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Abstract

In this paper the authors show how by adequately decomposingthe null hypothesis of the multi-sample
block sphericity test it is possible to easily obtain the expression for its likelihood ratio test statistic as
well as a different look over the exact distribution of this statistic. This different view will enable the
construction of very well-performing near-exact approximations for the distribution of this test statistic,
whose exact distribution is quite elaborate and non-manageable. The near-exact distributions obtained are
quite manageable and perform much better than the availableasymptotic distributions, even for small sample
sizes, and they show a good asymptotic behavior not only for increasing sample sizes as well as for increasing
number of variables and/or samples involved.

Keywords: mixtures, Generalized Integer Gamma distribution, Generalized Near-Integer Gamma
distribution.

1. Introduction

The multi-sample block-scalar sphericity test, hereaftersimply designated by multi-sample block spheric-
ity test, is a test which null hypothesis may be written as

H0 : Σ1 = · · · = Σm = diag(∆1, . . . ,∆k) , with ∆i = σ
2
i Ipi , (i = 1, . . . , k) , (1)

whereσ2
i (i = 1, . . . , k) is non-specified.

This test is an interesting and useful generalization of thestandard sphericity test and is of interest in
several studies and statistical applications where we needto carry out a bus test, to test:

– if a set ofm multivariate normal or elliptically contoured populations all have the same variance-
covariance matrix,

– if this matrix has a block-diagonal structure, that is, if the overall set of variables is indeed formed by
a given number of independent sub-sets of variables, and

– if in each of these sets all variables are independent and have the same variance.
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The multi-sample block sphericity test plays a key role in tests of homocedasticity in multivariate analysis
and repeated measures designs, where the validity of several other tests rest on the assumption of sphericity.
His role is the equivalent to the one that the multi-sample sphericity test has in univariate analysis.

The multi-sample block sphericity test has as particular cases a number of other interesting tests, namely:

– for m= 1, the one-sample block sphericity test
(
H0 : Σ = diag(σ2

i Ipi , i = 1, . . . , k)
)

– for k = 1, the multi-sample sphericity test
(
H0 : Σ1 = . . .Σm = σ

2Ip

)

– for m= 1 andk = 1, the usual sphericity test
(
H0 : Σ = σ2Ip

)

– for all pi = 1 (i = 1, . . . , k), the multi-sample independence test
(
H0 : Σ1 = . . .Σm = diag(σ2

j ,

j = 1, . . . , k)
)

– for m= 1 and allpi = 1 (i = 1, . . . , k), the usual (one-sample) independence test
(
H0 : Σ = diag(σ2

j ,

j = 1, . . . , k)
)
.
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Figure 1 – The multi-sample block sphericity test and its particular cases:MS-BSph - multi-sample block
sphericity,OS-BSph - one-sample block sphericity,(OS)-Sph - (one-sample) sphericity,(OS)-Ind

(one-sample) independence,MS-Ind multi-sample independence,MS-Sph - multi-sample sphericity.

In this paper we will show how, following Coelho and Marques (2009), by using a suitable decomposi-
tion of the test null hypothesis into a set of nested, conditionally independent, hypotheses, we will be able to
induce a much useful factorization of the characteristic function of the negative logarithm of the associated
likelihood ratio test (l.r.t.) statistic, which may be used

– to easily find the structure of the exact distribution of this statistic, and

– to develop extremely sharp and well-performing near-exact approximations to the exact distribution
of the l.r.t. statistic.
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These near-exact distributions are asymptotic distributions built using a different concept of approxima-
tion:

– starting with an adequate factorization of the c.f. of the negative logarithm of the l.r.t. statistic,

– the major part of it is left unchanged, while the remaining smaller part is asymptotically approximated,
in such a way that

– the product of the two resulting terms yields a known manageable distribution.

These distributions besides being asymptotic for increasing sample sizes, are also asymptotic for increas-
ing number of variables or sets of variables, and increasingnumber of populations involved, as it is shown
by the results of the numerical studies carried out in Section 4.

Other characteristics of these near-exact distributions are:

– they lie very close to the exact distribution and they match, by construction, some of the first exact
moments;

– they perform very well even for very small sample sizes;

– they are far more manageable than the exact distributions and are quite easy to implement computa-
tionally, allowing for the easy computation of near-exact quantiles andp-values, which being so close
to the exact ones, may, in practice, be used instead of these latter ones.

2. A decomposition of the null hypothesis which induces an adequate factorization of the character-
istic function of the logarithm of the likelihood ratio test statistic and the exact distribution of the
likelihood ratio test statistic to test H0 in (1)

The null hypothesis of the multi-sample block sphericity test in (1) may be written as

H0 ≡ H0c|(0b|0a) o H0b|0a o H0a ,

where

H0a : Σ1 = · · · = Σm(= Σ) , (Σ(p×p) unspecified) (2)

is the null hypothesis to test the equality ofm covariance matrices, withp =
∑k

i=1 pi and

Σ =



Σ11 Σ12 · · · Σ1k

Σ21 Σ22 · · · Σ2k
...

...
. . .

...

Σ1k Σ2k · · · Σkk


,

H0b|0a : Σi j = 0 for i , j (i, j ∈ {1, . . . , k})
assumingΣ1 = · · · = Σm(= Σ),

(3)

is the null hypothesis to test the independence ofk groups of r.v.’s, and

H0c|(0b|0a) : Σii = σ
2
i Ipi , i = 1, . . . , k (k independent sphericity tests)

assumingΣi j = 0 for i , j (i, j ∈ {1, . . . , k})
(4)

is the null hypothesis to test the sphericity of thek covariance matricesΣii (i = 1, . . . , k).
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Now, let us suppose that we want to test the null hypothesisH0 in (1), based onm independent samples,
one from each of thempopulationsNp(µ

j
,Σ j) ( j = 1, . . . ,m). Let N j be the size of the sample from thej-th

population and letN =
∑m

j=1 N j . Let alsoA j be the maximum likelihood estimator ofΣ j andA =
∑m

j=1 A j .
Then the l.r.t. statistic to testH0a is

Λa =
NNp/2

m∏
j=1

N
pNj/2
j

m∏
j=1
|A j |

N j/2

|A|N/2
,

while the l.r.t. statistic to testH0b|0a is

Λb|a =
|A|N/2

∏k
i=1 |Aii |

N/2
,

whereAii is thei-th (i = 1, . . . , k) diagonal block ofA, and the l.r.t. statistic used to testH0c|(0b|0a) is

Λc|(b|a) =

k∏

i=1

|Aii |
N/2

(tr Aii )Npi/2
pNpi/2

i .

