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Abstract

Regime switching processes are usually defined with an external random source
driving the regime changes. In this paper we define and study a regime switching
diffusion considering two thresholds, and regime switching occurring, by a change in
the diffusion drift and volatility, whenever the trajectory touches the upper threshold
after having crossed, or touched, the lower threshold or touches the lower threshold
after having crossed, or touched, the upper threshold. We develop an estimation
procedure for the thresholds and for the regime parameters of the diffusions. We
show that a generalized Black-Scholes model with the regime switching diffusion
as the law of the risky asset is arbitrage free and complete under an additional
hypothesis on the diffusion coefficients of the two regimes diffusions.

1 Introduction

Let us describe some motivation for the study presented in this paper, with a tentative
modeling of a simple phenomena. Consider a closed room containing a heating device
equipped with a thermostat; whenever the temperature drops below some given threshold
c the heating device starts delivering heat until the temperature gets over the threshold.
Due to some thermal inertia of the heating device, the temperature will continue to
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‡Departamento de Matemática, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa,

Quinta da Torre, 2829-516, Caparica, Portugal.
§This work was partially supported by CMA/FCT/UNL, under the project PEst-

OE/MAT/UI0297/2011.

1



augment and, after some time, due to deficient insulation of the walls of the room,
the temperature will start to drop. Suppose that the temperature is monitored by a
very precise thermometer recording, not only the up and down trends, corresponding
to the functioning periods of the heating device but also, the local fluctuations of the
temperature due to, for instance, the convection air currents and the irregular heat
radiation patterns of the room walls. A natural mathematical model of the phenomena
just described would be a stochastic process with linear up and down trends, for instance
µt and −νt, with µ, ν ∈]0,+∞[, and some additive Gaussian noise given by scaled
Brownian processes σ1Bt and σ2Bt, with σ1, σ2 > 0, that is, in such a way that Xt =
µt+ σ1Bt if the temperature verifies Xt < c and Xt = −νt+ σ2Bt if Xt > c. Let us use
this model to describe the phenomena. With some initial temperature X0 = c0 < c the
temperature process will be given by Xt = µt+ σ1Bt until the temperature reaches the
threshold c at the stopping time given by

τ1 := inf{t > 0 : µt+ σ1Bt = c}.

Now, with a temperature stochastic process model with continuous trajectories we would
want to have that,

µτ1 + σ1Bτ1 = Xτ1 = c = −ντ1 + σ2Bτ1

and for t > τ , we should have Xt = −νt + σ2Bt until the following hitting time of the
threshold c given by the stopping time

τ2 := inf{t > τ1 : −νt+ σ2Bt = c}.

Unfortunately, we will have τ1 = τ2 almost surely. In order to prove this statement, let us
observe that by changing P, the initial probability, into some adequate new probability
Q given by Girsanov theorem (see [Øks03, p. 162, 164]), the process −νt+ σ2Bt under
Q has the same law as a Brownian process. Finally, by a classical result on the level sets
of the Brownian process (see [Str94, p. 247] or [RY99, p. 109]), we may say that the
level sets {t ∈ R+ : −νt+σ2Bt = c}, are perfect sets, that is, closed sets consisting only
of limit points of the set itself. In particular, for almost all the trajectories ω0 ∈ Ω, with
t0 := τ1(ω0), the set {t ≥ t0 : −νt + σ2Bt(ω0) = c} is closed and composed entirely of
limit points of itself; being so, τ2(ω0) = t0 and consequently τ2 = τ1 almost surely. One
way to overcome this modeling difficulty is to consider that the regime switch occurs at
the hitting time of the threshold with some significant delay added to this hitting time.
This model was explored in a previous work (see [ME]). In this paper we develop, for
a general class of diffusions the model of a regime switching with a double threshold,
following the previous work [Mot07] where the sudy was carried for the non scaled
Brownian process with a linear drift. A model of two interlaced price-liquidity regime
switching diffusions, with two thresholds each, was introduced and studied in [REMV09],
with a regime switching happening for one of the diffusions whenever the other hit one
of its own thresholds.

The difficulty of defining a regime switching model for diffusions with only one thresh-
old has its roots in the level set behavior of a Brownian type process. The continuous
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martingale zero set behavior is detailed in [RY99] by means of support of the local time
of the martingale. An ingenious detailed study of the Hausdorff dimension of level sets
of Hölder mappings, of Gaussian Fourier series and of fractional Brownian motions can
be found in [Kah85].

