43204002486005× 10−8 ————–
50 tail error 8.5× 10−9 4.8× 10−12 1.7× 10−15 2.0× 10−4

app. quantile 1.2608398× 10−1 1.26083993042× 10−1 1.260839930408902× 10−1 1.261× 10−1

100 tail error 2.2× 10−9 7.0× 10−13 1.8× 10−16 1.6× 10−5

app. quantile 3.78587702× 10−1 3.785877038377× 10−1 3.785877038373587× 10−1 3.7859× 10−1



12Table 5. Values of the tail probability error= |approx. probability -α| and values for the approximating quantiles (app. quantile) ofΛ2/N with the number of decimal places equal to the exact ones forp = 16

α = 0.01

N M3GNIG∗ M5GNIG∗ M7GNIG∗ M13GNIG∗

17 tail error 3.8× 10−11 5.5× 10−16 1.6× 10−20 6.0× 10−30

app. quantile 6.95434542× 10−12 6.954345480219× 10−12 6.954345480218604× 10−12 6.95434548021860398307916420× 10−12

50 tail error 5.4× 10−11 5.5× 10−16 3.1× 10−21 7.4× 10−31

app. quantile 2.011798021× 10−2 2.01179802370857× 10−2 2.0117980237085932393× 10−2 2.01179802370859323940536251864× 10−2

100 tail error 7.9× 10−12 2.5× 10−17 1.4× 10−22 9.6× 10−35

app. quantile 1.6593579463× 10−1 1.6593579464440622× 10−1 1.659357946444062567176× 10−1 1.659357946444062567177893772309464× 10−1

200 tail error 1.0× 10−12 8.8× 10−19 1.7× 10−24 1.4× 10−39

app. quantile 4.2107594790× 10−1 4.21075947900821562× 10−1 4.21075947900821563768826× 10−1 4.21075947900821563768828902649968732831× 10−1

α = 0.05

17 tail error 1.3× 10−10 1.1× 10−15 1.5× 10−19 9.1× 10−29

app. quantile 1.91996584× 10−10 1.9199658564262× 10−10 1.91996585642633442× 10−10 1.91996585642633440867788017× 10−10

50 tail error 6.1× 10−11 1.7× 10−15 1.3× 10−19 2.9× 10−30

app. quantile 2.710964811× 10−2 2.71096481224043× 10−2 2.71096481224045128× 10−2 2.7109648122404512914781624591× 10−2

100 tail error 8.5× 10−12 6.6× 10−17 1.5× 10−21 1.0× 10−33

app. quantile 1.90221991370× 10−1 1.90221991373322× 10−1 1.90221991373323022005× 10−1 1.90221991373323022006470760526404× 10−1

100 tail error 1.1× 10−12 2.2× 10−18 1.3× 10−23 1.5× 10−37

app. quantile 4.49680394561× 10−1 4.49680394562087063× 10−1 4.49680394562087064162554× 10−1 4.496803945620870641625593881092039055× 10−1

α = 0.01

N GNIG M2GNIG M3GNIG Box

17 tail error 6.7× 10−10 3.3× 10−14 2.8× 10−19 9.9× 10−3

app. quantile 6.954344× 10−12 6.9543454801× 10−12 6.9543454802186035× 10−12 ———
50 tail error 2.7× 10−9 1.7× 10−13 3.7× 10−17 2.9× 10−4

app. quantile 2.011797× 10−2 2.01179802371× 10−2 2.011798023708594× 10−2 2.02× 10−2

100 tail error 7.8× 10−10 3.4× 10−14 3.5× 10−18 2.0× 10−5

app. quantile 1.65935793× 10−1 1.6593579464444× 10−1 1.6593579464440626× 10−1 1.6596× 10−1

200 tail error 2.1× 10−10 5.0× 10−15 ————– 1.7× 10−6

app. quantile 4.210759475× 10−1 4.21075947900829× 10−1 ————– 4.21078× 10−1

α = 0.05

17 tail error 2.3× 10−9 5.0× 10−14 3.3× 10−18 5.0× 10−2

app. quantile 1.9199656× 10−10 1.91996585643× 10−10 1.9199658564263341× 10−10 ———
50 tail error 3.6× 10−9 1.0× 10−12 1.8× 10−16 8.6× 10−4

app. quantile 2.7109647× 10−2 2.71096481225× 10−2 2.71096481224044× 10−2 2.72× 10−2

100 tail error 1.0× 10−9 1.7× 10−13 2.2× 10−17 6.0× 10−5

app. quantile 1.902219910× 10−1 1.9022199137338× 10−1 1.9022199137332301× 10−1 1.9024× 10−1

200 tail error 2.6× 10−10 2.3× 10−14 ————– 5.5× 10−6

app. quantile 4.496803944× 10−1 4.4968039456209× 10−1 ————– 4.49682× 10−1
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Table 6. Values of the tail probability error= |approx. probability -α| and values for the approximating quantiles (app. quantile) ofΛ2/N with the number of decimal places equal to the exact ones forp = 20

α = 0.01

N M3GNIG∗ M5GNIG∗ M7GNIG∗ M13GNIG∗

21 tail error 8.7× 10−12 5.1× 10−17 6.9× 10−22 1.2× 10−32

app. quantile 9.97410882× 10−14 9.9741088398785× 10−14 9.974108839878466639× 10−14 9.9741088398784666377420968307× 10−14

50 tail error 2.5× 10−11 1.1× 10−16 2.5× 10−21 5.0× 10−32

app. quantile 2.403097861× 10−3 2.403097863214333× 10−3 2.4030978632143391742× 10−3 2.403097863214339174133353847685× 10−3

