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Abstract

In this paper the authors show how by adequately decompadegull hypothesis of the multi-sample
block sphericity test it is possible to easily obtain the reggion for its likelihood ratio test statistic as
well as a diferent look over the exact distribution of this statistic. isTHifferent view will enable the
construction of very well-performing near-exact approxiions for the distribution of this test statistic,
whose exact distribution is quite elaborate and non-maatzlge The near-exact distributions obtained are
quite manageable and perform much better than the avadaphaptotic distributions, even for small sample
sizes, and they show a good asymptotic behavior not onlynéweasing sample sizes as well as for increasing
number of variables aror samples involved.

Keywords: mixtures, Generalized Integer Gamma distribution, Gdizexd Near-Integer Gamma
distribution.

1. Introduction

The multi-sample block-scalar sphericity test, heredaft@ply designated by multi-sample block spheric-
ity test, is a test which null hypothesis may be written as

Ho: = =Zp=diag(As,...,A), with  Aj=c?l,, (i=1...,K), (1)

whereo? (i = 1,..., k) is non-specified.
This test is an interesting and useful generalization ofstaadard sphericity test and is of interest in
several studies and statistical applications where we tteealry out a bus test, to test:

— if a set ofm multivariate normal or elliptically contoured populat®all have the same variance-
covariance matrix,

— if this matrix has a block-diagonal structure, that ishé bverall set of variables is indeed formed by
a given number of independent sub-sets of variables, and

— ifin each of these sets all variables are independent areltha same variance.
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The multi-sample block sphericity test plays a key role gig®f homocedasticity in multivariate analysis
and repeated measures designs, where the validity of $etleea tests rest on the assumption of sphericity.
His role is the equivalent to the one that the multi-sampleesigity test has in univariate analysis.

The multi-sample block sphericity test has as particulaesa number of other interesting tests, namely:

— form= 1, the one-sample block sphericity tébly: < = diag(c?lp. i = 1.....k))
— fork = 1, the multi-sample sphericity te(Sﬂoz Y=...5n= azlp)
— form= 1 andk = 1, the usual sphericity teftlo: < = 1)

— forallp,=1(=1,...,K), the multi-sample independence t@ﬂb: Y1=...Zn= diag(o-J?,

j=1....K)
— form=1andallpj=1(=1,...,k), the usual (one-sample) independence(ﬂdst Y= diag(af,
j=1....K).
MS-BSph
21y, 0
m=1 H0:21:...:2m:|: o dilpk
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Figure 1 — The multi-sample block sphericity test and itgipalar casesM S-BSph - multi-sample block
sphericity,0S-BSph - one-sample block sphericit§OS)-Sph - (one-sample) sphericity®S)-1nd
(one-sample) independendé S-Ind multi-sample independendil, S-Sph - multi-sample sphericity.

In this paper we will show how, following Coelho and Margug8@9), by using a suitable decomposi-
tion of the test null hypothesis into a set of nested, cooilly independent, hypotheses, we will be able to
induce a much useful factorization of the characteristicfion of the negative logarithm of the associated
likelihood ratio test (l.r.t.) statistic, which may be used

— to easily find the structure of the exact distribution o§thiiatistic, and

— to develop extremely sharp and well-performing near-eapproximations to the exact distribution
of the L.r.t. statistic.



These near-exact distributions are asymptotic distimstbuilt using a dierent concept of approxima-
tion:

— starting with an adequate factorization of the c.f. of thgative logarithm of the l.r.t. statistic,

— the major part of it is left unchanged, while the remainingaBer part is asymptotically approximated,
in such a way that

— the product of the two resulting terms yields a known maabgedistribution.

These distributions besides being asymptotic for increpsample sizes, are also asymptotic for increas-
ing number of variables or sets of variables, and increasimgber of populations involved, as it is shown
by the results of the numerical studies carried out in Seio

Other characteristics of these near-exact distributioas a

— they lie very close to the exact distribution and they mabghconstruction, some of the first exact
moments;

— they perform very well even for very small sample sizes;

— they are far more manageable than the exact distributiotigige quite easy to implement computa-
tionally, allowing for the easy computation of near-exagautiles andgp-values, which being so close
to the exact ones, may, in practice, be used instead of tatee dnes.

2. A decomposition of the null hypothesis which induces an adequate factorization of the character-
istic function of the logarithm of the likelihood ratio test statistic and the exact distribution of the
likelihood ratio test statistic totest Hq in ()

The null hypothesis of the multi-sample block sphericitstia (1) may be written as

Ho = Hogobjoa) ® Honjoa ° Hoa »

where
is the null hypothesis to test the equalitymftovariance matrices, with = Zik:l p; and
i X2 oo Xk
X1 X vt Xk
2 = . . . . ]
ik Tk o Zkk
Hopoa © Zij =0 fori#j (i,je{l,....k}) 3)
assuming; = -+ = Xn(= %),

is the null hypothesis to test the independenclke grfoups of r.v.’s, and

Hocoboa) @ Zii = 021y . i = 1,...,k (kindependent sphericity tests) (4)
assumingzj =0 fori#j (i,je(l,...,k})

is the null hypothesis to test the sphericity of theovariance matrices; (i = 1,...,K).