Regime switching diffusion with the regime changes driven by a jump Markov process
taking values in a finite set have been extensively studied in the last two decades and
even more intensively in recent times. Among the many recent works, dealing with im-
portant problems for these processes we single [KZY07] where the stability is studied and
references to important previous work are signaled. The statistical problem addressed
in this paper, namely the estimation of thresholds, is treated for the external Markov
driven regime switching processes in the discrete time framework in [Cha93] and [CT98];
estimation of threshold models in continuous time is developed in [FP98]. Finally, an
application of a regime switching model driven by a external Markov source to interest
rate theory is given in [HP00].

2 The double threshold process definition

We will now define a stochastic process on some interval [0, T ], by gluing together ex-
cursions of diffusions defined by successive isolated random times corresponding to the
successive alternative hitting of the thresholds. Consider two thresholds m < M defined
in the phase space of a real valued diffusion (Xθ

t )t≥0 with θ ∈ Θ = {θ1, θ2} a parameter
which will differentiate the regimes. In all the following, we will suppose that x0 < m.
Additionally, suppose that we have (Xθ

t )t∈[0,T ] ≡ (Xθ1
t )t∈[0,T ] this second process being

the diffusion given by the stochastic differential equation:{
dXθ1

t = µ(t,Xθ1
t , θ1)dt+ σ(t,Xθ1

t , θ1)dBt t ∈ [0, T ]

Xθ1
0 = x0 ,

with (Bt)t≥0 a Brownian process defined on a complete probability space (Ω,A,P).
Consider now that there exists a first hitting time of the upper threshold M given by:

τ1 = inf
{
t > 0 : Xθ1

t = M
}
∧ T .

Let us suppose that τ1 < T with positive probability; otherwise, if τ1 = T almost surely
there will no need to proceed. Given that (Xθ1

t )t≥0 has continuous trajectories we are
sure that by the time τ1, the process has already crossed the lower threshold m and so,
in our construction, a regime switching occurs. For that, redefine the process (Xθ

t )t≥0
to be given for t ∈ [0, τ1] as before by Xθ

t = Xθ1
t and anew, for t ≥ τ1, by the solution of

the stochastic differential equation (2.1) given by the following proposition.

Proposition 1. The process defined by{
dXθ2

t = µ(t,Xθ2
t , θ2)dt+ σ(t,Xθ2

t , θ2)dBt t ∈ [τ1, T ]

Xθ2
τ1 = M = Xθ1

τ1 ,
(2.1)
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exists and is uniquely determined if the integrability, the Lipschitz control and the sub-
linear growth usual conditions are verified by the diffusion coefficients of the following
stochastic differential equation{

dXt = µ(t,Xt, θ2)dt+ σ(t,Xt, θ2)dBt t ∈ [t0, T ]

Xt0 = Z,
(2.2)

with some initial condition Z ∈ L2 for t0 ∈ [0, T ], ensuring that a solution exists and is
uniquely determined.

Proof. We observe that equation (2.1) is to be interpreted, for all t ∈ [0, T ], as

Xθ2
t = Xθ1

τ1 1I[τ1,T ](t) +

∫ t

0
µ(t,Xθ2

u , θ2)1I[τ1,T ](u)du+

∫ t

0
σ(t,Xθ2

u , θ2)1I[τ1,T ](u)dBu (2.3)

Now consider some standard existence theorem (see [Øks03, p. 289] or [LS01, p. 134]).
Then as Xθ1

τ1 = M it is clear that the initial condition of (2.1) is in L2. Moreover, as∣∣∣µ(t,Xθ2
u , θ2)1I[τ1,T ](u)

∣∣∣ ≤ ∣∣∣µ(t,Xθ2
u , θ2)

∣∣∣
and ∣∣∣σ(t,Xθ2

u , θ2)1I[τ1,T ](u)
∣∣∣ ≤ ∣∣∣σ(t,Xθ2

u , θ2)
∣∣∣

it is clear that the integrability, the Lipschitz control and the sub-linear growth conditions
verified by the diffusion coefficients of (2.2) are still verified by the diffusion coefficients
of equation (2.1) in the equivalent formulation (2.3) and so the result is proved.