100 tail error 3.9× 10−12 6.2× 10−18 1.2× 10−23 2.6× 10−35

app. quantile 6.6351689067× 10−2 6.635168906994063× 10−2 6.635168906994064141959× 10−2 6.635168906994064141958287517445508× 10−2

200 tail error 5.3× 10−13 2.3× 10−19 2.2× 10−26 4.4× 10−39

app. quantile 2.73763300041× 10−2 2.737633000425506026× 10−2 2.7376330004255060294031387× 10−2 2.7376330004255060294031384614313292215× 10−2

α = 0.05

21 tail error 2.9× 10−11 9.8× 10−17 6.7× 10−21 1.7× 10−31

app. quantile 2.785206144× 10−12 2.7852061477834× 10−12 2.785206147783500651× 10−12 2.78520614778350065035096629827× 10−12

50 tail error 3.1× 10−11 4.9× 10−16 3.0× 10−22 1.0× 10−31

app. quantile 3.506020572× 10−3 3.506020573451140× 10−3 3.5060205734511497991× 10−3 3.506020573451149799511776093562× 10−3

100 tail error 4.6× 10−12 2.2× 10−17 2.2× 10−20 7.2× 10−35

app. quantile 7.8543932312× 10−2 7.854393231348867× 10−2 7.85439323134886829940× 10−2 7.854393231348868299414686849429664× 10−2

200 tail error 6.1× 10−13 7.7× 10−19 2.8× 10−24 1.4× 10−38

app. quantile 2.966993838063× 10−2 2.966993838065558834× 10−2 2.96699383806555883659100× 10−2 2.9669938380655588365910167550902836147× 10−2

α = 0.01

p N GNIG M2GNIG M3GNIG Box

21 tail error 1.9× 10−10 4.8× 10−15 1.0× 10−19 1.0× 10−2

app. quantile 9.9741084× 10−14 9.97410883986× 10−14 9.9741088398784664× 10−14 ————–
50 tail error 1.2× 10−9 3.5× 10−14 8.3× 10−18 9.4× 10−4

app. quantile 2.40309780× 10−3 2.403097863216× 10−3 2.4030978632143395× 10−3 2.45× 10−3

100 tail error 3.9× 10−10 8.4× 10−15 1.0× 10−18 5.9× 10−5

app. quantile 6.6351688× 10−2 6.6351689069945× 10−2 6.6351689069940642× 10−2 6.638× 10−2

200 tail error 1.1× 10−10 1.3× 10−15 ————– 4.7× 10−6

app. quantile 2.73763300× 10−2 2.73763300042552× 10−2 ————– 2.73769× 10−2

α = 0.05

21 tail error 6.4× 10−10 7.4× 10−15 1.2× 10−18 5.0× 10−2

app. quantile 2.7852060× 10−12 2.785206147784× 10−12 2.7852061477835005× 10−12 ————–
50 tail error 1.7× 10−9 2.8× 10−13 2.7× 10−17 2.8× 10−3

app. quantile 3.50602054× 10−3 3.50602057349× 10−3 3.5060205734511493× 10−3 3.55× 10−3

100 tail error 5.2× 10−10 5.3× 10−14 4.1× 10−18 1.8× 10−4

app. quantile 7.85439322× 10−2 7.854393231349× 10−2 7.85439323134886822× 10−2 7.857× 10−2

200 tail error 1.4× 10−10 7.7× 10−15 ————– 1.5× 10−5

app. quantile 2.966993837× 10−2 2.96699383806558× 10−2 ————– 2.9670× 10−2
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An analogous conclusion may be drawn when we consider the number of exact decimal
places that both kinds of near-exact quantiles bear. Although the performance of all the
near-exact distributions is excellent for the very small sample sizes, we may note that the
in order to be able to observe their asymptotic character we have sometimes to consider
quite large values ofN, namely in cases wherep is larger and namely concerning the type
I near-exact distributions. The asymptotic quantiles, given by the approximation based
on Box method, only start to match a few exact decimal places when larger values ofN
are considered. We should also remark the very good results given by theM13GNIG∗

distribution both for the value of the error tail probability and the number of decimal
places equal to the exact quantile.

5. Conclusions

We have shown that the exact distribution of the negative logarithm ofΛ2/N, for oddp, is
a GIG distribution with depthp − 1 which is a very manageable distribution that allows
the easy evaluation of quantiles andp-values forW = − 2

N logΛ and forΛ2/N. Using this
distribution, exact quantiles ofΛ2/N, for larger values ofp than those presented in [9],
were calculated and are shown in Tables D1-D6 in Appendix D.

When p is even, the exact distribution ofW = − 2
N logΛ may be represented as an

infinite mixture of GNIG distributions. For this case, two kinds of near-exact distributions,
with very good asymptotic properties, were developed in theform of finite mixtures of
GNIG distributions. Both types of near-exact distributions show very good performances.
The type I near exact distributions have a much simpler structure, with a smaller number
of terms in the mixture but anyway they present very good results when we consider the
measure∆ or when we consider the tail probability error. However the system of equations
in (21) used to evaluate the parameters involved in this kindof near-exact distributions is
more difficult to solve, specially when we consider high values ofp and do not allow
us to match more than 6 exact moments. In Tables 5 and 6 it was even not possible to
compute the parameters for M3GNIG for the larger sample sizes. The type II near-exact
distributions present even better results than the type I near-exact distributions and have
the advantage that the system of equations in (27) is much simpler to solve, in every case.
However when the number of exact moments matched increases,the large number of
GNIG distributions involved can make the mixture a little heavy to deal in practice.

In Tables E1-E7 near-exact quantiles are presented forΛ2/N. Tables E1-E7 show that in
order to have near-exact quantiles with the same 10 significant decimal digits as the exact
quantiles we have to use theM5GNIG∗ distribution for values ofN ≥ 30 or for values of
p ≥ 12. Whenp ≤ 12, in some cases, we may have to use theM7GNIG∗ distribution. It
is expected that, for higher values ofN, it will only be necessary to use theM3GNIG∗.

