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Abstract. In this work, we develop a meshfree method based on fundamental solutions basis
functions for a transmission problem in linear elasticity. The problem here addressed, consists in
computing the displacement field of an elastic object, which has piecewise constant Lamé coeffi-
cients, from a given displacement field on the boundary. The Lamé coefficients are assumed to be
constant in non overlaping subdomains and, on the corresponding interface (interior boundaries),
non homogeneous jump conditions on the displacement and on the traction vectors are considered.
The main properties of the method are analyzed and illustrated with several numerical simulations
in 2D domains.
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1. Introduction. Meshfree methods are a class of numerical methods used in
the construction of numerical approximations for several types of problems. These
methods have interesting features. For instance, they are easy to implement (no
mesh construction is required), provide accurate results and they deal well with more
complex (two or three dimensional) geometries. These methods have been widely
used to solve many boundary value problems and have also been used in other areas
of research (see [6] for an overview and historical background on the subject).

There are several meshfree methods for PDE’s and related boundary value prob-
lems. One possible approach is to consider the approximation represented as a linear
combination of radial basis functions (RBF) centered at some chosen (source) points
and then to compute the coefficents by imposing the PDE and boundary conditions
at some collocation points. This is the main idea behind the so called Kansa’s method
(cf. [9]). If on one hand this leads to a densely defined and ill-conditioned system of
linear equations on the other, the matrix can be very large (because we are imposing
both the PDE and the boundary conditions). There are, however, cases where we
can choose basis functions that are fitted to the PDE. For instance, for homogeneous
elliptic problems with constant coefficients we have natural basis functions given by
fundamental solutions of the underlying PDE. This particular choice of basis func-
tions leads to the so called method of fundamental solutions (MFS). It is a meshfree
boundary method (no domain collocation is required) and although it was recently
extended to non homogeneous PDE’s (cf. [3]), it has been mostly considered as a
numerical method for homogeneous boundary value problems since the first papers
by Kupradze and Alekside [10] or Oliveira [12]. More recently, the MFS has gained
attention by the inverse problems community, mainly for Cauchy data reconstruction
(see [7] for a survey on the subject). As point out by Alves (cf. [1], [2]), there is a
strong connection between the MFS and RBF approximations. In fact, many RBF
domain approximations are variations of the MFS in higher dimension. On the other
hand, there is also a strong connection between the MFS for direct and Cauchy data
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reconstruction (inverse) problems (eg. [4]). Therefore, fundamental basis functions
are a good starting point for the development of meshfree approximation schemes in
more general (direct or inverse) contexts.

In this paper, we propose a meshfree approximation using fundamental solutions
basis functions for a direct linear elasticity problem with interfaces. These transmis-
sion problems arise often in several direct engineering problems, such as in materials
science (see [13] and the references therein) and are also strongly connected to some
inverse engineering problems, for instance in medical imaging (eg. [8]). The numerical
study of such problems have been addressed by several authors, only in the 2D case,
using finite element based methods (eg. [13], [14]). We shall consider here a more
general situation of multiply interfaces in two or three dimensional cases.

We start with the formulation of the problem. Let Ω, ω1, . . . , ωm be open,
bounded, regular (say, at least C1) and simply connected (2D or 3D) domains, such
that ωi ⊂⊂ Ω and ωi ∩ωj = ∅, ∀i 6= j. We shall denote the corresponding boundaries
by γ0 := ∂Ω and γi := ∂ωi. Define ω := ∪iωi and the multiply connected domain
ω0 := Ω \ ω and note that

∂ω0 = γ0 ∪ γ1 ∪ . . . ∪ γm.

The set Ω can be seen as a domain occupied by an elastic body with constant Lamé
parameters, λi, µi > 0 on each connected component ωi. In the presence of body

forces fi ∈ L2(ωi) :=
(
L2(ωi)

)d
the governing system of equations is





∇ · σi(u) = fi in ωi

u = g0 on γ0

[u] = gi on γi

σ0(u)n− σi(u)n = gn
i on γi

(1.1)

where the stress tensor σi is defined (in terms of the displacement vector u) by

σi(u) = λi(∇ · u)I + µi(∇u + ∇u⊤).