Now, let us suppose that we want to test the null hypothdgis (I), based om independent samples,
one from each of then populationsz(Ej, %)) (j = 1,...,m). LetN;j be the size of the sample from tleh

population and leN = X", N;. Let alsoA; be the maximum likelihood estimator &f andA = YT, A;.
Then the L.r.t. statistic to teto, is

m
NP2 I:[1|A]-|Nj/2
MR NYE ]_IAIN/2 ’
LN
while the L.r.t. statistic to tedtlgpoa IS
A2
Ab|a = K A N2
Hi=1|Aii| /

whereA; is thei-th (i = 1,..., k) diagonal block ofA, and the l.r.t. statistic used to tésgcopoa) IS

IAiNZ N2
A .
ol(bla) = [ I (tr Aperz P
Let thenA be the L.r.t. statistic used to tadg in (T). We have (see Lemma 10.3.1in Andefdon (2003))

k N2 T IALN/2
[pNPY2 AN
L =
A= Aa Abla Ac\(b\a) = ! 1m s (5)
NPNi72 K Np/2
j_Hl i l_[l(trAii) n/
- i

and, given the independence, undity in (D) of the Lr.t. statistics to tedtlpa, Honoa and Hogoboa) (S€€
Appendix A),

E(A") = E(AL)E(Af) E (M) -
whereE (A}), E(Af},) andE (A%} ,,)) may be obtained from_(Andergdn, 2003, Chap. 9,10) or (Maidhe

2005, Chap. 8,11). However, the final expression obtainédisrway forE (A") is not quite useful in order
to better understand and work through the fine details ofitalglition of A. We rather need a more indirect
approach.

Let thenW = —log A and also

— |Og Aa, Wb\a = - |Og Ab|a and Wcl(bla) = - |Og Ac\(b\a) .
Then we have

Dy (1)

E (étw) -E (e—it(Wa+Wb\a+Wc\(b\a))) -E (eitWa) E (eith\a) E (eith\(b\a))
Dy, (1) x Dy, (1) x Dy (OB

Where forNj =n(j = ,m), p=3k, pandg = pii+-+ p(=1,...,k-1), cp (t) ®,, (1) and
Dy e (1), after some algebra|c manipulation may be written asl_(,SiEJ,Ma_s_e_t_dl

(6)

(7)

! n-1
=1 j=

P m p(nzd _ =1 Yozt _onjt
(DWa(t):nHrEZ :m+-m) (2 nZ)



k-1 pi F anH)r(n"Fq' —m‘it)

_ 2 2
Dy, (1) = ]_1[ H (2T (e ) (8)
and
e e -
e == ey Y

These expressions show that the exact distribution @6 indeed the same as the distribution of the
product ofp(m+ 2) — px — k — 1 independent Beta r.v.'s, raised to the powgt, since from[(B), and{7]-[9)
above we may write

p m " k-1 pi 2 ko n/2
w0y (T {1 w
(=1 j=1 i=1 ¢=1 =1 (=2

except fort=j=1

where? is to be read 'is stochastically equivalent to’ and

[~ n-¢ j-1 e -1 - nm-g;—¢ ﬂ) o a(nm—/ 1 _1)
Beta( AT+ L 2m) Yie Beta( 7 72 Y, ~ Beta 5=, 55+ 55) .
=1,...,p; j=1,...m i=1,...k=1;(=1.....p; i=1,...k (=2,....p;

(except for=j=1)

However, another more useful way to look at the exact digtidn of A may be obtained from the fact
that, after some rather long manipulations, we may write, fo

_J 0 if peven
plz_{l if podd,

D, () as (see Marques etldl. (2011) and Coelho and Marques|(2011))

- [ 4

D\, (t)

2 . Cypu2 (A1)
pred m T(ay + bej) T(ar + by; — nit) T(ap + bpj) (ap + by, — 3it)
8 1 U I'(a, + b;j)l“(ag + bgj — nit) l_[ l"(ap + bpj)l“(ap + bpj - ’—Z‘it)
Dy, (1)
where
a=n-2¢, bgj=2€—1+]_rn2€, b;szbng, (12)
n-p pm-m-p+2j-1 ;



r_, t=2,...,p

rp = except fort = p - 2a1, (14)
My + (P 2)(e2 - @) (M- B2 + m[ 2 ) {=p-2a1,
with
Ye t=1...,a+1,
. m(|2-1% C=a+2,...,mn(p-2a,p-1),
fe= (18]-12) and£:2+p—2al,...,21[§J—1, by steps of 2 (15)
m(| &% |- [5]) t=1+p-2ay,...,p-1, by steps of 2
and
S
where, fort = 1,...,a,
w:EJ(({’—l)m-z((mu)L2)EJ)+gHm+ZJLZJ (17)
and
p m\2 p| |e+1 p| alLl2 o®> ,m
Va”:‘(bJ‘“bJ)*m(H‘T)“m“)(“[ﬂ* 2 _Z_“[EJ)’ (18)

which shows thaiV, has the distribution of the sum of a r.v. with a GIG (Genertdiinteger Gamma)
distribution of depthp — 1, with an independent sum afn(- 1) p%lJ independent Logbeta r.v.'s, some of
them multiplied byn and the other multiplied bgi/2. Note that in each product inin d)z,wa(t) the Logbeta
distribution vanishes for one of the values pf The GIG distribution is the distribution of the sum of
independent Gamma r.v’s with integer shape parametensdefails se¢ Appendix |B and Coeltio (1998,
1999).
We may also write (see Marques et al. (2011)land Coelho (2004)