In all cases both kinds of near-exact distributions are asymptotic for the sample size as
well as for the number of variables involved and are much moreprecise than the asymp-
totic approximation presented in [10].
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Appendix A. Notation used in the expression of the l.r.t. statistic

In this Appendix we summarize the main results in [10] and establish the notation related
with the l.r.t. statistic used in this paper.

UnderH0 in (1), we have thatΣ is circular symmetric, thus its eigenvalues are real and
there exists an orthogonal matrixP, such that,

Σ = PDλP′

with Dλ = diag
(

λ1, ..., λp

)

. The columns of the matrixP = [u jk] are the eigenvectors of
Σ, corresponding toλ1, ..., λp, and may be given by

u jk =
1
√

p

{

cos

[

2π
p

( j − 1)(k− 1)

]

+ sin

[

2π
p

( j − 1)(k− 1)

]}

, j, k = 1, ..., p .

We may note that theu jk do not depend on the elements ofΣ, only the eigenvalues
λ1, . . . , λp will do (see [10] for details).

Consider a random sample of sizeN = n + 1 from the distributionNp (µ,Σ) and let
XN×p be the sample matrix. LetEN1 be anN × 1 unitary vector. Let

X =
[

X1 . . .Xp

]

=
1
N

X′EN1

be the vector of sample means, and

S=
(

X − EN1X
′)′ (

X − EN1X
′)
.

Let us takey = 1√
N

XP andV = P′SP. Then,y andV = [vi j ] are independently distributed
with

y ∼ Np

(

1
√

N
µP,Σ

)

V ∼Wp

(

N − 1,Σ
)

(A1)

whereΣ = P′ΣP. If Σ is circular then

Σ = Dλ = diag
(

λ1, ..., λp

)

, λ j = λp− j+2 j = 2, ..., p .

We then define, for evenp,

v j =

{

v j j , j = 1 or j = m+ 1
v j j + vp− j+2,p− j+2, j = 2, ...,m,

(A2)

while for oddp,

v j =

{

v j j , j = 1
v j j + vp− j+2,p− j+2, j = 2, ...,m+ 1,

(A3)

with vp− j+2 = v j for ( j = 2, . . . , p), and, for evenp,

w j =

{

y2
j j , j = 1 or j = m+ 1

y2
j + y2

p− j+2, j = 2, ...,m,
(A4)
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while for oddp,

w j =

{

y2
1, j = 1

y2
j + y2

p− j+2, j = 2, ...,m+ 1. (A5)

Appendix B. Proof of theorems 2.1 and 2.3 and 3.1

Proof of Theorem 2.1

Proof : From the expression of the c.f. ofW in (5) and considering that for an oddp we
havem=

⌊
p
2

⌋

=
p−1
2 , we may write the c.f. ofW as

ΦW(t) =





Γ
(

N−1
2

)

Γ
(

N
2 − it

)

Γ
(

N−1
2 − it

)

Γ
(

N
2

)





p−1
2

×
p−1∏

j=1

Γ
(

N
2

)

Γ
(

N
2 −

j+1
2 − it

)

Γ
(

N
2 −

j+1
2

)

Γ
(

N
2 − it

)

=





Γ
(

N−1
2

)

Γ
(

N
2 − it

)

Γ
(

N−1
2 − it

)

Γ
(

N
2

)





p−1
2

×
p−2∏

j=1
step2

Γ
(

N
2 −

j+1
2 +

j+1
2

)

Γ
(

N
2 −

j+1
2 − it

)

Γ
(

N
2 −

j+1
2

)

Γ
(

N
2 −

j+1
2 +

j+1
2 − it

)

×
p−1∏

j=2
step2

Γ
(

N
2 −

j+1
2 +

j
2

)

Γ
(

N
2 −

j+1
2 − it

)

Γ
(

N
2 −

j+1
2

)

Γ
(

N
2 −

j+1
2 +

j
2 − it

)

p−1∏

j=2
step2

Γ
(

N
2

)

Γ
(

N
2 −

j+1
2 +

j
2 − it

)

Γ
(

N
2 −

j+1
2 +

j
2

)

Γ
(

N
2 − it

)

=





Γ
(

N−1
2

)

Γ
(

N
2 − it

)

Γ
(

N−1
2 − it

)

Γ
(

N
2

)





p−1
2

×
p−2∏

j=1
step2

j+1
2 −1
∏

k=0

(

N − j − 1
2

+ k

) (

N − j − 1
2

+ k− it

)−1

×
p−1∏

j=2
step2

j
2−1
∏

k=0

(

N − j − 1
2

+ k

) (

N − j − 1
2

+ k− it

)−1




Γ
(

N
2

)

Γ
(

N
2 −

1
2 − it

)

Γ
(

N
2 −

1
2

)

Γ
(

N
2 − it

)





p−1
2

noticing that

⌊

j + 1
2

⌋

=






j+1
2 if j is odd
j
2 if j is even

(B1)

ΦW(t) =
p−1∏

j=1

⌊
j+1
2 −1

⌋

∏

k=0

(

N − j − 1
2

+ k

) (

N − j − 1
2

+ k− it

)−1

(B2)

=

p∏

j=2

(N
2
− j

2

)1+
⌊

p− j
2

⌋

(N
2
− j

2
− it

)−1−
⌊

p− j
2

⌋

. (B3)

Since the c.f. in (B2) corresponds to the c.f. of the sum of independent Exponential r.v.’s,
counting the number of Exponential distributions with the same rate parameter we obtain
the representation in (B3) for the c.f. ofW.