Consider now the next regime switching stopping time given by the hitting time of
the lower threshold

τ2 = inf
{
t > τ1 : Xθ2

t = m
}
∧ T .

Again, let us suppose that τ2 < T with positive probability. And again, by time τ2
the process is for sure below M and a new regime switching is trigered. We may now
redefine the process (Xθ

t )t≥0 for t ≥ τ2 by Xθ
t = Xθ1

t given by the solution of{
dXθ1

t = µ(t,Xθ1
t , θ1)dt+ σ(t,Xθ1

t , θ1)dBt t ≥ τ2
Xθ1
τ2 = m ,

We may pursue by induction defining (τn)n≥1 a strictly increasing sequence of isolated
stopping times triggering the regime switchings. We will now prove that these stopping
times are isolated for almost all ω ∈ Ω. Consider some n ≥ 1; for any ω ∈ Ω0, a set of
full probability, the diffusion trajectory Xθ

t (ω), defined by the correspondent stochastic
differential equation for t ≥ τn, is uniformly continuous in [τn(ω), T ]. So, there exists
η = η(ω, n) such that if |r − s| < η, with r, s ≥ τn(ω), we have that

∣∣Xθ
r (ω)−Xθ

s (ω)
∣∣ <

M − m. It clear then that as
∣∣∣Xθ

τn(ω)
(ω)−Xθ

τn+1(ω)
(ω)
∣∣∣ = |M −m|, we surely have

|τn+1(ω)− τn(ω)| ≥ η.
Finally, we can summarize the construction above in the following result.
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Theorem 2.1. Consider a parameter set Θ = {θ1, θ2}with two regime parameters. Let
µ(t, x, θ) and σ(t, x, θ) be two real valued functions defined on R×Θ such that for any
random variable Z ∈ L2, θ ∈ Θ and t0 ∈ [0, T ] the integrability, the Lipschitz control
and the sub-linear growth usual conditions are verified by the diffusion coefficients of the
following stochastic differential equation{

dXt = µ(t,Xt, θ)dt+ σ(t,Xt, θ)dBt t ∈ [t0, T ]

Xt0 = Z ,

ensuring existence and unicity of the solution. Define, for n ≥ 0,

n̂ :=
1− (−1)n

2
+ 1 .

Then, there exist a strictly increasing sequence of stopping times (τn)n≥0, isolated almost
surely, such that τ0 ≡ 0 and τ0 ≤ τn < τn+1 ≤ T for n ≥ 1, and such that the stochastic
differential equation defined with Xθ

0 = x0 < m for t ∈ [0, T ], by

Xθ
t =

(
+∞∑
n=0

Xθn̂
τn 1I[τn,τn+1[(t)

)
+

∫ t

0

(
+∞∑
n=0

µ
(
t,Xθn̂

u , θn̂

)
1I[τn,τn+1[(u)

)
du+

+

∫ t

0

(
+∞∑
n=0

σ
(
t,Xθn̂

u , θn̂

)
1I[τn,τn+1[(u)

)
dBu

(2.4)

has an unique almost surely continuous solution which is a regime switching process
(Xθ

t )t∈[0,T ] given by:

Xθ
t =

+∞∑
n=0

Xθn̂
n,t1I[τn,τn+1[(t) (2.5)

with the excursion process (Xθn̂
n,t)t∈[τn,τn+1[ given by the solution of the stochastic differ-

ential equation{
dXθn̂

n,t = µ(t,Xθn̂
n,t, θn̂)dt+ σ(t,Xθn̂

n,t, θn̂)dBt τn+1 ≤ t < τn+2

Xθn̂
n,τn+1 = m1I{n̂=1} +M1I{n̂=2} .

For this solution process, we have that:

• If Xθ
t < m, then Xθ

t has drift µ
(
t,Xθ1

t , θ1

)
and volatility σ

(
t,Xθ1

t , θ1

)
;

• If Xθ
t > M , then Xθ

t has drift µ
(
t,Xθ2

t , θ2

)
and volatility σ

(
t,Xθ2

t , θ2

)
.