Notice that

∇ · σi(u) = µi∆u + (λi + µi)∇∇u

where ∆u = (∆u1, . . . ,∆ud) and σi(u)n is the surface traction vector on the interface
γi, where n is the outward normal vector with respect to ω0 (hence, pointing inwards
with respect to ω1, . . . , ωm). The jump [u] on the interface γi is defined by u+ − u−,
where u+ is the trace of u coming from ω0 and u− is the trace of u coming from ωi.
The last boundary condition is the normal jump of u across γi defined in terms of the
normal trace σ0(u)n coming from ω0 and the normal trace σi(u)n coming from ωi.

The problem that we shall address is to, given the geometry Ω, ω0, . . . , ωm, the
Lamé parameters λi, µi, the source terms fi and the boundary data gi and gn

i , compute
the solution, u of the above system of partial differential equations.

It is well known that, this problem is well posed, with u ∈ H1(Ω) =
(
H1(Ω)

)d
.

In this setting, gi ∈ H1/2(γi) =
(
H1/2(γi)

)d
and gn

i ∈ H−1/2(γi) =
(
H−1/2(γi)

)d
.

2. Meshfree collocation method.

A common approach in meshfree methods is to consider some (vectorial) basis
functions ζi

k and represent the solution as

ũi(x) = ũ|ωi
(x) =

∑

k

αi
kζ

i
k(x), ∀x ∈ ωi
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where the coefficients αi
k ∈ R

d are computed by imposing, on some collocation points,




∑

k

αi
k

(
∇ · σi(ζ

i
k)
)
(xi

l) = fi(x
i
l) xi

l ∈ ωi

∑

k

α0
kζ

0
k(xγ0

l ) = g0(x
γ0

l ) xγ0

l ∈ γ0

∑

k

α0
kζ

0
k(xγ0

l ) −
∑

k

αi
kζ

i
k(xγi

l ) = gi(x
γi

l ) xγi

l ∈ γi

∑

k

α0
k

(
σ0

(
ζ0
k

)
(xγi

l )nx
γi
l

)
−
∑

k

αi
k

(
σi

(
ζi
k

)
(xγi

l )nx
γi
l

)
= gn

i (xγi

l ) xγi

l ∈ γi

.

(2.1)
The first set of equations,

∑

k

αi
k

(
∇ · σi(ζ

i
k)
)
(xi

l) = fi(x
i
l), xi

l ∈ ωi(2.2)

are domain equations, and are imposed in order to satisfy the PDE. The last set of
(boundary) equations





∑

k

α0
kζ

0
k(xγ0

l ) = g0(x
γ0

l ) xγ0

l ∈ γ0

∑

k

α0
kζ

0
k(xγ0

l ) −
∑

k

αi
kζ

i
k(xγi

l ) = gi(x
γi

l ) xγi

l ∈ γi

∑

k

α0
k

(
σ0

(
ζ0
k

)
(xγi

l )nx
γi
l

)
−
∑

k

αi
k

(
σi

(
ζi
k

)
(xγi

l )nx
γi
l

)
= gn

i (xγi

l ) xγi

l ∈ γi

(2.3)
are imposed in order to fit the boundary data.

If on one hand, the chosen basis functions must be able to give a good approxi-
mation to the solution of the problem (for instance should span a dense subset in the
space where the solution is sought), on the other it should also simplify the above
system of equations. For instance, if we take basis functions ζi

k with the eigenvalue
property

∇ · σi(ζ
i
k) = −κi

kζ
i
k,

then, the domain equations on the above system simplifies to the linear equations

∑

k

αi
kκ

i
kζ

i
k(xi

l) = fi(x
i
l).(2.4)

There are several basis functions with the above eigenvalue property. Take, for
instance, in the 2D case, the basis functions (see [5])

Ψ
κi

k
y e1 and Ψ

κi
k

y e2, y ∈/ ωi,

where Ψ
κi

k
y (κi

k > 0) is the fundamental tensor centered at y,

Ψ
κi

k
y (x) =

i

4κi
k

[
κi

k

µi
k

H
(0)
1

(√
κi

k

µi
k

|x− y|
)
δij

+

∂2

(
H

(0)
1

(√
κi

k

µi
k

|x− y|
)
−H

(0)
1

(√
κi

k

λi
k
+2µi

k

|x− y|
))