P AN -5 nm-1 pmel 1 nmi N\
oIS

i3\ " : It - 3)r (Mg - oit)

(Dleb\a ® ‘Dz_wb‘a(t)

wherek* = | §|, with g denoting the number of odd’s, and where

_ h[_2+(—1)[ k* = 3,4
S[_{SZZ"‘h(z =5,...,p (20)
with
hy=@#ofp(i=1....K>0-1, ¢=1,...,p-2, (21)

which shows that the distribution ¥y, is the same as that of the sum a r.v. with a GIG distributiorepftd
p — 2, with an independent sum &f independent and identically distributed Logbeta r.v.’dtiplied by
nmy2.



And yet

k pi n_n% Zrj n_n% . —Zj
e = {105 (55

LWei(bla)
< (TR r(e o) (o T 2)r(z-wg)| )
W ey el L e - o
cDZWc\(b\a) ®
wherek’ = |p;/2]| and
zg,iz{p‘_Tm L f=2...p.i=1.. kK, 23)

which shows that the distribution &y is the same as that of the sum a r.v. with a GIG distribution of
depthp - k, with an independent sum @f— k independent Logbeta r.v.’s, multiplied loyr/2.

As such, it will be possible to express the distribution/@fas that of the sum of a GIG distributed r.v.
with an independent sum of independently distributed Ltabe.'s. This actually amounts to being able to
write the c.f. ofW = —log A as in the following Theorem.

Theorem 1. The c.f. of W= —log A, whereA is the I.r.t. statistic in(5), may be written as

p r —rt P A ¢ -t
n-¢\cfn-¢ .\ ¢ n- n-- .
o, (1) = —_— — =it -1t
e I I C VA
+mz2m,....a

,(t) e (24)

D,(t)

x D, (1) (Dz,wb‘a(t) CDZ’Wch‘a) (OR

where®,,, (t), (Dz,wbla(t) and D) (t) are given respectively i), (I9) and (22), and where m is the
same as ifll), a = [p;lj

q
It t=1
ry =13 re+r's (=2,...,«a (25)
re l=a+1,...,p
and
++ Zg* 5:2
r; :{ . (26)
Z'+s £=3,....p

with r, and s respectively given bfd)-(@8) and (Z0)-(21) and with

7 { Zrzlzg,i t=2,..., Pmax
(, =
0 {=Pmax+L...,p



where

, Z) E=2,...,p
‘e 0 E=p+1..., Pmax

for pmax= max{ps, ..., p} and z; given by@3).
Proor. We only have to writeb,, (t) as

Dy (t) = Dy (1) Dy, (1) x q)l,Wma(t) CDZ’Wb‘a(’[) X q)l,Wc\(ma) (t) q)Zqu(b\a) (t)

Dy (t) cDWb\a (t) lDWc\(m o (t)
= O W, t) (Dl,Wua o RN t) x CDz,Wa ®) @2’Wb‘a(t) ®2ch|(b\a) t)
c.f. of a GIG distribution c.f. of a sum of indep. Logbetar.v.'s

an then group together the rate parameter@liﬂ,a(t) d)l,wb‘a(t) Q)l,wc‘(ma) (t) and adequately add the corre-
sponding shape parameters, in order to yieldt)®,(t), which is the c.f. of a GIG distribution of depth
2p-1-ca.O

It is interesting to note that il (24):
— when all or all but one of thgi’s (i = 1,...,Kk) are even, theﬂ)zwbla vanishes, or equals 1, and

— whenallp; (i =1,...,k) equal 2,(1)2,Wc‘(ma) vanishes.

Also, from [24) we may see that the exact distributiomoih (§) is the same as the distribution of the
product of the exponential of the negative gf 21 — « independent Gamma r.v.'s, times the product of
(m-1) {p%lj + [gJ + p-kindependent Beta r.v.’s raised to some powers (whésehe number of odg’s).
More precisely, from[{24) we may write

e f{ 1o} 11 o= {0} 7 00} o

=1 j=1 j=1 j=1

{#m,....am
k Pi-k k pi
kok nm/z kkok sk nrn/z
{ﬂ (%) }{ﬂ [T () }
i i=1 (=p-k+1
where all the r.v's involved are independent and whgrepresents the number of ogd k' = [%J

zg~r(r;,n—;€) t=1....p

n—-¢/m
Z;~F(r;+, /

) (=2,....,p; L+m2m,...,am

and



Y;j ~ Beta(a, + by, by - bj;)  £=1....1p/2); j=1....m(j % 201"m)

. . . . . +1

- nm-2 1 o

Yj ~ Beta(T, 5) ji=1,...,19/2] 27)
2 Pi

e nm¢é{-1 1 . )

Yi; ~Beta(7,T—§) i=1....k (=p—-Lp/21+1,....p,

whereq is the number of odgh, r} andr}* are given by[(26) and(26), arad, byj, a, andby; are given by
[@2)-(I3) and where

alb, aitb#0
alL*b =
m alb=0

whereall b represents the remainder of the integer ratia by b.