Remark 1. Given T = (τn)n≥0, the excursion processes (Xθn̂
n,t)t∈[τn,τn+1[, for n ≥ 0, are

independent by construction.
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Remark 2. Under the hypothesis that µ (t, x, θ) = µ (x, θ) and σ (t, x, θ) = σ (x, θ) we
have that almost surely T is a finite sequence. In fact, every excursion with a given
parameter θ ∈ Θ is determined by the same diffusion coefficients and by the fact that
either they start with the diffusion in M and ending in m or vice-versa. This means that
the stopping times in T are, alternatively, the random time that a certain diffusion takes
to go from the value M to the value m or the time that another diffusion takes to go
from the value m to the value M . This being said, suppose that T is infinite. Then, we
have that the sequence of random variables (τn+1− τn)n≥1 is a sequence of non negative
random variables such that the subsequences (τ2p+1− τ2p)p≥0 and (τ2p+2− τ2p+1)p≥0 are
sequences of identically distributed random variables verifying:

+∞∑
n=1

(τn+1 − τn) ≤ T and so

+∞∑
n=1

E [τn+1 − τn] ≤ T .

But, as E [τn+1 − τn] takes only two real values depending on the parity of n, we must
have for all n ≥ 1 that E [τn+1 − τn] = 0 which implies that for all n ≥ 1, τn+1 − τn = 0
almost surely, having as a consequence that for all N ≥ 2,

τN − τ1 =
N−1∑
n=1

(τn+1 − τn) = 0 almost surely,

allowing us to conclude that T has only one element, namely τ1.

Remark 3. If x0 > M , similar results to those presented will follow if we suppose that
the starting regime is regime 2. The same will happen if x0 ∈ [m,M ] for any of the two
possible choices of the starting regime, either regime 1 or regime 2.

3 On the thresholds estimation

For some trajectory ω ∈ Ω, consider Cn(ω) = {Xθ
t1(ω), . . . , Xθ

tpn
(ω)} the finite set of

discrete observations at time n ∈ N and suppose that for all n ≥ 1 we have that
Cn(ω) ⊆ Cn+1(ω). We suppose that we are able to decide to what regime in {1, 2} each
observation Xθ

tj (ω) belongs, thus defining a random variable Rnj such that Rnj (ω) = 1 if

Xθ
tj (ω) is regime 1 and Rnj (ω) = 2 if Xθ

tj (ω) is regime 2. A fundamental remark is that

• If Rnj (ω) = 1, that is Xθ
tj (ω) is regime 1, then Xθ

tj (ω) ≤M ;

• If Rnj (ω) = 2, that is Xθ
tj (ω) is regime 2, then Xθ

tj (ω) ≥ m.

We now define the natural partition of the sets of observations given by:

CMn (ω) = {Xθ
tj (ω) : Rnj (ω) = 1, j = 1, . . . , pn} ,

and
Cmn (ω) = {Xθ

tj (ω) : Rnj (ω) = 2, j = 1, . . . , pn} .
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The following result shows that, under the hypothesis of increasing the number of obser-
vations with time made above, there exists strongly consistent estimators of the thresh-
olds.

Theorem 3.1. Let M̂n(ω) = maxCMn (ω) and m̂n(ω) = minCmn (ω). Suppose that the
observations are regularly distributed in [0, T ], in the sense that,

lim
n→+∞

max
1≤i≤pn−1

|ti+1 − ti| = 0 . (3.1)

Then, if there is at least a regime change from regime 1 to regime 2, the correspondent
estimator of the upper threshold M , M̂ defined by M̂(ω) := limn→+∞ M̂n(ω) ∈ R is
strongly consistent and, if there is at least a regime change from regime 2 to regime 1,
the estimator of the lower threshold m, m̂ defined by m̂(ω) := limn→+∞ m̂n(ω) ∈ R is
also strongly consistent, that is:

M̂ = M a.s. and m̂ = m a.s.