∂xi∂xj


 ,
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for the elastodynamic system ∇·σi(u)+κi
ku = 0. Recall that a fundamental solution

for the elastodynamic equations satisfies

∇ · σi(Ψ
κi

k
y ) + κi

kΨ
κi

k
y = −δyI,

where δy is the Dirac delta distribution centered at y.
However, even with the above simplification, the system (2.1) may become very

large. One way to deal with this is to split the solution as u = uP + uH . On a
first step, we determine a particular solution ∇ · σi(uP ) = fi. This can be achieved
by solving, for instance, a system of linear domain equations similar to (2.2). On a
second step, we determine uH = u − uP by solving the homogeneous problem






∇ · σi(uH) = 0 in ωi

uH = g0 − uP on γ0

[uH ] = gi − [uP ] on γi

σ0(uH)n− σi(uH)n = gn
i − σ0(uP )n+ σi(uP )n on γi

.

Taking an appropriate choice of basis functions, we can reduce the problem to a
system of boundary linear equations, similar to (2.3).

Henceforth, we focus on this last problem, which, can be generically described as
to compute v such that





∇ · σi(v) = 0 in ωi

v = h0 on γ0

[v] = hi on γi

σ0(v)n− σi(v)n = hn
i on γi

.(2.5)

3. The MFS for elasticity problems with interfaces. In the above case, a
natural choice of basis functions is given in terms of the fundamental tensor for the
Lamé system (see [5])

Φi(x) =






λi + 3µi

4πµi(λi + 2µi)

[
− ln |x|δij +

λi + µi

λi + 3µi

xjxk

|x|2
]

1≤j,k≤2

x ∈ R
2 \ {0}

λi + 3µi

8πµi(λi + 2µi)

[
1

|x|δij +
λi + µi

λi + 3µi

xjxk

|x|3
]

1≤j,k≤3

x ∈ R
3 \ {0}

.

(3.1)

Taking linear combinations

ṽi(x) = ṽ|ωi
(x) =

∑

k

Φi
yi

k
(x)αi

k, ∀x ∈ ωi, yi
k ∈/ ωi(3.2)

where αi
k ∈ R

d and Φi
y := Φi(• − y) is the point source tensor, we have

∇ · σi(ṽi) = 0 in ωi.(3.3)

Note that ṽi is pointwise defined (and smooth) in R
d \ {yi

1, . . . , y
i
ni
} ⊃ ωi. Therefore,

the corresponding boundary linear system (2.3) is well defined and from here we can
compute the coefficients αi

k. Next result shows that the basis functions in equation
(3.2) are linearly independent.



A MESHFREE METHOD FOR ELASTICITY PROBLEMS 5

Lemma 3.1. The set
{
Φi

y1
, . . . ,Φi

yp

}

with yj 6= yk, ∀j 6= k is linearly independent in R
d \ {y1, . . . , yp}.

Proof. Suppose that

u := Φi
y1
α1 + . . .+ Φi

yp
αp = 0 in R

d \ {y1, . . . , yp} .

Take a regular domain Ω, such that yk ∈ Ω and y1, . . . , yk−1, yk+1, . . . , yp ∈/ Ω. Then,





∇ · σi (u) = −δyk
αk in Ω

u = 0 on ∂Ω
σi (u)n = 0 on ∂Ω

.

From Betti’s formula,
∫

Ω

(∇ · σi(u) ·w − u · ∇ · σi(w)) dx =

∫

∂Ω

(σi(u)n · w − u · σi(w)n) dSx.

In particular, for wl = el we have

−αk · el =

∫

Ω

((∇ · σi(u)) · wl − u · (∇ · σi(wl))) dx = 0.

Since the approximation ṽ satisfies equation (3.3) and the transmission problem
(2.5) is well posed with v ∈ H1(Ω) it is clear that if the trace and normal trace of
ṽ provides a good approximation of the boundary data (in appropriate trace spaces)
then ṽ provides a good approximation for v in the H1(Ω) sense.

From the above discussion, the MFS approximation requires that source points
yi

k should be placed outside ωi. From the theoretical point of view, there are several
possible choices for the location of source points (eg. [2]). However, in practise,
considering point sources located on artificial boundaries enclosing the domain of
interest provides better numerical results. We shall consider this approach.