Let thenΛ be the l.r.t. statistic used to testH0 in (1). We have (see Lemma 10.3.1 in Anderson (2003))

Λ = Λa Λb|a Λc|(b|a) =

k∏
i=1

(piN)pi N/2

m∏
j=1

N
pNj/2
j

m∏
j=1
|A j |

N j/2

k∏
i=1

(tr Aii )Npi/2

, (5)

and, given the independence, underH0 in (1) of the l.r.t. statistics to testH0a, H0b|0a and H0c|(0b|0a) (see
Appendix A),

E
(
Λh

)
= E

(
Λh

a

)
E

(
Λh

b|a

)
E

(
Λh

c|(b|a)

)
,

whereE
(
Λh

a

)
, E

(
Λh

b|a

)
andE

(
Λh

c|(b|a)

)
may be obtained from (Anderson, 2003, Chap. 9,10) or (Muirhead,

2005, Chap. 8,11). However, the final expression obtained inthis way forE
(
Λh

)
is not quite useful in order

to better understand and work through the fine details of the distribution ofΛ. We rather need a more indirect
approach.

Let thenW = − log Λ and also

Wa = − log Λa , Wb|a = − log Λb|a and Wc|(b|a) = − log Λc|(b|a) .

Then we have

ΦW(t) = E
(
eitW

)
= E

(
e−it(Wa+Wb|a+Wc|(b|a))

)
= E

(
eitWa

)
E

(
eitWb|a

)
E

(
eitWc|(b|a)

)

= ΦWa
(t) × ΦWb|a

(t) × ΦWc|(b|a)
(t) ,

(6)

where, forN j = n ( j = 1, . . . ,m), p =
∑k

i=1 pi andqi = pi+1 + · · · + pk (i = 1, . . . , k− 1),ΦWa
(t),ΦWb|a

(t) and
ΦWc|(b|a)

(t), after some algebraic manipulation may be written as (see Marques et al. (2011)),

ΦWa
(t) =

p∏

ℓ=1

m∏

j=1

Γ
(

n−1
2 −

ℓ−1
2m +

j−1
m

)
Γ
(

n−ℓ
2 −

n
2 it

)

Γ
(

n−1
2 −

ℓ−1
2m +

j−1
m −

n
2 it

)
Γ
(

n−ℓ
2

) , (7)
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ΦWb|a
(t) =

k−1∏

i=1

pi∏

ℓ=1

Γ
(

nm−ℓ
2

)
Γ
(

nm−qi−ℓ

2 − nm
2 it

)

Γ
(

nm−qi−ℓ

2

)
Γ
(

nm−ℓ
2 − nm

2 it
) , (8)

and

ΦWc|(b|a)
(t) =

k∏

i=1

pi∏

ℓ=2

Γ
(

nm−1
2 + ℓ−1

pi

)
Γ
(

nm−ℓ
2 − nm

2 it
)

Γ
(

nm−1
2 + ℓ−1

pi
− nm

2 it
)
Γ
(

nm−ℓ
2

) . (9)

These expressions show that the exact distribution ofΛ is indeed the same as the distribution of the
product ofp(m+ 2)− pk − k− 1 independent Beta r.v.’s, raised to the powern/2, since from (6), and (7)-(9)
above we may write

Λ
st
∼



p∏

ℓ=1

m∏

j=1
except forℓ= j=1

Yℓ j



n/2 
k−1∏

i=1

pi∏

ℓ=1

Y∗iℓ



n/2 
k∏

i=1

pi∏

ℓ=2

Y∗∗iℓ



n/2

, (10)

wherest
∼ is to be read ’is stochastically equivalent to’ and

Yℓ j ∼ Beta
(

n−ℓ
2 ,

j−1
m +

ℓ−1
2 −

ℓ−1
2m

)
Y∗iℓ ∼ Beta

(
nm−qi−ℓ

2 ,
qi

2

)
Y∗∗iℓ ∼ Beta

(
nm−ℓ

2 ,
ℓ−1
2 +

ℓ−1
pi

)
.

ℓ=1,...,p; j=1,...,m i=1,...,k−1;ℓ=1,...,pi i=1,...,k; ℓ=2,...,pi

(except forℓ= j=1)

However, another more useful way to look at the exact distribution ofΛ may be obtained from the fact
that, after some rather long manipulations, we may write, for

p ⊥⊥ 2 =

{
0 if p even
1 if p odd,

ΦWa
(t) as (see Marques et al. (2011) and Coelho and Marques (2011))

ΦWa
(t) =



p∏

ℓ=2

(
n− ℓ

n

)rℓ (n− ℓ
n
− it

)−rℓ


︸                                  ︷︷                                  ︸
Φ1,Wa

(t)

×



⌊p/2⌋∏

ℓ=1

m∏

j=1

Γ(aℓ + bℓ j)Γ(aℓ + b∗
ℓ j − nit)

Γ(aℓ + b∗
ℓ j)Γ(aℓ + bℓ j − nit)


×



m∏

j=1

Γ(ap + bp j)Γ(ap + b∗p j −
n
2 it)

Γ(ap + b∗p j)Γ(ap + bp j −
n
2 it)



p⊥⊥2

︸                                                                                                     ︷︷                                                                                                     ︸
Φ2,Wa

(t)

(11)

where

aℓ = n− 2ℓ , bℓ j = 2ℓ − 1+
j − 2ℓ

m
, b∗ℓ j = ⌊bℓ j⌋ , (12)

ap =
n− p

2
, bp j =

pm−m− p+ 2 j − 1
2m

, b∗p j = ⌊bp j⌋ , (13)
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rℓ =



r∗
ℓ−1 ℓ = 2, . . . , p,

except forℓ = p− 2α1,

r∗
ℓ−1 + (p ⊥⊥ 2)(α2 − α1)

(
m− p−1

2 +m
⌊

p
2m

⌋)
ℓ = p− 2α1 ,

(14)

with

r∗ℓ =



γℓ ℓ = 1, . . . , α + 1,

m
(⌊

p
2

⌋
−

⌊
ℓ
2

⌋)
ℓ = α + 2, . . . ,min(p− 2α1, p− 1),
andℓ = 2+ p− 2α1, . . . ,2

⌊
p
2

⌋
− 1, by steps of 2

m
(⌊

p+1
2

⌋
−

⌊
ℓ
2

⌋)
ℓ = 1+ p− 2α1, . . . , p− 1, by steps of 2,

(15)

and

α =

⌊
p− 1

m

⌋
, α1 =

⌊
m− 1

m
p− 1

2

⌋
, α2 =

⌊
m− 1

m
p+ 1

2

⌋
, (16)

where, forℓ = 1, . . . , α,

γℓ =

⌊m
2

⌋ (
(ℓ − 1)m− 2((m+ 1) ⊥⊥ 2)

⌊
ℓ

2

⌋)
+

⌊m
2

⌋ ⌊m+ ℓ ⊥⊥ 2
2

⌋
(17)

and

γα+1 = −

(⌊ p
2

⌋
− α

⌊m
2

⌋)2
+m

(⌊ p
2

⌋
−

⌊
α + 1

2

⌋)
+ (m⊥⊥ 2)

(
α

⌊ p
2

⌋
+
α ⊥⊥ 2

4
−
α2

4
− α2

⌊m
2

⌋)
, (18)

which shows thatWa has the distribution of the sum of a r.v. with a GIG (Generalized Integer Gamma)
distribution of depthp− 1, with an independent sum of (m− 1)

⌊
p+1
2

⌋
independent Logbeta r.v.’s, some of

them multiplied byn and the other multiplied byn/2. Note that in each product inj in Φ2,Wa
(t) the Logbeta

distribution vanishes for one of the values ofj. The GIG distribution is the distribution of the sum of
independent Gamma r.v.’s with integer shape parameters. For details see Appendix B and Coelho (1998,
1999).