Proof. As Cn(ω) ⊆ Cn+1(ω) we have that M̂n ≤ M̂n+1 and m̂n ≥ m̂n+1. Then, as a

consequence of the fundamental remark above, we have that M̂(ω) = limn→+∞ M̂n(ω) ≤
M and m̂(ω) = limn→+∞ m̂n(ω) ≥ m. Let us suppose, for instance, that for some ε > 0

we have M̂(ω) < M − ε and consider the first time of regime switching from regime 1 to
regime 2, that is:

τ(ω) = inf
{
t > 0 : Xθ

t (ω) = M
}
,

which is well defined by the hypothesis. By the almost surely uniform continuity of the
trajectory (Xθ

t (ω))t∈[0,T ], there exists η > 0 such that for |r − s| < η, with r, s ∈ [0, T ],

we have
∣∣Xθ

r (ω)−Xθ
s (ω)

∣∣ < ε. Now, it is enough to choose some n0 ∈ N for which
we have that max1≤i≤pn0−1 |ti+1 − ti| < η and to select i0 ∈ {1, . . . , pn0} such that
τ(ω) ∈ [ti0 , ti0+1]. As a consequence of these choices, we have that

|τ(ω)− ti0 | ≤ |ti0+1 − ti0 | < η

and so ∣∣∣Xθ
τ(ω)(ω)−Xθ

ti0
(ω)
∣∣∣ =

∣∣∣M −Xθ
ti0

(ω)
∣∣∣ < ε ,

thus implying that
∣∣∣M̂n0(ω)−M

∣∣∣ < ε and furthermore
∣∣∣M̂(ω)−M

∣∣∣ < ε, contradicting

our initial assumption that M̂(ω) < M − ε. The proof that the above defined estimator
of m is strongly consistent being similar, our proof is complete.

Remark 4. The result obtained in theorem 3.1 suggests a practical way to estimate the
thresholds and the remaining parameters of the regime switching process. In fact, the
method is easily described in the following simple steps.
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• Consider given some values m̃ and M̃ for the thresholds. Using these values,
classify your process observations according to this thresholds choice in order to
obtain a partition of the set of observations in the set of observation in regime 1
and in regime 2..

• Use some adequate estimators for the parameter θ, in order to obtain an estimator
θ̂1 for the parameter value θ1 using the observations in the set corresponding to
the regime 1 observations and the same to obtain θ̂2 using the observations in the
set corresponding to the regime 2 observations.

• Finally, minimize a loss function of the conditional least squares type:

CLS
m̃,M̃

:=
∑
i

(
Xi −Eθ̂1,θ̂2,m̃,M̃ [Xi | X1, . . . Xi−1]

)2
over m̃ and M̃ .

A method similar to this one was successfully applied in [ME] for the case of a regime
switching diffusion with one threshold and delay, the initially given diffusions being
geometric brownian motions.

4 An application to continuous time finance

Stock price modeling having in view option pricing is a natural field of application of
auto-induced regime switching diffusions. In fact, when some prices are observed over
a sufficiently long period to encompass fluctuation cycles, these prices seem to go up
with some drift and volatility and then to come down with differents drift and volatil-
ity, oscillating around some kind of target price. This behavior suggests the existence
of a threshold and two different regimes governing the diffusion above and below the
threshold. Moreover, as prices are usually given to the cents if, in the double threshold
model, we consider that M −m is strictly less than one cent, for all practical purposes
we will get a model that may describe properly the the regime switching prices around
one single price threshold. Nevertheless in order for a two narrowly separated thresh-
old model to be properly defined, the regime changes can only occur after a delay; in
the absence of a delay for the regime changes to occur, a process with small volatility
relatively to the drift could be, most of the time, trapped between the two narrowly sep-
arated thresholds. Another approach, perhaps more realistic, is to consider two widely
spaced thresholds forcing the price process to oscillate between these two thresholds, as
if it was a process loosely contained between two barriers. Our purpose in this section
is to show that, under some additional hypothesis, the regime switching process (2.4) of
theorem 2.1 is appropriate to define generalized Black-Scholes complete arbitrage free
models for option pricing.

It is well known (see [Øks03, p. 288]) that a market model of one risk free asset given
by

ρ(t) = exp

(∫ t

0
r(u)du

)
,
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and one risky asset Xt driven by a stochastic differential equation{
dXt = µ(t)Xtdt+ σ(t)XtdBt t ∈ [0, T ]

X0 = x0 ,

with r, µ, σ stochastic processes not depending on X, is arbitrage free and complete if
the Novikok condition is satisfied, more precisely if

E

[
exp

(
1

2

∫ T

0

(
µ(t)− r(t)

σ(t)

)2

dt

)]
< +∞ .