Although this representation of the distribution looksidedly far more elaborate than the one[inl(10)
and as such it may seem quite useless, it happens that inalile us to develop very well-fitting near-exact
distributions, which bear an extreme closeness to the elsicibution ofA.

3. Near-exact distributions

3.1. The case of equal sample sizes

In this subsection we will address the case of equal sampés,sivhich is indeed the case treated in the
previous section and referred to in Theorem 1. In the nextesttibn we will address the case of unequal
sample sizes, based on the approach followed for the equglssizes case.

The distributions ofV andA are quite elaborate and it is not easy to obtain a manageatdofefér their
exact distribution. However, the way the distributiondis shown in[(24) in Theorem 1 enables us to obtain
very well-fitting near-exact approximations. These willdigained by leaving, (t)®,(t) in (24) unchanged
and approximating asymptotically the tem},wa(t) <D2,Wb|a(t) Dy, (t) by the c.f. of a finite mixture of
Gamma distributions, all with the same rate parameter.

This asymptotic replacement is quite easy to justify, sinee the results in Tricomi and Eédyi (1951)
we may infer that any.ogbetda, b) distribution may be asymptotically approximated by amiié mixture
of '(b+ j,a) (j =0,1,...) distributions. As such, we may replace any sum of any nuraberdependent
Logbeta r.v.’s by an infinite mixture of sums of that same nandj independent Gammar.v.’s. The problem
is that these Gamma distributions coming out of the Logbistailodutions incDZyWa(t) q)z,wma(t) cDZqu(b‘a) 1), as
may be seen from the exposition at the end of last sectionptloave the same rate parameter, thus rendering
difficult the obtention of a manageable expression for the whottune, since then each component of this
infinite mixture would be itself an infinite mixture.

But then we may argue that a good approximation for each capmg®f that infinite mixture would be
a Gamma distribution with a rate parameter which would beattezage of the dierent rate parameters and
a shape parameter which would be the sum of the shape paramétbe diferent independent Gamma
distributions. Although this would indeed work quite wetlere is indeed another choice for this rate

I(bla)




parameter which works even much better. We will state it tyhoAnother problem which is left is the
problem of computing the weights of that mixture, which,ngsthe expressions in_Tricomi and il
d@) may turn into a quite hard task.

A good solution for these two problems may be obtained indlewing way. Let us take for near-exact
c.f. of Wthe c.f.

m"

D* (1) = D, (t)D,(t) Z A (= it) ) (28)
whereJ is the common rate parameter in a mixture of two Gamma digtdbs which matches the first four
exact moments diV, that is, 1 is the rate parameter in

P(t) = A A (A - i)™ + (1 - 7%)A2( —it)™? (29)

wherer*, u;, u, andA are determined so that

ah
5 for h=1,...,4.
t=0 a t=0
Then, we will take in[(ZB) as the sum of all the second parameters in the Beta distitmitin [2T), that is,

ah
SO = 2500

k

S

- m-1
T2

p+1

whereq is the number of odg;, and we will compute the weighis, (v = 0,...,m" — 1) in such a way that
" "

%cb*(t) = 5 for h=1,...,m
t=0

=5 Pw(®)

t=0

taking thenmr, = 1 — ZV 0 in,.

It is not hard to see thalf (BO) yields forvalues which are either integer values or one half of an odd
integer.

Using the notation i Appendix |B, in casen (30) is an integer, the near-exact c.f. [n](28) yields for
W near-exact distributions which are mixturesngf+ 1 GIG distributions of depth2— « (for a given by

@8)), with p.d.f.

n-1 n-p n-2/m n-p/m
vafG'Gle,... Fos To s sl TV p, P , A
< n n n n
p shape p-1-a shape prate p-1-a rate
param. param. param. param.
and c.d.f.
n-1 n-p n-2/m n-p/m
ZnVFG'G WITT, oo Mgl g 4y, p’ / P/ , 4],
n n n n

while if r in (30) is one half of an odd integer, the same near-exacyielfls forW near-exact distributions
which are mixtures ofm* + 1 GNIG (Generalized Near-Integer Gamma) distributionseytd 2o — o (see
Appendix B for the GNIG distribution), with p.d.f.

n-1 n-p n-2/m n—p/m’/l) (31)

m N w s, otk ity ,
Z I fp 12 P n n n n

10



and c.d.f.

-
n-1 n-p n-2/m n-p/m

ZnVFGN'G w|r{,...,rg,r§*,...,r;*,r+v; p, / P/ ,

ord n n n n

/l) . (32

wherer; (¢ =1,..., p) are given by[(Zb) and;* (£ =2,...,p;¢ # m,2m,...,am) are given by[(Z6), with
a given by [16) andh represents the common sample size ofittiadependent samples.