We may also write (see Marques et al. (2011) and Coelho (2004))

ΦWb|a
(t) =



p∏

ℓ=3


n− ℓm

n


sℓ 

n− ℓm
n
− it


−sℓ

︸                                    ︷︷                                    ︸
Φ1,Wb|a

(t)


Γ
(

nm−1
2

)
Γ
(

nm−1
2 − 1

2 −
nm
2 it

)

Γ
(

nm−1
2 − 1

2

)
Γ
(

nm−1
2 − nm

2 it
)


k∗

︸                                    ︷︷                                    ︸
Φ2,Wb|a

(t)

(19)

wherek∗ =
⌊

q
2

⌋
, with q denoting the number of oddpi ’s, and where

sℓ =

{
hℓ−2 + (−1)ℓ k∗ ℓ = 3,4
sℓ−2 + hℓ−2 ℓ = 5, . . . , p

(20)

with

hℓ = (# of pi (i = 1, . . . , k) ≥ ℓ) − 1 , ℓ = 1, . . . , p− 2 , (21)

which shows that the distribution ofWb|a is the same as that of the sum a r.v. with a GIG distribution of depth
p− 2, with an independent sum ofk∗ independent and identically distributed Logbeta r.v.’s multiplied by
nm/2.
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And yet

ΦWc|(b|a)
(t) =


k∏

i=1

pi∏

ℓ=2


n− ℓm

n


zℓ,i 

n− ℓm
n
− it


−zℓ,i

︸                                           ︷︷                                           ︸
Φ1,Wc|(b|a)

(t)

×



k∏

i=1



pi−k∗i∏

ℓ=2

Γ
(

nm−1
2 + ℓ−1

pi

)
Γ
(

nm−1
2 − nm

2 it
)

Γ
(

nm−1
2

)
Γ
(

nm−1
2 + ℓ−1

pi
− nm

2 it
)





pi∏

ℓ=pi−k∗i +1

Γ
(

nm−1
2 + ℓ−1

pi

)
Γ
(

nm
2 −

nm
2 it

)

Γ
(

nm
2

)
Γ
(

nm−1
2 + ℓ−1

pi
− nm

2 it
)




︸                                                                                                             ︷︷                                                                                                             ︸

Φ2,Wc|(b|a)
(t)

(22)

wherek∗i = ⌊pi/2⌋ and

zℓ,i =

⌊
pi − ℓ + 2

2

⌋
, ℓ = 2, . . . , pi , i = 1, . . . .k , (23)

which shows that the distribution ofWc|(b|a) is the same as that of the sum a r.v. with a GIG distribution of
depthp− k, with an independent sum ofp− k independent Logbeta r.v.’s, multiplied bynm/2.

As such, it will be possible to express the distribution ofW as that of the sum of a GIG distributed r.v.
with an independent sum of independently distributed Logbeta r.v.’s. This actually amounts to being able to
write the c.f. ofW = − log Λ as in the following Theorem.

Theorem 1. The c.f. of W= − log Λ, whereΛ is the l.r.t. statistic in(5), may be written as

ΦW(t) =

p∏

ℓ=1

(
n− ℓ

n

)r+
ℓ
(
n− ℓ

n
− it

)−r+
ℓ

︸                               ︷︷                               ︸
Φ1(t)

p∏

ℓ=2
ℓ,m,2m,...,αm


n− ℓm

n


r++
ℓ


n− ℓm

n
− it


−r++
ℓ

︸                                             ︷︷                                             ︸
Φ2(t)

×Φ2,Wa
(t)Φ2,Wb|a

(t)Φ2,Wc|(b|a)
(t) ,

(24)

whereΦ2,Wa
(t), Φ2,Wb|a

(t) andΦ2,Wc|(b|a)
(t) are given respectively in(11), (19) and (22), and where m is the

same as in(1), α =
⌊

p−1
q

⌋
,

r+ℓ =



r++m ℓ = 1

rℓ + r++mℓ ℓ = 2, . . . , α

rℓ ℓ = α + 1, . . . , p

(25)

and

r++ℓ =


z∗∗
ℓ

ℓ = 2

z∗∗
ℓ
+ sℓ ℓ = 3, . . . , p

(26)

with rℓ and sℓ respectively given by(14)-(18)and(20)-(21)and with

z∗∗ℓ =



∑k
i=1 z∗

ℓ,i ℓ = 2, . . . , pmax

0 ℓ = pmax+ 1, . . . , p

7



where

z∗ℓ,i =


zℓ,i ℓ = 2, . . . , pi

0 ℓ = pi + 1, . . . , pmax

for pmax= max{p1, . . . , pk} and zℓ,i given by(23).

Proof. We only have to writeΦW(t) as

ΦW(t) = Φ1,Wa
(t)Φ2,Wa

(t)
︸              ︷︷              ︸

ΦWa
(t)

× Φ1,Wb|a
(t)Φ2,Wb|a

(t)
︸                ︷︷                ︸

ΦWb|a
(t)

× Φ1,Wc|(b|a)
(t)Φ2,Wc|(b|a)

(t)
︸                     ︷︷                     ︸

ΦWc|(b|a)
(t)

= Φ1,Wa
(t)Φ1,Wb|a

(t)Φ1,Wc|(b|a)
(t)

︸                              ︷︷                              ︸
c.f. of a GIG distribution

× Φ2,Wa
(t)Φ2,Wb|a

(t)Φ2,Wc|(b|a)
(t)

︸                              ︷︷                              ︸
c.f. of a sum of indep. Logbeta r.v.’s

an then group together the rate parameters inΦ1,Wa
(t)Φ1,Wb|a

(t)Φ1,Wc|(b|a)
(t) and adequately add the corre-

sponding shape parameters, in order to yieldΦ1(t)Φ2(t), which is the c.f. of a GIG distribution of depth
2p− 1− α. �

It is interesting to note that in (24):

– when all or all but one of thepi ’s (i = 1, . . . , k) are even, thenΦ2,Wb|a
vanishes, or equals 1, and

– when allpi (i = 1, . . . , k) equal 2,Φ2,Wc|(b|a)
vanishes.