�

Proof of Theorem 2.3

Proof : When the number of variables,p, is even we have thatm=
⌊

p
2

⌋

=
p
2 , and then we

may rewrite the c.f. ofW in (5) in the form
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ΦW(t) =





Γ
(

N−1
2

)

Γ
(

N
2 − it

)

Γ
(

N−1
2 − it

)

Γ
(

N
2

)





p
2

×
p−1∏

j=1

Γ
(

N
2

)

Γ
(

N
2 −

j+1
2 − it

)

Γ
(

N
2 −

j+1
2

)

Γ
(

N
2 − it

) ,

or,

ΦW(t) =





Γ
(

N−1
2

)

Γ
(

N
2 − it

)

Γ
(

N−1
2 − it

)

Γ
(

N
2

)





p
2

×






p−1∏

j=3
step2

Γ
(

N
2 −

j+1
2 +

j+1
2

)

Γ
(

N
2 −

j+1
2 − it

)

Γ
(

N
2 −

j+1
2

)

Γ
(

N
2 −

j+1
2 +

j+1
2 − it

)






×
Γ
(

N
2

)

Γ
(

N
2 − 1− it

)

Γ
(

N
2 − 1

)

Γ
(

N
2 − it

)

×
p−2∏

j=2
step2

Γ
(

N
2 −

j+1
2 +

j
2

)

Γ
(

N
2 −

j+1
2 − it

)

Γ
(

N
2 −

j+1
2

)

Γ
(

N
2 −

j+1
2 +

j
2 − it

)

p−2∏

j=2
step2

Γ
(

N
2

)

Γ
(

N
2 −

j+1
2 +

j
2 − it

)

Γ
(

N
2 −

j+1
2 +

j
2

)

Γ
(

N
2 − it

)

=





Γ
(

N−1
2

)

Γ
(

N
2 − it

)

Γ
(

N−1
2 − it

)

Γ
(

N
2

)





p
2

×






p−1∏

j=3
step2

j+1
2 −1
∏

k=0

(

N − j − 1
2

+ k

) (

N − j − 1
2

+ k− it

)−1






×
Γ
(

N
2

)

Γ
(

N
2 − 1− it

)

Γ
(

N
2 − 1

)

Γ
(

N
2 − it

)

×






p−2∏

j=2
step2

j
2−1
∏

k=0

(

N − j − 1
2

+ k

) (

N − j − 1
2

+ k− it

)−1










Γ
(

N
2

)

Γ
(

N
2 −

1
2 − it

)

Γ
(

N
2 −

1
2

)

Γ
(

N
2 − it

)





p−2
2

,

which, after some simplifications and using the equality in (B1), may be written as

ΦW(t) =
p−1∏

j=2

⌊
j+1
2 −1

⌋

∏

k=0

(

N − j − 1
2

+ k

) (

N − j − 1
2

+ k− it

)−1

×
Γ
(

N−1
2

)

Γ
(

N
2 − 1− it

)

Γ
(

N
2 − 1

)

Γ
(

N−1
2 − it

)

=

p∏

j=2

θ
r∗j
j

(

θ j − it
)−r∗j

︸                ︷︷                ︸

ΦW1(t)

×
Γ
(

N−1
2

)

Γ
(

N
2 − 1− it

)

Γ
(

N
2 − 1

)

Γ
(

N−1
2 − it

)

︸                      ︷︷                      ︸

ΦW2(t)

with r∗j andθ j given in (11) and (7).
�

Proof of Theorem 3.1

Proof : In this proof we will consider only the case ofh = 6, since the casesh = 2 and
h = 4 are derived in a similar way.
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If in the c.f. ofW given in (10) we replaceΦW2(t) by

ΦMG(t) =
3∑

k=1

ωk λ
sk (λ − it)−sk ,

we obtain

ΦW(t) ≈ ΦW1(t) ×
3∑

k=1

ωk λ
sk (λ − it)−sk

︸                   ︷︷                   ︸

Φ∗3(t)

≈
3∑

k=1

ωk ΦW1(t)
︸ ︷︷ ︸

GIG distribution

× λsk (λ − it)−sk

︸          ︷︷          ︸

Gamma distribution
︸                            ︷︷                            ︸

GNIG distribution

that is the c.f. of the mixture of three GNIG distributions ofdepth p with c.d.f.’s and
p.d.f.’s given in (24) and (23). The parameterspν, sν andλ are defined in such a way that

d j

dt j
ΦMG(t)

∣
∣
∣
∣
∣
∣
t=0

=
d j

dt j
ΦW2(t)

∣
∣
∣
∣
∣
∣
t=0

, j = 1, . . . , 6 ,

what gives rise to a near-exact distribution that matches the first six exact moments ofW.
By simple transformation it’s easy to derive the near-exactc.d.f’s and p.d.f.’s forΛ2/N. �

Appendix C. The Gamma, GIG (Generalized Integer Gamma) and GNIG (Generalized
Near-Integer Gamma) distributions

We will use this Appendix to establish some notation concerning distributions used in the
paper, as well as to give the expressions for the p.d.f.’s (probability density functions) and
c.d.f.’s (cumulative distribution functions) of the GIG (Generalized Integer Gamma) and
GNIG (Generalized Near-Integer Gamma) distributions.

We will say that the r.v.X has a Gamma distribution with rate parameterλ > 0 and
shape parameterr > 0, if its p.d.f. may be written as

fX(x) =
λr

Γ(r)
e−λx xr−1 , (x > 0)

and we will denote this fact by

X ∼ Γ(r, λ) .

Let

X j ∼ Γ(r j , λ j) j = 1, . . . , p

be p independent r.v.’s with Gamma distributions with shape parametersr j ∈ IN and rate
parametersλ j > 0, with λ j , λ j′ , for all j, j′ ∈ {1, . . . , p}. We will say that then the r.v.