Let Ω̃ be an artificial regular domain (bounded, open and simply connected)

enclosing Ω, that is, Ω ⊂⊂ Ω̃. Consider also the artificial domains Ω̃i such that

ωi ⊂⊂ Ω̃i, i = 1, . . . ,m and Ω̃i ∩ Ω̃k = ∅ so that each non overlapping domain Ω̃i

encloses ωi. Since ω0 is multiply connected (it has m holes ω1, . . . , ωm), we must also
consider artificial domains, ω̃i, inside ωi (i = 1, . . . ,m) and put

ω̃0 := Ω̃ \
(
ω̃1 ∪ . . . ∪ ω̃m

)
.

The source points will be considered on the boundaries Γ̃i := ∂Ω̃i, γ̃i := ∂ω̃i (i =

1, . . . ,m) and on γ̃0 := ∂Ω̃ (see Fig. 3.1).
This means that numerical approximations (3.2) can now be written as

ṽ0(x) =
∑

Φ0(x− y0
j )α0

j , y0
j ∈ ∂ω̃0,(3.4)

ṽi(x) =
∑

Φi(x− yi
j)α

i
j , yi

j ∈ Γ̃i.(3.5)
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Fig. 3.1. Source points scheme in a domain with one interface. Full lines are the boundary of
the domain, dotted lines are the artificial boundaries.

The corresponding boundary equations are






∑

j

Φ0
y0

j
α0

j = h0

∑

j

Φ0
y0

j
α0

j −
∑

j

Φi
yi

j
αi

j = hi

∑

j

σ0

(
Φ0

y0
j

)
nα0

j −
∑

j

σi

(
Φi

yi
j

)
nαi

j = hn
i

.(3.6)

Proposition 3.2. Given the input data (h0, . . . ,hm,h
n
1 , . . . ,h

n
m) and source

points yi
j in the previous conditions, system (3.6) has at most one solution.

Proof. Since the above problem is linear, it is sufficient to show that the kernel
of the associated operator is null. Suppose that

(h0, . . . ,hm,h
n
1 , . . . ,h

n
m) = (0, . . . , 0) .

Then, function ṽ ∈ H1(Ω) defined by (3.4) and (3.5) satisfies (2.5) with null input
boundary data. By well posedness of this problem, we must have

ṽi = 0 in ωi.

By analytic continuation, ṽi = 0 in R
d \
{
yi
1, . . . , y

i
k

}
and from lemma 3.1 follows

αi
1 = . . . = αi

m = 0.

The following results concerns the approximation properties of the fundamental
basis functions for the given boundary conditions. In order to study these properties,
we start by defining the single layer representations (see [11] for notation)

u0(x) =
m∑

i=0

SLγ̃i
(ψi)(x)(3.7)

ui(x) = SLΓ̃i
(φi)(x), i = 1, . . . ,m(3.8)
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where

SLγ̃i
(ψi)(x) =

∫

γ̃i

Φ0
x(y)ψi(y)dSy , x ∈ R

d \ γ̃i

and

SLΓ̃i
(φi)(x) =

∫

Γ̃i

Φi
x(y)φi(y)dSy, x ∈ R

d \ Γ̃i.

The kernel of the above operators is the point source tensor (3.1) and ψi = (ψ1
i , . . . , ψ

d
i ),

φi = (φ1
i , . . . , φ

d
i ) are integrable densities. Note that, by discretizing the above inte-

grals we obtain a representation as in (3.2).
Since we are considering boundary data

h = (h0, . . . ,hm) ∈ H1/2(γ) := H1/2(γ0) × . . .× H1/2(γm)

and

hn = (hn
1 , . . . ,h

n
m) ∈ H−1/2(γ \ γ0) := H−1/2(γ1) × . . .× H−1/2(γm)

(so that transmission problem (2.5) is well posed in H1(Ω)) then the proper functional
framework for the densities is

ψ = (ψ0, . . . , ψm) ∈ H−1/2(γ̃) := H−1/2(γ̃0) × . . .× H−1/2(γ̃m)

and

φ = (φ1, . . . , φm) ∈ H−1/2(Γ̃) := H−1/2(Γ̃1) × . . .× H−1/2(Γ̃m).