Also, from (24) we may see that the exact distribution ofΛ in (5) is the same as the distribution of the
product of the exponential of the negative of 2p− 1− α independent Gamma r.v.’s, times the product of
(m−1)

⌊
p+1
2

⌋
+

⌊
q
2

⌋
+ p−k independent Beta r.v.’s raised to some powers (whereq is the number of oddpi ’s).

More precisely, from (24) we may write

Λ
st
∼



p∏

ℓ=1

e−Zℓ





p∏

ℓ=2
ℓ,m,...,αm

e−Z∗
ℓ





⌊p/2⌋∏

ℓ=1

m∏

j=1

(
Yℓ j

)n





m(p⊥⊥2)∏

j=1

(
Y∗j

)n/2





⌊q/2⌋∏

j=1

(
Y∗∗j

)nm/2





k∏

i=1

pi−k∗i∏

ℓ=2

(
Y∗∗∗iℓ

)nm/2





k∏

i=1

pi∏

ℓ=pi−k∗i +1

(
Y∗∗∗∗iℓ

)nm/2



where all the r.v.’s involved are independent and whereq represents the number of oddpi , k∗i =
⌊

pi

2

⌋
,

Zℓ ∼ Γ

(
r+ℓ ,

n− ℓ
n

)
ℓ = 1, . . . , p

Z∗ℓ ∼ Γ

(
r++ℓ ,

n− ℓ/m
n

)
ℓ = 2, . . . , p; ℓ , m,2m, . . . , αm

and
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Yℓ j ∼ Beta
(
aℓ + b∗ℓ j ,bℓ j − b∗ℓ j

)
ℓ = 1, . . . , ⌊p/2⌋; j = 1, . . . ,m ( j , 2ℓ⊥⊥∗m)

Y∗j ∼ Beta
(
ap + b∗p j,bp j − b∗p j

)
j = 1, . . . ,m(p⊥⊥2)

(
j ,

p+ 1
2
⊥⊥∗m

)

Y∗∗j ∼ Beta

(
nm− 2

2
,
1
2

)
j = 1, . . . , ⌊q/2⌋

Y∗∗∗iℓ ∼ Beta

(
nm− 1

2
,
ℓ − 1

pi

)
i = 1, . . . , k; ℓ = 2, . . . , pi − ⌊pi/2⌋

Y∗∗∗∗iℓ ∼ Beta

(
nm
2
,
ℓ − 1

pi
−

1
2

)
i = 1, . . . , k; ℓ = pi − ⌊pi/2⌋ + 1, . . . , pi ,

(27)

whereq is the number of oddpi , r+
ℓ

andr++
ℓ

are given by (25) and (26), andaℓ, bℓ j , ap andbp j are given by
(12)-(13) and where

a⊥⊥∗b =


a⊥⊥b , a⊥⊥b , 0

m a⊥⊥b = 0

wherea⊥⊥b represents the remainder of the integer ratio ofa by b.
Although this representation of the distribution looks decidedly far more elaborate than the one in (10)

and as such it may seem quite useless, it happens that it will enable us to develop very well-fitting near-exact
distributions, which bear an extreme closeness to the exactdistribution ofΛ.

3. Near-exact distributions

3.1. The case of equal sample sizes

In this subsection we will address the case of equal sample sizes, which is indeed the case treated in the
previous section and referred to in Theorem 1. In the next subsection we will address the case of unequal
sample sizes, based on the approach followed for the equal sample sizes case.

The distributions ofW andΛ are quite elaborate and it is not easy to obtain a manageable form for their
exact distribution. However, the way the distribution ofW is shown in (24) in Theorem 1 enables us to obtain
very well-fitting near-exact approximations. These will beobtained by leavingΦ1(t)Φ2(t) in (24) unchanged
and approximating asymptotically the termΦ2,Wa

(t)Φ2,Wb|a
(t)Φ2,Wc|(b|a)

(t) by the c.f. of a finite mixture of
Gamma distributions, all with the same rate parameter.

This asymptotic replacement is quite easy to justify, sincefrom the results in Tricomi and Erdélyi (1951)
we may infer that anyLogbeta(a,b) distribution may be asymptotically approximated by an infinite mixture
of Γ(b+ j,a) ( j = 0,1, . . . ) distributions. As such, we may replace any sum of any numberof independent
Logbeta r.v.’s by an infinite mixture of sums of that same number of independent Gamma r.v.’s. The problem
is that these Gamma distributions coming out of the Logbeta distributions inΦ2,Wa

(t)Φ2,Wb|a
(t)Φ2,Wc|(b|a)

(t), as
may be seen from the exposition at the end of last section, do not have the same rate parameter, thus rendering
difficult the obtention of a manageable expression for the whole mixture, since then each component of this
infinite mixture would be itself an infinite mixture.

But then we may argue that a good approximation for each component of that infinite mixture would be
a Gamma distribution with a rate parameter which would be theaverage of the different rate parameters and
a shape parameter which would be the sum of the shape parameters of the different independent Gamma
distributions. Although this would indeed work quite well,there is indeed another choice for this rate
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parameter which works even much better. We will state it shortly. Another problem which is left is the
problem of computing the weights of that mixture, which, using the expressions in Tricomi and Erdélyi
(1951) may turn into a quite hard task.

A good solution for these two problems may be obtained in the following way. Let us take for near-exact
c.f. of W the c.f.

Φ∗(t) = Φ1(t)Φ2(t)
m∗∑

ν=0

πνλ
r+ν(λ − it)−(r+ν) (28)

whereλ is the common rate parameter in a mixture of two Gamma distributions which matches the first four
exact moments ofW, that is,λ is the rate parameter in

Ψ(t) = π∗λu1(λ − it)−u1 + (1− π∗)λu2(λ − it)−u2 (29)

whereπ∗, u1, u2 andλ are determined so that

∂h

∂th
Ψ(t)

∣∣∣∣∣∣
t=0

=
∂h

∂th
ΦW(t)

∣∣∣∣∣∣
t=0

for h = 1, . . . ,4 .

Then, we will take in (28)r as the sum of all the second parameters in the Beta distributions in (27), that is,

r =
m− 1

2

⌊
p+ 1

2

⌋
+

1
2

⌊q
2

⌋
+

k∑

i=1

1
2

(⌈ pi

2

⌉
− 1

)
(30)

whereq is the number of oddpi , and we will compute the weightsπν (ν = 0, . . . ,m∗ − 1) in such a way that

∂h

∂th
Φ∗(t)

∣∣∣∣∣∣
t=0

=
∂h

∂th
ΦW(t)

∣∣∣∣∣∣
t=0

for h = 1, . . . ,m∗ ,

taking thenπm∗ = 1−
∑m∗−1
ν=0 πν.