Y =
p∑

j=1

X j

has a GIG (Generalized Integer Gamma) distribution of depthp, with shape parameters
r j and rate parametersλ j , ( j = 1, . . . , p), and we will denote this fact by

Y ∼ GIG(r j , λ j ; p) .

The p.d.f. and c.d.f. (cumulative distribution function) ofY are respectively given by
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(Coelho, 1998)

f GIG(y|r1, . . . , rp; λ1, . . . , λp; p) = K
p∑

j=1

P j(y) e−λ j y , (y > 0) (C1)

and

FGIG(y|r1, . . . , r j ; λ1, . . . , λp; p) = 1− K
p∑

j=1

P∗j (y) e−λ j y , (y > 0) (C2)

whereK is given by (5) in Coelho (1998), andP j(y) andP∗j (y) are given by (7) and (16)
in the same reference.

The GNIG (Generalized Near-Integer Gamma) distribution of depth p + 1 (Coelho,
2004) is the distribution of the r.v.

Z = Y1 + Y2

whereY1 andY2 are independent,Y1 having a GIG distribution of depthp andY2 with
a Gamma distribution with a non-integer shape parameterr and a rate parameterλ , λ j

( j = 1, . . . , p). The p.d.f. (probability density function) ofZ is given by

f GNIG(z|r1, . . . , rp, r; λ1, . . . , λp, λ; p+ 1) =

Kλr
p∑

j=1

e−λ jz
r j∑

k=1

{

c j,k
Γ(k)
Γ(k+r)

zk+r−1
1F1(r, k+r,−(λ−λ j)z)

}

, (z> 0)
(C3)

and the c.d.f. (cumulative distribution function) given by

FGNIG(z|r1, . . . , rp, r; λ1, . . . , λp, λ; p+1) =
λr zr

Γ(r+1)1F1(r, r+1,−λz) (C4)

where

c∗j,k =
c j,k

λk
j

Γ(k)

with c j,k given by (11) through (13) in Coelho (1998). In the above expressions1F1(a,b; z)
is the Kummer confluent hypergeometric function. This function typically has very good
convergence properties and is nowadays easily handled by a number of software packages.

Appendix D. Exact quantiles ofΛ2/N when p is odd

In the next tables we present exact quantiles ofΛ2/N for odd p = 9,11,13,15,17,19,
obtained using the expression of the c.d.f. in (9).

Table D1. Exact quantiles ofΛ2/N for p = 9

N α = 0.01 α = 0.025 α = 0.05 α = 0.1

10 1.398876592× 10−8 8.983583921× 10−7 3.757348403× 10−7 1.642173830× 10−6

11 4.523677076× 10−6 1.256448287× 10−5 2.833455268× 10−5 6.759040932× 10−5

12 5.384478548× 10−5 1.143595025× 10−4 2.101798876× 10−4 4.065237399× 10−4

13 2.452349709× 10−4 4.527786581× 10−4 7.456926288× 10−4 1.284969659× 10−3

14 7.098772307× 10−4 1.198146738× 10−3 1.837246495× 10−3 2.933312299× 10−3

15 1.580255561× 10−3 2.501934422× 10−3 3.644318397× 10−3 5.504905546× 10−3

16 2.967186930× 10−3 4.475023996× 10−3 6.267313456× 10−3 9.072505840× 10−3

17 4.949303379× 10−3 7.182578510× 10−3 9.749892039× 10−3 1.364215396× 10−3

18 7.571685491× 10−3 1.064840933× 10−2 1.408954724× 10−2 1.917173430× 10−2

19 1.084960208× 10−2 1.486327662× 10−2 1.925013312× 10−2 2.558813429× 10−2

20 1.477435036× 10−2 1.979383416× 10−2 2.517329484× 10−2 3.280089943× 10−2

25 4.283110726× 10−2 5.320933032× 10−2 6.361069924× 10−2 7.744381046× 10−2

30 8.047619864× 10−2 9.567282836× 10−2 1.103154209× 10−1 1.290702177× 10−1

40 1.649519329× 10−1 1.866116998× 10−1 2.065710595× 10−1 2.310695961× 10−1

50 2.457238344× 10−1 2.704796003× 10−1 2.927344898× 10−1 3.194135656× 10−1
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Table D2. Exact quantiles ofΛ2/N for p = 11