Therefore, the above single layer potentials must be understood in the duality sense.
Notice that,

∇ · σ0(u0) = 0 in R
d \ (γ̃0 ∪ γ̃1 ∪ . . . ∪ γ̃m)

and, for i ≥ 1,

∇ · σi(ui) = 0 in R
d \ Γ̃i.

The system of boundary equations (3.6) is now given by the following integral
equations






m∑

j=0

SLγ̃j,γ0
(ψj) = h0

m∑

j=0

SLγ̃j,γi
(ψj) − SLΓ̃i,γi

(φi) = hi

m∑

j=0

NSLγ̃j ,γi
(ψj) −NSLΓ̃i,γi

(φi) = hn
i

,(3.9)

where SLΓ̃0,γ0
is the trace of SLΓ̃0

on γ0 and NSLΓ̃1,γ1
the normal trace of SLΓ̃1

on
γ1, that is,
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NSLΓ̃1,γ1
(φ1)(x) =

∫

Γ̃1

σ1(Φ
1
x(y))nxφ1(y)dSy, x ∈ γ1.

Define the linear bounded operator

M : H−1/2(γ̃) × H−1/2(Γ̃) → H1/2(γ) × H−1/2(γ \ γ0)

by

M(ψ, φ) :=




m∑

j=0

SLγ̃j ,γ0
(ψj)

m∑

j=0

SLγ̃j ,γi
(ψj) − SLΓ̃i,γi

(φi)

m∑

j=0

NSLγ̃j ,γi
(ψj) −NSLΓ̃i,γi

(φi)




.

Clearly, system (3.9) is solvable if and only if (h,hn) ∈ Range M.
In the following, we shall address the two dimensional case. In such case, we must

consider the subspaces

Ĥ1/2(γ) =

{
ψ = (ψ0, . . . , ψm) ∈ H1/2(γ) :

∫

γi

ψi(x)dSx = 0

}

which can be identified to H1/2(γ)/R2 via the mapping

H1/2(γ) ∋ ψ 7→
(
ψ0 −

1

|γ0|

∫

γ0

ψ0(x)dSx, . . . , ψm − 1

|γm|

∫

γm

ψm(x)dSx

)
∈ Ĥ1/2(γ)

for each ψ ∈ H1/2(γ).
As we shall see in the following results, these subspaces are needed in the 2D case

because of the asymptotic behavior of the fundamental tensor. This can be avoided by
considering other artificial domain Ω̃ (for instance, adding an extra exterior artificial
boundary). In the 3D case, the fundamental tensor has the appropriate asymptotic

behavior, hence there is no need to consider other topology for Ω̃ nor to add constants.
Proposition 3.3. The restriction of M to Ĥ−1/2(γ̃) × Ĥ−1/2(Γ̃) is injective.
Proof. This proposition is similar to Proposition 3.2. However, in this boundary

layer framework, we can not use the same arguments. Consider the layer represen-
tations (3.7) and (3.8), where the densities φ = (φ1, . . . , φm) and ψ = (ψ0, . . . , ψm)
belong to ker M. In particular, u satisfies problem (2.5) with boundary data (h,hn) =
(0, 0). By well posedness of this problem, ui = 0 in ωi, hence, by analytic continuation,

u0 = 0 in ω̃0 and ui = 0 in Ω̃i. On the other hand, the single layer representations
(3.7) and (3.8) imply the following jump relations

[ui]|∂ω̃i
= 0, [σ0(u0)n]|γ̃i

= ψi, [σi(ui)n]|Γ̃i
= φi

and, in particular, follows u0 = 0 on ∂ω̃0 (coming from the exterior of ω̃0 ).
Since the asymptotic behavior of ≅0 is (eg. [5])

u0(x) = c0




m∑

j=0

∫

γ̃j

ψj(y)dSy


 log |x| +O(1), |x| → ∞
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where c0 = − λ0+3µ0

4πµ0(λ0+2µ0) and, by hypothesis,

∫

γ̃i

ψi(y)dσy = 0

then, on the unbounded component R
2 \ Ω̃, we have





∇ · σ0(u0) = 0 in R
2 \ Ω̃

u0 = 0 on γ̃0

u0(x) = O(1) |x| → ∞
.