It is not hard to see that (30) yields forr values which are either integer values or one half of an odd
integer.

Using the notation in Appendix B, in caser in (30) is an integer, the near-exact c.f. in (28) yields for
W near-exact distributions which are mixtures ofm∗ + 1 GIG distributions of depth 2p− α (for α given by
(16)), with p.d.f.

m∗∑

ν=0

πν f GIG

(
w | r+1 , . . . , r

+
p︸     ︷︷     ︸

p shape
param.

, r++2 , . . . , r
++
p︸        ︷︷        ︸

p−1−α shape
param.

, r + ν ;
n− 1

n
, . . . ,

n− p
n︸               ︷︷               ︸

p rate
param.

,
n− 2/m

n
, . . . ,

n− p/m
n︸                       ︷︷                       ︸

p−1−α rate
param.

, λ

)

and c.d.f.
m∗∑

ν=0

πνF
GIG

(
w | r+1 , . . . , r

+
p , r
++
2 , . . . , r

++
p , r + ν ;

n− 1
n
, . . . ,

n− p
n
,
n− 2/m

n
, . . . ,

n− p/m
n

, λ

)
,

while if r in (30) is one half of an odd integer, the same near-exact c.f.yields forW near-exact distributions
which are mixtures ofm∗ + 1 GNIG (Generalized Near-Integer Gamma) distributions of depth 2p− α (see
Appendix B for the GNIG distribution), with p.d.f.

m∗∑

ν=0

πν f GNIG

(
w | r+1 , . . . , r

+
p , r
++
2 , . . . , r

++
p , r + ν ;

n− 1
n
, . . . ,

n− p
n
,
n− 2/m

n
, . . . ,

n− p/m
n

, λ

)
(31)
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and c.d.f.

m∗∑

ν=0

πνF
GNIG

(
w | r+1 , . . . , r

+
p , r
++
2 , . . . , r

++
p , r + ν ;

n− 1
n
, . . . ,

n− p
n
,
n− 2/m

n
, . . . ,

n− p/m
n

, λ

)
, (32)

wherer+
ℓ

(ℓ = 1, . . . , p) are given by (25) andr++
ℓ

(ℓ = 2, . . . , p; ℓ , m,2m, . . . , αm) are given by (26), with
α given by (16) andn represents the common sample size of them independent samples.

From these p.d.f.’s and c.d.f.’s is then easy to obtain the corresponding near-exact p.d.f. and c.d.f. of
Λ = e−W by simple transformation.

The numerical studies carried out in the next section show that near-exact distributions built in this way,
will display a very good performance, laying very close to the exact distribution and yielding a marked
asymptotic behavior not only for increasing sample sizes but also for increasing values ofm, k and p =∑k

i=1 pi . Their performance is in all cases much better than any available asymptotic distribution, with very
good performances even for small sample sizes.

3.2. The unequal sample sizes case

When not all the samples have the same size, with the sample from the j-th population having sizeN j

( j = 1, . . . ,m), the problem of addressing the exact distribution of either Λ or W and getting good near-exact
approximations for their distributions becomes much harder to tackle.

The problem is that in this case we cannot any more address thedistribution ofWa = − log Λa in the
same way that is done in (11). But, we may anyway write

ΦWa
(t) = Φ∗1,Wa

(t)
ΦWa

(t)

Φ∗1,Wa
(t)
,

whereΦ∗1,Wa
(t) is Φ1,Wa

(t) in (11) with n replaced byN/m, for N =
∑m

j=1 N j . Although this way to write
ΦWa

(t) may seem at first sight rather useless, it will indeed becomemuch useful. It happens that, interest-
ingly enough, when handling the different sample size case, we end up obtaining forΦWb|a

(t) andΦWc|(b|a)
(t)

expressions which are in all similar to the ones in (19) and (22), with n replaced byN/m.
This way, the exact c.f. ofW may, in this case of unequal sample sizes, be written in a similar way to the

one in (24), withn replaced byN/m in Φ1(t) andΦ2(t) andΦ2,Wa
(t) replaced byΦ∗2,Wa

(t) =
ΦWa

(t)

Φ∗1,Wa
(t) . Then,

we will once again keepΦ1(t)Φ2(t) unchanged and replaceΦ∗2,Wa
(t)Φ2,Wb|a

(t)Φ2,Wc|(b|a)
(t) by the c.f. of a finite

mixture of Gamma distributions, all with the same rate parameter,

m∗∑

ν=0

πνλ
r+ν(λ − it)−(r+ν)

as in (28), now withr equal tou1 in (29), obtaining this way a near-exact c.f. forW, in all similar to the one
in (28), withr replaced byu1 in (29). Since in generalu1 will not be an integer, this near-exact c.f. will yield
for W near-exact distributions that will correspond to mixturesof m∗+1 GNIG distributions of depth 2p−α,
with p.d.f.’s and c.d.f.’s in all similar to the ones in (31) and (32), withn replaced byN/m andr replaced by
u1.

These near-exact distributions that, by construction, will match the firstm∗ exact moments ofW, will
show, as it happened in the equal sample sizes case, very goodasymptotic behavior not only for increasing
sample sizes but also for increasing values ofp, m and evenk, although exhibiting in this unequal sample
case a lesser closeness to the exact distribution, but anyway still with much better performances than any
available asymptotic distribution.
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As we may see from the results in the next section, even betterperformances may be actually obtained,
for larger sample sizes, if also for this unequal sample sizes case, we take forr once again the value given
by (30).

4. Numerical studies

In this section we will use the measure

∆ =
1
2π

∫ +∞

−∞

∣∣∣∣∣∣
ΦW(t) − Φ∗(t)

t

∣∣∣∣∣∣ dt

whereΦW(t) is the exact c.f. ofW andΦ∗(t) represents any approximate, that is, asymptotic or near-exact,
c.f. of W, to evaluate the performance of the near-exact distributions proposed in the previous section and to
compare them with the asymptotic distribution proposed by Moschopoulos (1992).

This measure may be seen as based on the Berry-Esseen bound (Berry, 1941; Esseen , 1945; Loève,
1977, chap. VI; Hwang, 1998) and it satisfies the relations

max
w∈SW

∣∣∣FW(w) − F∗W(w)
∣∣∣ ≤ ∆ and max

z∈SΛ

∣∣∣FΛ(z) − F∗Λ(z)
∣∣∣ ≤ ∆

wherew andz represent respectively the running values of the r.v.’sW andΛ, SW andSΛ the supports of
these two r.v.’s andFW(w) andF

Λ
(z) the exact c.d.f.’s ofW andΛ, andF∗W(w) is the c.d.f. corresponding to

Φ∗(t) andF∗
Λ
(z) the corresponding c.d.f. ofΛ.