If so, the price at time t = 0 of an European option with payoff given by a contingent
T -claim f(XT ), given non random price Xt0 , is unique and it is given by the usual
formula:

EQ
[
f(XT )

r(t)

]
,

with Q the martingale measure. Now suppose that we intend to model the risky asset
with a double threshold regime switching model as the one introduced above. We then
have the following result.

Theorem 4.1. With the notations of theorem 2.1 and under the assumptions of this
section for ρ, µ and σ, suppose additionally that:

E

[
exp

(
1

2

∫ T

0
max

((
µ(t, θ1)− r(t)

σ(t, θ1)

)2

,

(
µ(t, θ2)− r(t)

σ(t, θ2)

)2
)
dt

)]
< +∞ . (4.1)

Then, the market model with the risky asset described by the regime switching pro-
cess (2.5) is arbitrage free and complete.

Remark 5. The condition in formula (4.1) is obviously satisfied if ρ, µ and σ are constant,
that is, if the diffusions in the regimes are as the usual Black-Scholes model of stock
prices.

Proof. Let us show that the Novikov condition is satisfied for the diffusion parameters
given in formula (2.4) for the regime switching process. As we have that:(∑+∞

n=0 (µ (t, θn̂)− r(t)) 1I[τn,τn+1[(t)
)2(∑+∞

n=0 σ (t, θn̂) 1I[τn,τn+1[(t)
)2 =

∑+∞
n=0 (µ (t, θn̂)− r(t))2 1I[τn,τn+1[(t)∑+∞

n=0 σ (t, θn̂)2 1I[τn,τn+1[(t)
≤

≤
+∞∑
n=0

(µ (t, θn̂)− r(t))2

σ (t, θn̂)2
1I[τn,τn+1[(t) ,
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we have the following upper estimates for the expectation in the Novikov condition
formulated for the diffusion parameters of the regime switching process:

E

[
exp

(
1

2

∫ T

0

(∑+∞
n=0 (µ (t, θn̂)− r(t)) 1I[τn,τn+1[(t)

)2(∑+∞
n=0 σ (t, θn̂) 1I[τn,τn+1[(t)

)2 dt

)]
≤

≤ E

[
exp

(
1

2

+∞∑
n=0

∫ τn+1

τn

(
(µ (t, θn̂)− r(t))2

σ (t, θn̂)2

)
dt

)]
≤

≤ E

[
exp

(
1

2

+∞∑
n=0

∫ τn+1

τn

max

((
µ(t, θ1)− r(t)

σ(t, θ1)

)2

,

(
µ(t, θ2)− r(t)

σ(t, θ2)

)2
)
dt

)]
≤

≤ E

[
exp

(
1

2

∫ T

0
max

((
µ(t, θ1)− r(t)

σ(t, θ1)

)2

,

(
µ(t, θ2)− r(t)

σ(t, θ2)

)2
)
dt

)]
< +∞ .

So, the Novikov condition is satisfied for the regime switching diffusion coefficients and
the theorem is proved.

Remark 6. If we only suppose that for all θ = θ1, θ2 we have

E

[
exp

(
1

2

∫ T

0

(
µ(t, θ)− r(t)

σ(t, θ)

)2

dt

)]
< +∞ .

does it follows that the market model is still s arbitrage free and complete, as in the-
orem 4.1? This would show that the procedure for building a regime switching double
threshold diffusion model for a risky asset preserves the arbitrage free and completeness
properties of the initially given building diffusions, with no need of other conditions than
the usually conditions for the initially given diffusions .

5 Conclusion

In this work we have introduced a procedure to build, on a closed and bounded time
interval, a regime switching double threshold diffusion from two initially given diffusions.
The infinitesimal parameters of the built diffusion are given by means of the infinitesimal
parameters of the initially given diffusions together with a sequence of the successive
hitting times of the upper and lower thresholds. These stopping times, are shown to
be well defined and to be almost surely isolated. We develop a procedure to estimate
the thresholds together with the regime parameters of the diffusions. Finally, we show
that if the models with the initially given diffusions are arbitrage free and complete, by
force of verification of the Novikov condition for the Sharpe ratios determined by the
infinitesimal parameters of these initially given diffusions then, under and additional
Novikov condition for the maximum of the Sharpe ratios of the initially given diffusions,
the regime switching double threshold model is also arbitrage free and complete.
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