This problem is well posed in H1
loc(R

2 \ Ω̃) therefore, u0 = 0 in R
2 \ Ω̃. Also,

{
∇ · σ0(u0) = 0 in ω̃i

u0 = 0 on γ̃i

and this implies u0 = 0 in ω̃i. From this, we conclude that u0 = 0 in R
2 \

(γ̃0 ∪ . . . ∪ γ̃m). In the same way, ui = 0 in R
2 \ Γ̃i and since the densities φ, ψ

are the jumps of the normal derivative across the corresponding boundaries we have
(φ, ψ) = (0, 0).

We now show that, each set of input data (h,hn) ∈ H1/2(γ)×H−1/2(γ \ γ0) can
be approximated by a sequence of the form M(ψn, φn) (modulo constants, in the 2D
case). In order to prove this result, we must consider the adjoint of M. In this case,
we have (see [4])

M
∗ : H−1/2(γ) × H1/2(γ \ γ0) → H1/2(γ̃) × H1/2(Γ̃)

given by

M
∗(ψ, φ) =





∑m
j=0 SLγj ,γ̃i

(ψj) +
∑m

j=1DLγj ,γ̃i
(φj)

−SLγi,Γ̃i
(ψi) −DLγi,Γ̃i

(φi)



 ,

where SLγj ,γ̃i
and SLγi,Γ̃i

have the same meaning as above, but with kernel Φ0
x and

Φi
x, respectively. The operator DLγj

is the double layer potential

DLγj
(φj)(x) =

∫

γj

K(x, y)φj(y)dSy

and DLγj ,γ̃i
, DLγj ,Γ̃j

are the trace of DLγj
on γ̃i and Γ̃j with kernels K(x, y) given

by σ0

(
Φ0

x

)
(y)ny and σj

(
Φj

x

)
(y)ny, respectively.

Proposition 3.4. The restriction of M
∗ to Ĥ−1/2(γ)×Ĥ1/2(γ \γ0) is injective.

Proof. Let (ψ, φ) ∈ Ĥ−1/2(γ) × Ĥ1/2(γ \ γ0) and suppose that (ψ, φ) ∈ kerM
∗.

Define the following combination of single and double layers

u0 =

m∑

j=0

SLγj
(ψj) +

m∑

j=1

DLγj
(φj)

and

ui = SLγi
(−ψi) +DLγi

(−φi).
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Clearly,

∇ · σ0(u0) = 0 in R
2 \ (γ0 ∪ . . . ∪ γm)

and by hypothesis, u0 = 0 on γ̃0 ∪ . . . ∪ γ̃m. Therefore, u0 = 0 in R
2 \ ω0. By the

jump relations, we must have

0 = [u0]|γ0
= u−

0 |γ0
, ψj = [σ0(u0)n]|γj

= σ0(u0)n
−|γj

, −φj = [u0]|γj
= u−

0 |γj
, j = 1, . . . ,m.

On the other hand, uj = 0 in R
2 \ ωj and from this we get the jumps

−ψj = [σj(uj)n]|γj
= −σj(uj)n

−|γj
, −φj = [uj ]|γj

= u−
j |γj

because the normal vector points inwards with respect to ωj. From the above equa-
tions, we can write





∇ · σ0(u0) = 0 in ω0

u0 = 0 on γ0

u0 − uj = 0 on γj

σ0(u0)n− σj(uj)n = 0 on γj

∇ · σj(uj) = 0 in ωj

and so, ui = 0 in ωi. From here, we conclude that ψ = φ = 0.