N α = 0.01 α = 0.025 α = 0.05 α = 0.1

12 1.506045150× 10−9 9.707519060× 10−9 4.083316288× 10−8 1.803481600× 10−7

13 5.613520378× 10−7 1.583417809× 10−6 3.630109889× 10−6 8.858221501× 10−6

14 7.708755980× 10−6 1.673825606× 10−5 3.143329705× 10−5 6.250541651× 10−5

15 4.004229292× 10−5 7.583072675× 10−5 1.279047671× 10−4 2.270703363× 10−4

16 1.303981206× 10−4 2.260981056× 10−4 3.554247459× 10−4 5.850529205× 10−4

17 3.223832414× 10−4 5.246747138× 10−4 7.836863005× 10−4 1.220511252× 10−3

18 6.646556562× 10−4 1.030516079× 10−3 1.479786649× 10−3 2.207765052× 10−3

19 1.205335014× 10−3 1.797850698× 10−3 2.501377324× 10−3 3.605116795× 10−3

20 1.987751022× 10−3 2.871998393× 10−3 3.893084961× 10−3 5.452728945× 10−3

25 1.048329613× 10−2 1.367510805× 10−2 1.704232270× 10−2 2.175685008× 10−2

30 2.708084020× 10−2 3.338465344× 10−2 3.970707056× 10−2 4.813850984× 10−2

40 7.771521975× 10−2 9.006563585× 10−2 1.017821307× 10−1 1.165920743× 10−1

50 1.381582783× 10−1 1.548536737× 10−1 1.702228683× 10−1 1.890880425× 10−1

Table D3. Exact quantiles ofΛ2/N for p = 13

N α = 0.01 α = 0.025 α = 0.05 α = 0.1

14 1.693072502× 10−10 1.094765074× 10−9 4.627229945× 10−9 2.061698665× 10−8

15 7.099274581× 10−8 2.028889904× 10−7 4.715929471× 10−7 1.172601206× 10−6

16 1.101116106× 10−6 2.436018347× 10−6 4.658086703× 10−6 9.478535756× 10−6

17 6.412077408× 10−6 1.240773821× 10−5 2.135407142× 10−5 3.886895652× 10−5

18 2.317613785× 10−5 4.112166159× 10−5 6.602309617× 10−5 1.115201562× 10−4

19 6.297222882× 10−5 1.049472052× 10−4 1.601655637× 10−4 2.560242995× 10−4

20 1.414060474× 10−4 2.245600970× 10−4 3.294926026× 10−4 5.045051522× 10−4

25 1.795346330× 10−3 2.475104259× 10−3 3.232765045× 10−3 4.353519247× 10−3

30 7.115175534× 10−3 9.125129767× 10−3 1.122547762× 10−2 1.414410336× 10−2

40 3.141849615× 10−2 3.734831748× 10−2 4.313536937× 10−2 5.066172680× 10−2

50 6.953886143× 10−2 7.941995351× 10−2 8.871971869× 10−2 1.003974867× 10−1

Table D4. Exact quantiles ofΛ2/N for p = 15

N α = 0.01 α = 0.025 α = 0.05 α = 0.1

16 1.960321100× 10−11 1.271118733× 10−10 5.395270073× 10−10 2.422103789× 10−9

17 9.091912431× 10−9 2.628085207× 10−8 6.181529158× 10−8 1.561825475× 10−7

18 1.568221074× 10−7 3.526069140× 10−7 6.848044628× 10−7 1.421187284× 10−6

19 1.010500048× 10−6 1.992343855× 10−6 3.489027517× 10−6 6.488552735× 10−6

20 4.011006632× 10−6 7.261165858× 10−6 1.187394417× 10−5 2.050897308× 10−5

25 1.994343571× 10−4 2.932378682× 10−4 4.044427220× 10−4 5.793661231× 10−4

30 1.410099205× 10−3 1.889061326× 10−3 2.411781895× 10−3 3.170400613× 10−3

40 1.076176079× 10−2 1.314161382× 10−2 1.553118938× 10−2 1.872892053× 10−2

50 3.112821033× 10−2 3.625322690× 10−2 4.118291978× 10−2 4.751011074× 10−2

Table D5. Exact quantiles ofΛ2/N for p = 17

N α = 0.01 α = 0.025 α = 0.05 α = 0.1

18 2.318898698× 10−12 1.507409986× 10−11 6.422191675× 10−11 2.902311699× 10−10

19 1.174798963× 10−9 3.430197208× 10−9 8.152533611× 10−9 2.088750413× 10−8

20 2.226856090× 10−8 5.079008592× 10−8 9.999293781× 10−8 2.111105908× 10−7

25 1.279914651× 10−5 2.035356356× 10−5 2.998519629× 10−5 4.627103570× 10−5

30 2.014348624× 10−4 2.833947551× 10−4 3.771742411× 10−4 5.198579355× 10−4

40 3.077113443× 10−3 3.866719411× 10−3 4.683030919× 10−3 5.807826691× 10−3

50 1.230232622× 10−2 1.462315349× 10−2 1.690457497× 10−2 1.989727167× 10−2

Table D6. Exact quantiles ofΛ2/N for p = 19

N α = 0.01 α = 0.025 α = 0.05 α = 0.1

20 2.788030869× 10−13 1.816522449× 10−12 7.765313775× 10−12 3.530167332× 10−11

25 3.890145982× 10−7 6.855615248× 10−7 1.100282575× 10−6 1.868630646× 10−6

30 1.948325702× 10−5 2.899701949× 10−5 4.047594613× 10−5 5.889012736× 10−5

40 7.215514632× 10−4 9.349562031× 10−4 1.162396952× 10−3 1.485482733× 10−3

50 4.257494451× 10−3 5.169928898× 10−3 6.086838052× 10−3 7.316438970× 10−3



21

Appendix E. Near-exact quantiles ofΛ2/N when p is even

In the following Tables we present the near-exact quantilesof Λ2/N for different values of
p andN. We present near-exact quantiles that match the 10 significant decimal digits of
the exact quantile. In every case we also indicate the numberof exact moments,m∗, that
the type II near-exact distribution has to match in order to assure such precision.