From these p.d.f’s and c.d.f’s is then easy to obtain threesponding near-exact p.d.f. and c.d.f. of
A = e by simple transformation.

The numerical studies carried out in the next section shaivrtbar-exact distributions built in this way,
will display a very good performance, laying very close te thxact distribution and yielding a marked
asymptotic behavior not only for increasing sample sizesalso for increasing values of, k andp =

ik=1 pi. Their performance is in all cases much better than anyahlailasymptotic distribution, with very
good performances even for small sample sizes.

3.2. The unequal sample sizes case

When not all the samples have the same size, with the samptetfr®j-th population having siz&;
(j =1,...,m), the problem of addressing the exact distribution of either W and getting good near-exact
approximations for their distributions becomes much haialéackle.

The problem is that in this case we cannot any more addresdigtrédbution of W, = —log A4 in the
same way that is done ib{{L1). But, we may anyway write

Dy, (1)
D7y, (1)

where®i, (t) is @, (t) in (@X3) with n replaced byN/m, for N = Z’j“:l N;. Although this way to write
D, (t) may seem at first sight rather useless, it will indeed becomeh useful. It happens that, interest-
ingly enough, when handling theftBrent sample size case, we end up obtainingIJ(gbL(t) anchWc‘(bIa) ®)
expressions which are in all similar to the oned1n (19) &@), (@ith n replaced byN/m.

This way, the exact c.f. dV may, in this case of unequal sample sizes, be written in dasimay to the
one in [23), withn replaced byN/min @,(t) and®,(t) and®,,, (t) replaced byd;, (t) = ;WTE‘%. Then,
we will once again keep, (t)@,(t) unchanged and repladg’wa(t) (Dz,vvb‘a(t) q)z,wc‘(b‘a) (t) by the c.f. of afinite

mixture of Gamma distributions, all with the same rate patam

Dy, (t) = @7, (1)

m
Z ﬂv/lr+v(/1 _ it)—(r+v)
v=0

as in [2Z8), now withr equal tou; in (Z9), obtaining this way a near-exact c.f. & in all similar to the one
in (28), withr replaced by, in (29). Since in general; will not be an integer, this near-exact c.f. will yield
for W near-exact distributions that will correspond to mixtusés* + 1 GNIG distributions of depth2- a,
with p.d.f’s and c.d.f’s in all similar to the ones [ {31)ch(32), withn replaced byN/mandr replaced by
Uj.

These near-exact distributions that, by constructionl, métch the firstm* exact moments oV, will
show, as it happened in the equal sample sizes case, veryaggottotic behavior not only for increasing
sample sizes but also for increasing valuep,of and everk, although exhibiting in this unequal sample
case a lesser closeness to the exact distribution, but gnstillawith much better performances than any
available asymptotic distribution.
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As we may see from the results in the next section, even h@ttéormances may be actually obtained,
for larger sample sizes, if also for this unequal samplessizse, we take faronce again the value given

by (30).

4. Numerical studies

In this section we will use the measure
1 to |, (t) — O*(t
AL f w(® ® dt
21 J_

where®,, (t) is the exact c.f. oV and®*(t) represents any approximate, that is, asymptotic or nezote
c.f. of W, to evaluate the performance of the near-exact distribatgwoposed in the previous section and to
compare them with the asymptotic distribution proposed msshopouldd (1992)

This measure may be seen as based on the Berry-Esseen bmm}i[ﬂ&lli Esseer, 1945; ke,
11977, chap. VI; Hwand, 1998) and it satisfies the relations

- F < - F3 <
vragg\zqFW(w) FoW)| <A and zrpsilﬂFA(z) Fa@|<A

wherew andz represent respectively the running values of the M/andA, Sw andS, the supports of
these two r.v's and,, (w) andF , (2) the exact c.d.f’'s ofV andA, andFj,(w) is the c.d.f. corresponding to
®(t) andF} (2) the corresponding c.d.f. of.

For comparison we used the asymptotic distribution in Mogalulos [(1992), which was developed for
the modified l.r.t. statistic. If we adapt it to the non-moafifistatistic, which we use in this paper, we obtain
an asymptotic c.f. fovW which may be written as

o (t) _(1- vy me f/2 me it —f/2+ y m* 2+f/2 mi i —2-f/2
Mos\*/ = (m**)z N* N* (m**)z N* N*

whereN* = N -m= 37,(N; - 1),

f=mpT—k, m*=N"-m-2=x8,
and
yz_g[iiBs(“‘N—Zl—%)_iss(/ipi)],
L (N-LNY & p
with

o3l T RETET) Y B o
B =’ - 5x‘+ 3 and ﬁ—ef(p(zp+p+1);4(<N;—1)/N*) 2]

i=1

In the sequel we denote the corresponding asymptotic lolisiton by Mos
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4.1. The equal sample sizes case

In this case, as we may see from Table 1, the near-exactbditms show a quite clear asymptotic
behavior for increasing values @ = z:;l pi, even for very small sample sizes, while the asymptotic
distribution behaves the other way around. This asympbaiwavior is even more accentuated for the near-
exact distributions that equate more exact moments antiéases the near-exact distributions show a much
better performance than the asymptotic distribution.