For comparison we used the asymptotic distribution in Moschopoulos (1992), which was developed for
the modified l.r.t. statistic. If we adapt it to the non-modified statistic, which we use in this paper, we obtain
an asymptotic c.f. forW which may be written as

ΦMos(t) =

(
1−

γ

(m∗∗)2

) (
m∗∗

N∗

) f /2 (
m∗∗

N∗
− it

)− f /2

+
γ

(m∗∗)2

(
m∗∗

N∗

)2+ f /2 (
m∗∗

N∗
− it

)−2− f /2

whereN∗ = N −m=
∑m

j=1(N j − 1),

f = mp
p+ 1

2
− k , m∗∗ = N∗ −m− 2 ∗ β ,

and

γ = −
2
3


m∑

j=1

p∑

ℓ=1

B3

(
β

N j−1
N∗ −

ℓ−1
2

)

((N j − 1)/N∗)2
−

k∑

i=1

B3 (βpi)

p2
i

 ,

with

B3(x) = x3 −
3
2

x2 +
x
2

and β =
1

6 f

p(2p2 + p+ 1)
m∑

j=1

1
4((N j − 1)/N∗)

−

k∑

i=1

1
pi

 .

In the sequel we denote the corresponding asymptotic distribution byMos.
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4.1. The equal sample sizes case

In this case, as we may see from Table 1, the near-exact distributions show a quite clear asymptotic
behavior for increasing values ofp =

∑k
i=1 pi , even for very small sample sizes, while the asymptotic

distribution behaves the other way around. This asymptoticbehavior is even more accentuated for the near-
exact distributions that equate more exact moments and in all cases the near-exact distributions show a much
better performance than the asymptotic distribution.

Table 1 – Values of the measure∆ for increasing values ofp (equal sample sizes case)

near-exact distributions
number of exact moments matched

p pi k m n r Mos 4 6 10

10 {5,5} 2 2 12 5 1.65×10−1 7.43×10−8 8.61×10−10 2.97×10−13

12 {5,7} 2 2 14 6 2.70×10−1 3.26×10−8 2.65×10−10 4.54×10−14

16 {7,9} 2 2 18 8 5.15×10−1 8.69×10−9 3.97×10−11 2.07×10−15

20 {9,11} 2 2 22 10 7.62×10−1 3.09×10−9 9.04×10−12 1.81×10−16

50 {21,29} 2 2 52 25 2.15×100 3.35×10−11 2.17×10−14 1.05×10−20

From Table 2 we may see how, opposite to the asymptotic distribution, the near-exact distributions also
show a quite clear asymptotic behavior for increasing values of m, once again with the near-exact distribu-
tions that equate more moments exhibiting a more marked asymptotic response and also once again with the
near-exact distribution showing in all cases a clearly better performance than the near-exact distribution.

Table 2 – Values of the measure∆ for increasing values ofm (equal sample sizes case)

near-exact distributions
number of exact moments matched

p pi k m n r Mos 4 6 10

12 {5,7} 2 2 14 6 2.70×10−1 3.26×10−8 2.65×10−10 4.54×10−14

5 14 15 5.90×10−1 2.20×10−11 7.10×10−15 1.78×10−21

7 14 21 7.57×10−1 2.08×10−12 8.97×10−17 1.31×10−23

10 14 30 9.65×10−1 1.49×10−13 4.23×10−17 9.82×10−25

Comparing the values of∆ in Table 3 with the values in Table 1 we may see how the near-exact distribu-
tions for the same overall value ofp show a more clear asymptotic behavior than the asymptotic distribution,
keeping in every case a much better performance. Actually for the larger value ofp, that is, forp = 50, the
asymptotic distribution is not any more a genuine distribution, as we may see from the value of∆, which for
genuine distributions should always be smaller than one.

Table 3 – Values of the measure∆ for increasing values ofk (equal sample sizes case)

near-exact distributions
number of exact moments matched

p pi k m n r Mos 4 6 10

10 {5,3,2} 3 2 12 9/2 1.63×10−1 5.91×10−8 6.36×10−10 1.84×10−13

12 {5,5,2} 3 2 14 11/2 2.69×10−1 2.74×10−8 2.11×10−10 3.18×10−14

16 {4,3,5,4} 4 2 18 7 5.12×10−1 6.73×10−9 2.83×10−11 1.23×10−15

20 {4,5,3,3,5} 5 2 22 19/2 7.58×10−1 2.81×10−9 7.91×10−12 1.48×10−16

50 {12,9,9,7,7,6} 6 2 52 24 2.14×100 3.21×10−11 2.00×10−14 9.21×10−21
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From Tables 4 and 5 we may observe the good asymptotic behavior of both the asymptotic as well as of
the near-exact distributions for increasing sample sizes,with the near-exact distributions displaying always
much better, that is, much lower, values of∆, namely for the smaller sample sizes.

Table 4 – Values of the measure∆ for increasing values ofn (equal sample sizes case)

near-exact distributions
number of exact moments matched

p pi k m n r Mos 4 6 10

10 {5,5} 2 2 12 5 1.65×10−1 7.43×10−8 8.61×10−10 2.97×10−13

50 5 2.40×10−3 4.88×10−11 2.52×10−14 1.39×10−20

100 5 7.08×10−5 1.16×10−12 1.42×10−16 4.14×10−24

150 5 1.90×10−4 1.38×10−13 7.36×10−18 4.03×10−26

Table 5 – Values of the measure∆ for increasing values ofn (equal sample sizes case)

near-exact distributions
number of exact moments matched

p pi k m n r Mos 4 6 10

16 {5,5,4,2} 4 5 17 19 1.40×100 1.12×10−12 8.45×10−17 6.38×10−25

50 19 1.00×10−2 1.03×10−14 2.45×10−18 2.34×10−26

100 19 7.24×10−3 2.84×10−15 6.29×10−20 2.61×10−29

150 19 5.50×10−3 5.48×10−16 4.77×10−21 3.34×10−31

As an overall observation we would point out the good asymptotic characteristics of the near-exact
distributions, concerning all the parameters in the distribution of the l.r.t. statistic being considered, with
extremely good performances even for very small sample sizes. Of course these properties being extensive
to the near-exact distributions relating to any particularcase of the test being considered.

4.2. The unequal sample sizes case

As we may see from the observation of the values in Tables 6-10, in this case the near-exact distributions
show a bit less good performance than for the case of equal sample sizes. Anyway, in all cases they still
show a much better performance than the asymptotic distribution, still with very good performances even
for the smaller sample sizes and with quite clear asymptoticbehavior for all the parameters considered.