Table E1. Near-exact quantiles ofΛ2/N for p = 8

N α = 0.01 m∗ α = 0.025 m∗ α = 0.05 m∗ α = 0.1 m∗

9 4.686559223× 10−8 (6) 3.002952347× 10−7 (6) 1.251563961× 10−6 (6) 5.434185751× 10−6 (6)
10 1.385848451× 10−5 (4) 3.812798308× 10−5 (6) 8.510669506× 10−5 (6) 2.001387329× 10−4 (6)
11 1.511192620× 10−4 (6) 3.166285911× 10−4 (6) 5.742008279× 10−4 (6) 1.091535076× 10−4 (6)
12 6.360677270× 10−4 (6) 1.156291330× 10−3 (6) 1.876534755× 10−3 (6) 3.174470348× 10−3 (6)
13 1.717780972× 10−3 (6) 2.852250938× 10−3 (6) 4.307739809× 10−3 (6) 6.749907734× 10−3 (6)
14 3.598285658× 10−3 (6) 5.603012854× 10−3 (6) 8.037924450× 10−3 (6) 1.191780067× 10−2 (4)
15 6.404653330× 10−3 (6) 9.500505503× 10−3 (12) 1.310669908× 10−2 (6) 1.863006290× 10−2 (4)
16 1.019035241× 10−2 (6) 1.454882486× 10−2 (6) 1.945993019× 10−2 (6) 2.674882194× 10−2 (4)
17 1.494952758× 10−2 (6) 2.069035955× 10−2 (6) 2.698587267× 10−2 (6) 3.609184117× 10−2 (4)
18 2.063418043× 10−2 (6) 2.782955934× 10−2 (6) 3.554329118× 10−2 (6) 4.646297223× 10−2 (4)
19 2.716959420× 10−2 (6) 3.585128331× 10−2 (6) 4.498087478× 10−2 (6) 5.767056429× 10−2 (4)
20 3.446646866× 10−2 (6) 4.463366876× 10−2 (6) 5.514952296× 10−2 (6) 6.953746750× 10−2 (6)
25 7.912126252× 10−2 (6) 9.603011546× 10−2 (6) 1.125400659× 10−1 (4) 1.339261252× 10−1 (4)
30 1.303872415× 10−1 (4) 1.522743568× 10−1 (4) 1.729216926× 10−1 (4) 1.988062776× 10−1 (4)
40 2.314877691× 10−1 (4) 2.587229109× 10−1 (4) 2.834205299× 10−1 (4) 3.132436030× 10−1 (4)
50 3.191348725× 10−1 (4) 3.480571366× 10−1 (4) 3.737120295× 10−1 (4) 4.040491392× 10−1 (4)

Table E2. Near-exact quantiles ofΛ2/N for p = 10

N α = 0.01 m∗ α = 0.025 m∗ α = 0.05 m∗ α = 0.1 m∗

11 4.819299757× 10−9 (4) 3.100619760× 10−8 (4) 1.300507301× 10−7 (4) 5.713907591× 10−7 (6)
12 1.673475177× 10−6 (4) 4.683951125× 10−6 (6) 1.065022271× 10−5 (4) 2.569624350× 10−5 (6)
13 2.138716446× 10−5 (4) 4.592625114× 10−5 (6) 8.532056646× 10−5 (6) 1.673286238× 10−5 (6)
14 1.039466277× 10−4 (6) 1.943545971× 10−4 (6) 3.239176314× 10−4 (6) 5.665354455× 10−4 (6)
15 3.188259494× 10−4 (6) 5.453635959× 10−4 (6) 8.466601121× 10−4 (6) 1.372460269× 10−4 (6)
16 7.471045545× 10−4 (6) 1.199106333× 10−3 (6) 1.768520327× 10−3 (6) 2.712261311× 10−3 (4)
17 1.468165583× 10−3 (4) 2.244711148× 10−3 (6) 3.182880108× 10−3 (6) 4.676924949× 10−3 (6)
18 2.550292945× 10−3 (6) 3.751472626× 10−3 (6) 5.154766416× 10−3 (6) 7.318945097× 10−3 (4)
19 4.045771874× 10−3 (6) 5.765941504× 10−3 (6) 7.720715357× 10−3 (6) 1.065656313× 10−2 (4)
20 5.989546332× 10−3 (6) 8.312851569× 10−3 (6) 1.089223762× 10−2 (4) 1.468065097× 10−2 (4)
25 2.263930216× 10−2 (4) 2.878335629× 10−2 (4) 3.509460054× 10−2 (4) 4.369810098× 10−2 (4)
30 4.908152887× 10−2 (4) 5.936650772× 10−2 (4) 6.947040905× 10−2 (4) 8.266692187× 10−2 (4)
40 1.171486442× 10−1 (4) 1.340641655× 10−1 (4) 1.498738589× 10−1 (4) 1.695589156× 10−1 (4)
50 1.890986165× 10−1 (4) 2.099536064× 10−1 (4) 2.289191971× 10−1 (4) 2.519228977× 10−1 (4)

Table E3. Near-exact quantiles ofΛ2/N for p = 12

N α = 0.01 m∗ α = 0.025 m∗ α = 0.05 m∗ α = 0.1 m∗

13 5.260825633× 10−10 (4) 3.396305935× 10−9 (4) 1.300507301× 10−8 (4) 1.432040025× 10−8 (4)
14 2.079917339× 10−7 (4) 5.905254714× 10−7 (4) 1.363180219× 10−6 (4) 3.357883304× 10−6 (4)
15 3.034654946× 10−6 (4) 6.650960447× 10−6 (4) 1.260330652× 10−5 (4) 2.535244403× 10−5 (4)
16 1.668159295× 10−5 (4) 3.193231809× 10−5 (4) 5.440466114× 10−5 (6) 9.779802411× 10−5 (4)
17 5.719299189× 10−5 (4) 1.003103315× 10−4 (4) 1.593554188× 10−4 (4) 2.657082239× 10−4 (4)
18 1.481185171× 10−4 (4) 2.439193222× 10−4 (4) 3.682532765× 10−4 (6) 5.810021427× 10−4 (4)
19 3.184306605× 10−4 (6) 4.996149484× 10−4 (4) 7.251566129× 10−4 (4) 1.095934006× 10−3 (4)
20 5.997244051× 10−4 (6) 9.051976277× 10−4 (4) 1.272859560× 10−3 (4) 1.857990869× 10−3 (4)
25 4.667502215× 10−3 (4) 6.250514630× 10−3 (4) 7.965091558× 10−3 (4) 1.042973956× 10−2 (4)
30 1.463947251× 10−2 (4) 1.839165970× 10−2 (4) 2.223027304× 10−2 (4) 2.745212649× 10−2 (4)
40 5.117637964× 10−2 (4) 6.003720439× 10−2 (4) 6.855986070× 10−2 (4) 7.948313616× 10−2 (4)
50 1.006331452× 10−1 (4) 1.138167081× 10−1 (4) 1.260839930× 10−1 (4) 1.413121632× 10−1 (2)
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Table E4. Near-exact quantiles ofΛ2/N for p = 14