Table 1 — Values of the measufefor increasing values g (equal sample sizes case)

near-exact distributions
number of exact moments matched

p B k m n r Mos 4 6 10

10 {55 2 2 12 5 165<10°1 743108 861x10°10 2971013
12 (57 2 2 14 6 270x101 326x108 2651010 4541014
16 (7,9 2 2 18 8 515101 86%10° 39%101 20710715
20  {9,11 2 2 22 10 76210 30910° 9.04<1012 1.81x10716
50 {2129 2 2 52 25 25100 335101 217%10% 1.05¢102°

From Table 2 we may see how, opposite to the asymptotic lligioin, the near-exact distributions also
show a quite clear asymptotic behavior for increasing \sahfen, once again with the near-exact distribu-
tions that equate more moments exhibiting a more marked gtefimresponse and also once again with the
near-exact distribution showing in all cases a clearlydvgterformance than the near-exact distribution.

Table 2 — Values of the measu#efor increasing values ah (equal sample sizes case)

near-exact distributions
number of exact moments matched
p B k m n r Mos 4 6 10

2 14 6 270101 326x108  265<10°10 4.54x1014
5 14 15 590x101 220<101  7.10<10% 178102
7
0

14 21 757101 2081012 89710  1.31x102
14 30 9651071 1491018 423101 9821025

Comparing the values @f in Table 3 with the values in Table 1 we may see how the neartelstribu-
tions for the same overall value pfshow a more clear asymptotic behavior than the asymptatidlolition,
keeping in every case a much better performance. Actuallthiolarger value o, that is, forp = 50, the
asymptotic distribution is not any more a genuine distidoutas we may see from the value/fwhich for
genuine distributions should always be smaller than one.

Table 3 — Values of the measufifor increasing values d€ (equal sample sizes case)

near-exact distributions
number of exact moments matched

p o] k m n r Mos 4 6 10

10 (53,2 3 2 12 92 16310! 591«10% 6.36x1010 184x10713
12 {55,2 3 2 14 112 26%101 27410°% 2111010 3181014
16 {4,354 4 2 18 7 51210 6.73«10° 283101 1231071
20 {45335 5 2 22 192 758101 281«10° 7.91x1012 148<10716
50 {12,99,776 6 2 52 24 21410° 321101 200<10% 921102
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From Tables 4 and 5 we may observe the good asymptotic betaihoth the asymptotic as well as of
the near-exact distributions for increasing sample sizéh, the near-exact distributions displaying always
much better, that is, much lower, values/gfnamely for the smaller sample sizes.

Table 4 — Values of the measufiefor increasing values af (equal sample sizes case)

near-exact distributions
number of exact moments matched

p p k m n r Mos 4 6 10

10 (55 2 2 12 5 165101 743108 861x10°10 29710713
50 5 240x10°% 488101 2521014 1391020
100 5 70810°° 1.16¢10°12 1421016 414102
150 5 190x10%4 1.3810°13 7.36x<1018 4.03<10°26

Table 5 — Values of the measutifor increasing values af (equal sample sizes case)

near-exact distributions
number of exact moments matched
p B k m n r Mos 4 6 10

16 (5543 4 5 17 19 140«10° 1121012 8451017 638102
50 19 100x102 1.03«10'* 245:10°18 2341026
100 19 724x10°  2.84x101° 6291020 261x102°
150 19 550x10°3 5481016 4771021 334x10°3!

As an overall observation we would point out the good asytipttharacteristics of the near-exact
distributions, concerning all the parameters in the distion of the L.r.t. statistic being considered, with
extremely good performances even for very small samples si2é course these properties being extensive
to the near-exact distributions relating to any particakse of the test being considered.

4.2. The unequal sample sizes case

As we may see from the observation of the values in Tables @i1Bis case the near-exact distributions
show a bit less good performance than for the case of equallsasizes. Anyway, in all cases they still
show a much better performance than the asymptotic disivipustill with very good performances even
for the smaller sample sizes and with quite clear asympbati@avior for all the parameters considered.

Table 6 — Values of the measutefor increasing values gb (unequal sample sizes case)

near-exact distributions
number of exact moments matched

p o] k m N; Mos 4 6 10

10 (5,5 2 2 {12,19 947102 389%10* 7.25<10° 2.70x10°
12 {57 2 2 {1423 15210 351x10% 6.18<10° 2.06x10°
16 (7.9 2 2 {1823 297101 3.03«10* 4.91x10° 15210°
20 {9,113 2 2 {2229 471101 27310% 41810° 130«10°
50 {21,29 2 2 {52559 176<10° 18%10“4 24810° 8.96x10"
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Table 7 — Values of the measutfor increasing values ah (equal sample sizes case)

near-exact distributions
number of exact moments matched

p 8] k m N; Mos 4 6 10

12 (577 2 2 ({1423 152«101  351x10% 6.1810° 206x10°°
5 {14,21,28,35,4p 2.26x101  15210% 201x10° 814x1077
7 {14,21,28,35,42,49,56 249%101  12710% 169%10° 7.80x<1077
10 {14,21,28,35,42,49,46,63,70)77 2.66<x10°1 1.00x10% 1.29%10°° 56951077