Table 6 – Values of the measure∆ for increasing values ofp (unequal sample sizes case)

near-exact distributions
number of exact moments matched

p pi k m Nj Mos 4 6 10

10 {5,5} 2 2 {12,19} 9.47×10−2 3.89×10−4 7.25×10−5 2.70×10−6

12 {5,7} 2 2 {14,21} 1.52×10−1 3.51×10−4 6.18×10−5 2.06×10−6

16 {7,9} 2 2 {18,25} 2.97×10−1 3.03×10−4 4.91×10−5 1.52×10−6

20 {9,11} 2 2 {22,29} 4.71×10−1 2.73×10−4 4.18×10−5 1.30×10−6

50 {21,29} 2 2 {52,59} 1.76×100 1.89×10−4 2.48×10−5 8.96×10−7

14



Table 7 – Values of the measure∆ for increasing values ofm (equal sample sizes case)

near-exact distributions
number of exact moments matched

p pi k m Nj Mos 4 6 10

12 {5,7} 2 2 {14,21} 1.52×10−1 3.51×10−4 6.18×10−5 2.06×10−6

5 {14,21,28,35,42} 2.26×10−1 1.52×10−4 2.01×10−5 8.14×10−7

7 {14,21,28,35,42,49,56} 2.49×10−1 1.27×10−4 1.69×10−5 7.80×10−7

10 {14,21,28,35,42,49,46,63,70,77} 2.66×10−1 1.00×10−4 1.29×10−5 5.69×10−7

Table 8 – Values of the measure∆ for increasing values ofk (unequal sample sizes case)

near-exact distributions
number of exact moments matched

p pi k m Nj Mos 4 6 10

10 {5,3,2} 3 2 {12,19} 9.42×10−2 3.32×10−4 6.65×10−5 2.88×10−6

12 {5,5,2} 3 2 {14,21} 1.51×10−1 3.07×10−4 5.64×10−5 1.95×10−6

16 {4,3,5,4} 4 2 {18,25} 2.96×10−1 2.45×10−4 4.14×10−5 1.20×10−6

20 {4,5,3,3,5} 5 2 {22,29} 4.68×10−1 2.53×10−4 3.86×10−5 1.08×10−6

50 {12,9,9,7,7,6} 6 2 {52,59} 1.76×100 1.79×10−4 2.30×10−5 7.61×10−7

Table 9 – Values of the measure∆ for increasing values ofn (unequal sample sizes case)

near-exact distributions
number of exact moments matched

p pi k m Nj Mos 4 6 10

10 {5,5} 2 2 {12,19} 9.47×10−2 3.89×10−4 7.25×10−5 2.70×10−6

{50,60} 3.66×10−3 1.62×10−8 8.37×10−10 8.01×10−12

{100,120} 8.81×10−4 1.48×10−9 8.63×10−11 8.82×10−13

{150,170} 2.14×10−4 2.34×10−10 1.40×10−11 1.46×10−13

Table 10 – Values of the measure∆ for increasing values ofn (unequal sample sizes case)

near-exact distributions
number of exact moments matched

p pi k m Nj Mos 4 6 10

16 {5,5,4,2} 4 5 {17,24,31,38,45} 5.31×10−1 2.01×10−3 9.01×10−4 4.36×10−4

{50,55,60,65,70} 8.90×10−3 1.28×10−8 7.69×10−11 1.69×10−14

{100,110,120,130,140} 5.99×10−3 7.14×10−10 6.27×10−12 1.91×10−15

{150,170,190,210,230} 4.32×10−3 2.57×10−10 2.49×10−12 8.02×10−16

Tables 6-10 report the values of∆ for the near-exact distributions withr equal tou1 in (29). Tables 11-12
refer to near-exact distributions for which the value ofr is computed from (30). By comparing the values in
Tables 9-10 with the values in Tables 11-12 we may see how the near-exact distributions withr computed
from (30) show a much better performance than the ones withr equal tou1 in (29) for larger sample sizes,
but not for the smaller sample sizes.
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Table 11 – Values of the measure∆ for increasing values ofn, with r computed from
(30) (unequal sample sizes case)

near-exact distributions
number of exact moments matched

p pi k m Nj r 4 6 10

10 {5,5} 2 2 {12,19} 5 2.32×10−3 4.60×10−4 2.37×10−5

{50,60} 5 1.82×10−9 5.18×10−12 1.01×10−16

{100,120} 5 3.41×10−11 2.01×10−14 1.66×10−20

{150,170} 5 2.00×10−12 4.77×10−16 6.75×10−23

Table 12 – Values of the measure∆ for increasing values ofn, with r computed from (30) (unequal
sample sizes case)

near-exact distributions
number of exact moments matched

p pi k m Nj r 4 6 10

16 {5,5,4,2} 4 5 {17,24,31,38,45} 19 2.67×10−2 8.45×10−3 8.67×10−4

{50,55,60,65,70} 19 5.31×10−9 1.28×10−11 1.46×10−16

{100,110,120,130,140} 19 8.33×10−11 3.75×10−14 1.50×10−20

{150,170,190,210,230} 19 1.33×10−11 2.65×10−15 1.84×10−22

5. Conclusions

In this paper the authors have shown how by considering an adequate decomposition of the null hypoth-
esis of the overall test it becomes easy to obtain the expression for the corresponding l.r.t. statistic and its
moments. Even more important than this, this decompositioninduces a factorization of the c.f. of the nega-
tive logarithm of the l.r.t. statistic which enables us to get a different look over the exact distribution of the
test statistic, which itself then enables us to figure out a practical way to build extremely well-fitting, but yet
manageable, near-exact approximations to the exact distribution of this l.r.t. statistic. These near-exact dis-
tributions are not only much better performing than any available asymptotic distribution, namely for small
sample sizes and large numbers of variables, but also have quite good asymptotic behaviors for increasing
numbers of variables, sets of variables and samples involved.

These near-exact distributions may be readily applied to any particular case of this test (see the Introduc-
tion section of this paper for these particular cases). Namely for m= 1 we have the test in Marques and Coelho
(2011), and in this case, the results in this paper yield results quite similar to the ones in that reference, with
the small difference that in that reference the authors used the modified l.r.t. statistic.

Also, as it is remarked in the Introduction of this paper, form= 1 andk = 1 one obtains the usual
sphericity test and as such, from the near-exact distributions in Section 3, the corresponding near-exact dis-
tributions for the sphericity l.r.t. statistic. These near-exact distributions resulting as particular cases of the
ones developed in this paper, for this particular case, may be used in alternative to the ones developed in
Marques and Coelho (2008) and Coelho and Marques (2010), with some advantages, which are mainly re-
lated to the fact that opposite to the near-exact distributions developed in those references, the ones developed
in this paper may be virtually taken as far as one wants and theavailable computing power is able to handle,
in order to obtain approximations which still remaining manageable become almost indistinguishable from
the exact distribution.
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Appendix A. Independence of statistics

The independence of the three statisticsΛa,Λb|a andΛc|(b|a) in (5), underH0 in (1) is easy to establish. We
only have to note that, by Lemma 10.4.1 in (Anderson, 2003, Sec. 10.4) and the note right after expression
(13) in Section 10.4 of the same reference,Λa is independent of

A = A1 + · · · + Am =

m∑

j=1

A j .