N α = 0.01 m∗ α = 0.025 m∗ α = 0.05 m∗ α = 0.1 m∗

15 5.968007341× 10−11 (4) 3.864358294× 10−10 (4) 1.636768946× 10−9 (4) 7.320277569× 10−9 (4)
16 2.631877572× 10−8 (4) 7.564372294× 10−8 (4) 1.768699381× 10−7 (4) 4.433213878× 10−7 (4)
17 4.303895570× 10−7 (4) 9.598868708× 10−7 (4) 1.849779949× 10−6 (4) 3.801312060× 10−6 (4)
18 2.635434985× 10−6 (4) 5.147581731× 10−6 (4) 8.936403861× 10−6 (4) 1.644163547× 10−5 (4)
19 9.977587414× 10−6 (6) 1.788143092× 10−5 (4) 2.897343157× 10−5 (4) 4.948756698× 10−5 (4)
20 2.828395716× 10−5 (4) 4.762737988× 10−5 (4) 7.337016162× 10−5 (4) 1.186146150× 10−4 (4)
25 6.507492492× 10−4 (4) 9.248943591× 10−4 (4) 1.239566302× 10−3 (4) 1.718864890× 10−3 (4)
30 3.355262830× 10−3 (4) 4.393950494× 10−3 (4) 5.502334209× 10−3 (4) 7.075150920× 10−3 (4)
40 1.906963623× 10−2 (4) 2.296472997× 10−2 (4) 2.681903407× 10−2 (4) 3.190185732× 10−2 (4)
50 4.779459232× 10−2 (4) 5.510388888× 10−2 (4) 6.205673620× 10−2 (4) 7.088131886× 10−2 (4)

Table E5. Near-exact quantiles ofΛ2/N for p = 16

N α = 0.01 m∗ α = 0.025 m∗ α = 0.05 m∗ α = 0.1 m∗

17 6.954345480× 10−12 (4) 4.514993295× 10−11 (4) 1.919965856× 10−10 (4) 8.647924597× 10−10 (4)
18 3.370977451× 10−9 (4) 9.793105080× 10−9 (4) 2.315444013× 10−8 (4) 5.891190293× 10−8 (4)
19 6.094359732× 10−8 (4) 1.380094214× 10−7 (4) 2.698618337× 10−7 (4) 5.648824057× 10−7 (4)
20 4.108569123× 10−7 (4) 8.167747384× 10−7 (4) 1.441312042× 10−6 (4) 2.705710796× 10−6 (4)
25 5.592434762× 10−5 (4) 8.530201441× 10−5 (4) 1.213442085× 10−4 (4) 1.800030465× 10−4 (4)
30 5.680480407× 10−4 (4) 7.790352764× 10−4 (4) 1.014598234× 10−3 (4) 1.364325792× 10−3 (4)
40 5.978325871× 10−3 (4) 7.402155558× 10−3 (4) 8.852253879× 10−3 (4) 1.082058114× 10−2 (4)
50 2.011798024× 10−2 (4) 2.366316754× 10−2 (4) 2.710964812× 10−2 (4) 3.158052634× 10−2 (4)

Table E6. Near-exact quantiles ofΛ2/N for p = 18

N α = 0.01 m∗ α = 0.025 m∗ α = 0.05 m∗ α = 0.1 m∗

19 8.265521794× 10−13 (4) 5.379152077× 10−12 (4) 2.295600345× 10−11 (4) 1.040502518× 10−10 (4)
20 4.355362880× 10−10 (4) 1.277429693× 10−9 (4) 3.050154120× 10−9 (4) 7.863215324× 10−9 (4)
25 2.552384884× 10−6 (4) 4.254251580× 10−6 (4) 6.518623271× 10−6 (4) 1.051247048× 10−5 (4)
30 6.737270305× 10−5 (4) 9.736170594× 10−5 (4) 1.325584728× 10−4 (4) 1.874841858× 10−4 (4)
40 1.551433278× 10−3 (4) 1.978725976× 10−3 (4) 2.427061596× 10−3 (4) 3.054048472× 10−3 (4)
50 7.447089156× 10−3 (4) 8.944356252× 10−3 (4) 1.043212842× 10−2 (4) 1.240490010× 10−2 (2)

Table E7. Near-exact quantiles ofΛ2/N for p = 20

N α = 0.01 m∗ α = 0.025 m∗ α = 0.05 m∗ α = 0.1 m∗

21 9.974108840× 10−14 (4) 6.505371782× 10−13 (4) 2.785206148× 10−12 (4) 1.269572642× 10−11 (4)
25 4.681479730× 10−8 (4) 8.828836369× 10−8 (4) 1.498370532× 10−7 (4) 2.707054392× 10−7 (4)
30 5.192701461× 10−6 (4) 7.976800129× 10−6 (4) 1.143603125× 10−5 (4) 1.714984152× 10−5 (4)
40 3.268365754× 10−4 (4) 4.303572406× 10−4 (4) 5.424280625× 10−4 (4) 7.041416220× 10−4 (4)
50 2.403097863× 10−3 (4) 2.950167844× 10−3 (4) 3.506020573× 10−3 (4) 4.259716576× 10−3 (4)
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