Table 8 — Values of the measusefor increasing values & (unequal sample sizes case)

near-exact distributions
number of exact moments matched

p o] k m N; Mos 4 6 10

10 {5,3,2 3 2 (12,19 942102 33%10% 6.65<10° 2.88<10°°
12 {552 3 2 {1423 151x10' 30710* 564x10° 195107
16 {4,354 4 2 (1825 296x101 245:10* 4.14x10° 1.20x10°°
20 {453,353 5 2 {2229 46810! 253:10% 3.86x10° 1.08x10°°
50 {12,99,7,76 6 2 {5259 1.76<10°  179%10* 230x10° 7.61x1077

Table 9 — Values of the measufiefor increasing values af (unequal sample sizes case)

near-exact distributions
number of exact moments matched
p o] k m N; Mos 4 6 10

10 (55 2 2 {12,19 947x1072 38%10%  7.25¢10°  270<10°°
{50,60 3.66x10% 162108 8371010 8.01x10712
{100,120 881x104 148<10° 863101 8821013
{150,170  2.14x10% 2.34x10°10 1401011 1.46¢10713

Table 10 — Values of the measukdor increasing values af (unequal sample sizes case)

near-exact distributions
number of exact moments matched
p o] k m N Mos 4 6 10

16 (5543 4 5 ({17,24,31,38,4p 531x101  201x103%  9.01x10%  4.36<10*
{50,55,60,65,7D 890x10% 1.28«108 769101 16910
{100,110,120,130,140 599103 7.14x1010 6271012 1.91«10°15
{150,170,190,210,230 4.3210° 2571010 249:1012 80210716

Tables 6-10 report the values &ffor the near-exact distributions withequal tou; in (29). Tables 11-12
refer to near-exact distributions for which the value & computed from{30). By comparing the values in
Tables 9-10 with the values in Tables 11-12 we may see howdheeaxact distributions with computed
from (30) show a much better performance than the onesmeétiual tou, in (29) for larger sample sizes,
but not for the smaller sample sizes.
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Table 11 — Values of the measukdor increasing values af, with r computed from
(30) (unequal sample sizes case)

near-exact distributions
number of exact moments matched

P p k m N r 4 6 10
10 {55 2 2 {1219 5 23210°% 460104  2.37x10°
{50,6Q 5 182109 5181012 1.01x1016
{100,120 5 341x101 201x104 16641020
{150,170 5 200x1012 47710716 675¢10%3

Table 12 — Values of the measukéor increasing values of, with r computed from[{30) (unequal
sample sizes case)

near-exact distributions
number of exact moments matched

p o] k m N; r 4 6 10
16 (5543 4 5 ({17,24,31,38,4p 19 267x102  845<10°%  867x10*

100,110,120,130,140 19 833«1011 375¢10°* 150102

{
{50,55,60,65,7D 19 531x10° 128101  1.46¢10716
{
{150,170,190,210,230 19 13310 265<1015 1.84x10%2

5. Conclusions

In this paper the authors have shown how by considering aquatie decomposition of the null hypoth-
esis of the overall test it becomes easy to obtain the express the corresponding l.r.t. statistic and its
moments. Even more important than this, this decompositidaces a factorization of the c.f. of the nega-
tive logarithm of the |.r.t. statistic which enables us ta geliferent look over the exact distribution of the
test statistic, which itself then enables us to figure outatral way to build extremely well-fitting, but yet
manageable, near-exact approximations to the exacthiisitvn of this L.r.t. statistic. These near-exact dis-
tributions are not only much better performing than anylaée asymptotic distribution, namely for small
sample sizes and large numbers of variables, but also hateegpod asymptotic behaviors for increasing
numbers of variables, sets of variables and samples indolve

These near-exact distributions may be readily appliedygarticular case of this test (see the Introduc-
tion section of this paper for these particular cases). Nafoem = 1 we have the test in Marques and Co=lho
M), and in this case, the results in this paper yieldt®guite similar to the ones in that reference, with
the small dfference that in that reference the authors used the modifiedtatistic.

Also, as it is remarked in the Introduction of this paper, foe 1 andk = 1 one obtains the usual
sphericity test and as such, from the near-exact distdbatin Section 3, the corresponding near-exact dis-
tributions for the sphericity .r.t. statistic. These neaact distributions resulting as particular cases of the
ones developed in this paper, for this particular case, neayded in alternative to the ones developed in
Marques and Coelho (2008) and Coelho and Marques (2010),seine advantages, which are mainly re-
lated to the fact that opposite to the near-exact distidnstdeveloped in those references, the ones developed
in this paper may be virtually taken as far as one wants andvhigable computing power is able to handle,
in order to obtain approximations which still remaining ragaable become almost indistinguishable from
the exact distribution.
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Appendix A. Independence of statistics

The independence of the three statistigSApa andA ¢ in (B), underHy in (@) is easy to establish. We
only have to note that, by Lemma 10.4.1lin (Andel 008, Be4) and the note right after expression
(13) in Section 10.4 of the same referengg,is independent of

m
A=A1+---+Am:ZA,~.
=1

This wayA, is independent of bothy, andA¢pa) since both these statistics are built only frém

It remains to show thakp, andAq s are independent. This may be easily shown by showing/Ahat
is independent ofy; (i = 1,...,K), the diagonal blocks oA. This fact is possible to prove through what may
be seen as an extended version of Lemma 10.4[1 of (Andér808, Section 10.4) or the results in Section
8.2 of Kshirsagar (1972).