This wayΛa is independent of bothΛb|a andΛc|(b|a) since both these statistics are built only fromA.
It remains to show thatΛb|a andΛc|(b|a) are independent. This may be easily shown by showing thatΛb|a

is independent ofAii (i = 1, . . . , k), the diagonal blocks ofA. This fact is possible to prove through what may
be seen as an extended version of Lemma 10.4.1 of (Anderson, 2003, Section 10.4) or the results in Section
8.2 of Kshirsagar (1972).

In fact we may write

Λb|a =

k−1∏

i=1

Λb|a(i) ,

where

Λb|a(i) =
|Ãi |

N/2

|Aii |
N/2|Ãi+1|

N/2
with Ãi =



Aii Ai,i+1 . . . Aik

Ai+1,i Ai+1,i+1 . . . Ai+1,k
...

...
...

...

Aki Ak,i+1 . . . Akk


,

is the l.r.t. statistic to test the null hypothesis

H0b|0a(i) :
k∧

i′=i+1

Σii ′ = 0 ,

which is the null hypothesis of independence between thei-th set of variables and the super-set formed by
joining the setsi + 1 throughk.

But then, since

|Ãi | = |Aii |
∣∣∣Ã(i+1).i

∣∣∣ =
∣∣∣Ãi+1

∣∣∣
∣∣∣Ãi.(i+1)

∣∣∣

where

Ã(i+1).i = Ãi+1 − Ãi+1,iA
−1
ii Ãi,i+1 and Ãi.(i+1) = Aii − Ãi,i+1Ã−1

i+1Ãi+1,i

with

Ãi,i+1 =
[
Ai,i+1 | · · · |Aik

]
and Ãi+1,i = Ã′i,i+1 (where the prime denotes transpose).
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so that we may write

Λb|a(i) =

∣∣∣Ã(i+1).i

∣∣∣N/2
∣∣∣Ãi+1

∣∣∣N/2
=

∣∣∣Ãi.(i+1)

∣∣∣
|Aii |

.

Then, by applying to these expressions forΛb|a(i) Lemma 10.4.1 in Anderson (2003) or the results in Section
8.2 of Kshirsagar (1972) we may see thatΛb|a(i) is independent fo bothAii andÃi+1, and as such, also indepen-
dent ofAi+1,i+1, . . . ,Akk (i = 1, . . . , k− 1). This shows that not only are the statisticsΛb|a(i) (i = 1, . . . , k− 1)
independent but also thatΛb|a is independent ofA11, . . . ,Akk.

Then, sinceΛc|(b|a) is only function ofA11, . . . ,Akk, this statistic is independent ofΛb|a.

Appendix B. The Gamma, GIG (Generalized Integer Gamma) and GNIG (Genealized Near-Integer
Gamma) distributions

We use this Appendix to establish the notation concerning the Gamma, GIG (Generalized Integer Gamma)
and GNIG (Generalized Near-Integer Gamma) distributions,used in the paper, and at the same time, to give
the expressions for the p.d.f.’s (probability density functions) and c.d.f.’s (cumulative distribution functions)
of the GIG and GNIG distributions.

We will say that the r.v.X has a Gamma distribution with rate parameterλ > 0 and shape parameter
r > 0, if its p.d.f. may be written as

fX(x) =
λr

Γ(r)
e−λx xr−1 , (x > 0)

and we will denote this fact by

X ∼ Γ(r, λ) .

Let

X j ∼ Γ(r j , λ j) j = 1, . . . , p

be p independent random variables with Gamma distributions with shape parametersr j ∈ N and rate param-
etersλ j > 0, with λ j , λ j′ , for all j , j′ ∈ {1, . . . , p}. We will say that then the r.v.

Y =
p∑

j=1

X j

has a GIG distribution of depthp, with shape parametersr j and rate parametersλ j , ( j = 1, . . . , p), and we
will denote this fact by

Y ∼ GIG(r j , λ j ; p) .

The p.d.f. and c.d.f. ofY are respectively given by (see Coelho (1998))

f GIG(y|r1, . . . , rp; λ1, . . . , λp) = K
p∑

j=1

P j(y) e−λ j y , (y > 0)
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and

FGIG(y|r1, . . . , r j ; λ1, . . . , λp) = 1− K
p∑

j=1

P∗j (y) e−λ j y , (y > 0)

where

K =
p∏

j=1

λ
r j

j , P j(y) =
r j∑

k=1

c j,k yk−1

and

P∗j (y) =
r j∑

k=1

c j,k (k− 1)!
k−1∑

i=0

yi

i! λk−i
j

with

c j,r j =
1

(r j − 1)!

p∏

i=1
i, j

(λi − λ j)
−r i , j = 1, . . . , p , (B.1)

and

c j,r j−k =
1
k

k∑

i=1

(r j − k+ i − 1)!

(r j − k− 1)!
R(i, j, p) c j,r j−(k−i) , (k = 1, . . . , r j − 1; j = 1, . . . , p) (B.2)

where

R(i, j, p) =
p∑

k=1
k, j

rk

(
λ j − λk

)−i
(i = 1, . . . , r j − 1) . (B.3)

The GNIG distribution of depthp+ 1 (see Coelho (2004)) is the distribution of the r.v.

Z = Y1 + Y2

whereY1 andY2 are independent,Y1 having a GIG distribution of depthp andY2 with a Gamma distribution
with a non-integer shape parameterr and a rate parameterλ , λ j ( j = 1, . . . , p). The p.d.f. ofZ is given by

f GNIG(z|r1, . . . , rp, r; λ1, . . . , λp, λ) =

Kλr
p∑

j=1

e−λ jz
r j∑

k=1

{
c j,k

Γ(k)
Γ(k+ r)

zk+r−1
1F1(r, k+ r,−(λ − λ j)z)

}
, (z> 0)

and the c.d.f. given by

FGNIG(z|r1, . . . , rp, r; λ1, . . . , λp, λ) =
λr zr

Γ(r + 1)1F1(r, r + 1,−λz)

−Kλr
p∑

j=1

e−λ jz
r j∑

k=1

c∗j,k

k−1∑

i=0

zr+iλi
j

Γ(r + 1+ i) 1F1(r, r + 1+ i,−(λ − λ j)z) (z> 0)
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where

c∗j,k =
c j,k

λk
j

Γ(k)

with c j,k given by (B.1)–(B.3) above. In the above expressions1F1(a,b; z) is the Kummer confluent hy-
pergeometric function. This function has usually very goodconvergence properties and is nowadays easily
handled by a number of software packages.
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