In fact we may write

k-1

Apa = l_[ Apjagiy »
i=1
where
A Ajar o Ak
|R|N/2 . — Ai+l,i Ai+l,i+l cee Ai+l,k
Apjag) = with A= ) ) ) ) ,

AN A1 N72 : : : :
Axi Acivr oo A

is the L.r.t. statistic to test the null hypothesis

k
Hobjoa() /\ Zj =0,

i’=i+1

which is the null hypothesis of independence betweeri-theset of variables and the super-set formed by
joining the sets + 1 throughk.
But then, since

AL = 1Al |[Ageni] = |Aal [Age|
where

Aisnyi = At — ArniA A and Aisn) = Ai = A AL AL
with

A= [Ai,i+1| |Aik] and  A.ij = A, (where the prime denotes transpose)
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so that we may write

|K(i+1).i B |R.(i+1)| .

|N/2
Apjai) = =
blai) |R+1|N/2 |A|||

Then, by applying to these expressionsAgg Lemma 10.4.1 in Andersbh (2003) or the results in Section
8.2 02) we may see thak) is independent fo both;; andA,, and as such, also indepen-
dent of Aisiv1, ..., Ak (i = 1,...,k—=1). This shows that not only are the statistiagg) (i =1,...,k-1)
independent but also that,, is independent o1, . . ., Ak.

Then, since\ g is only function ofAy, ..., A, this statistic is independent di..

Appendix B. The Gamma, GIG (Generalized Integer Gamma) and GNI G (Genealized Near-I nteger
Gamma) distributions

We use this Appendix to establish the notation concerniagamma, GIG (Generalized Integer Gamma)
and GNIG (Generalized Near-Integer Gamma) distributiosed in the paper, and at the same time, to give
the expressions for the p.d.f.’s (probability density fiimes) and c.d.f.’s (cumulative distribution functions)
of the GIG and GNIG distributions.

We will say that the r.v.X has a Gamma distribution with rate parameter 0 and shape parameter
r > 0, if its p.d.f. may be written as

fy(X) = F/z;) ex 1, (x>0)

and we will denote this fact by

X ~T(r, ).
Let
X ~T(rj, ) j=L....p

be p independent random variables with Gamma distributions sliape parameterse N and rate param-
etersdj > 0, with A; # A, forall j # j” € {1,..., p}. We will say that then the r.v.

=1

has a GIG distribution of deptp, with shape parameters and rate parameters, (j = 1,..., p), and we
will denote this fact by

Y ~ GIG(rj, 4j; p).
The p.d.f. and c.d.f. of are respectively given by (S@IM%B))

P
feS(yire, ..., rp; A1, ..., Ap) = KZP,-(y)e’”iy, (y>0)
=1
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and
p
FEeIr, T A, dp) = 1=K Y Pi) ey, (y>0)

where

and

PiOy) = Zc,k(k 1)'2 I,fk_

with
1 p
L= )\t i —
= - Du’ AT d=heb (B.1)
i%]
and
K .
18 (g —k+i-1) ) o
Cirk = & ; k=1 R(. . P) Cjrj-y»  (k=1,....rj=1;j=1....p) (B.2)
where

RGP = ) re(dj-A) (=1...rj-1). (B.3)

=1
J

~ x

M=

The GNIG distribution of deptip + 1 (se4)) is the distribution of the r.v.
Z=Y1+Y,

whereY; andY; are independent; having a GIG distribution of depth andY;, with a Gamma distribution
with a non-integer shape parametemd a rate parameter# A; (j = 1,..., p). The p.d.f. ofZ is given by

fGNlG(z]rl, BN PN A1, ... ,/lp, /l) =

KA Z e “ZZ {ijk F(i(t)r)zk”’llFl(r, K+r,—(1- /lj)z)}, (z>0)

and the c.d.f. given by

A7

I(r+1)
T k-1 ZH'/I'

_K/lrz 'ZZCszr(rJrl )1F1(rr+1+| ~(1-12))2 (z>0)

FeNe(@ra,....rp.1; A1, ..., Ap, ) = =——=1F1(r,r + 1,-12)
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where
Cik
¢, = —TI(K
.k /v]( ( )
with ¢ given by [B:1)-{(B.B) above. In the above expressighga, b; z) is the Kummer confluent hy-
pergeometric function. This function has usually very geodvergence properties and is nowadays easily
handled by a number of software packages.
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