4. Numerical Results. In order to illustrate the theoretical results of Section
3 we present several examples for the 2D-problem transmission problem (2.5) with a
single interface





∇ · σ0(u0) = 0 in ω0

∇ · σ1(u1) = 0 in ω1

u = g0 on γ0

[u] = u+ − u− = g1 on γ1

σ0(u0)n− σ1(u1)n = gn
1 on γ1

.(4.1)

The approximate solution of (4.1) is given by

u0(x) ≈
k∑

i=1

α0
i Φ

0
yi

(x) := ũ0(x), x ∈ w0

u1(x) ≈
n−k∑

i=1

α1
i Φ

1
yk+i

(x) := ũ1(x), x ∈ w1,

for some source points defined on the artificial boundaries: y1, ...., yk ∈ γ̂0 ∪ γ̂1 and
yk+1, ...., yn ∈ Γ̂1, (k > n).The vectorial coefficients α0

i =
(
α0

i,1, α
0
i,2

)
, α1

i =
(
α1

i,1, α
1
i,2

)

are obtained by solving the least square system

A∗AX = A∗B,(4.2)

on some collocation points x1, x2, ..., xl ∈ γ0 and xl+1, xl+2, ..., xm ∈ γ1 (m > l), where

A =




Φ0
y1

(x1) . . . Φ0
yk

(x1) 0 . . . 0
. . . . . . 0 . . . 0

Φ0
y1

(xl) . . . Φ0
yk

(xl) 0 . . . 0
Φ0

y1
(xl+1) . . . Φ0

yk
(xl+1) Φ1

yk+1
(xl+1) . . . Φ1

yn
(xl+1)

. . . . . . . . . . . .

Φ0
y1

(xm) . . . Φ0
yk

(xm) Φ1
yk+1

(xm) . . . Φ1
yn

(xm)

σ0(Φ0
y1

(xl+1))n . . . σ0(Φ0
yk

(xl+1))n −σ1(Φ1
yk+1

(xl+1))n . . . −σ1(Φ1
yn

(xl+1))n

. . . . . . . . . . . .

σ0(Φ0
y1

(xm))n . . . σ0(Φ0
yk

(xm))n −σ1(Φ1
yk+1

(xm))n . . . −σ1(Φ1
yn

(xm))n
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and

B =
[

g0(x1) · · · g0(xl) g1(xl+1) · · · g1(xm) gn
1
(xl+1) · · · gn

1
(xm)

]T
.

In the numerical experiments we consider n = 2m. We define the following quantities

‖E0‖m
∞ = max

i,j
‖u0(xi, yj) − ũm

0 (xi, yj)‖∞, for (xi, yj) ∈ w0,

‖E1‖m
∞ = max

i,j
‖u1(xi, yj) − ũm

1 (xi, yj)‖∞, for (xi, yj) ∈ w1

and ‖E‖m
∞ = max{‖E0‖m

∞, |E1‖m
∞}, where ũm

0 (x) and ũm
1 (x) are the approximate

solutions of u0(x) and u1(x), respectively, obtained by the MFS using m collocation
points and 2m source points. In this section we consider three numerical examples.

-4 -2 0 2 4

-4

-2

0

2

4

-4 -2 0 2 4

-4

-2

0

2

4

1 2 3 4 5 6

0

1

2

3

4

5

6

(a) Example 1 (b) Example 2 (c) Example 3

Fig. 4.1. Geometry of the domains and the artificial boundaries. Boundaries γ0 and γ1 in
black; source points defined on the artificial boundaries γ̃0 ∪ γ̃1 and Γ̃1 in blue and red, respectively.
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Example 1: In this example we consider the problem (4.1) with
• Ω = {(x, y) ∈ R2 : x2 + y2 < 3.52},
• the interface γ1 given by the parametrization

ϕ(t) = (1,−1) + (1 + 0.3 sin(4t)) (cos(t), sin(t)) , 0 ≤ t ≤ 2π,

• w1 =
{
(x, y) ∈ R2 : (x− 1)2 + (y + 1)2 < ρ(x, y)2

}
, where

ρ(x, y) = 1.0 + 0.3 sin (4 arctan ((y + 1)/(x− 1))) .
The Dirichlet boundary condition and the interface conditions are determined from
the following exact solution,

u(x, y) =

{
u0(x, y), (x, y) ∈ w0,
u1(x, y), (x, y) ∈ w1,

,

with

u0(x, y) =

(
−y(2x + y) − exp(y) sin(x) +

exp(x)

λ0 + µ0

(λ0 + 3µ0 + (µ0 − λ0)x) ,

exp(y) cos(x) − x exp(x) cos(y) +
1

λ0 + µ0

(
(λ0 + 3µ0)x2 + (λ0 − µ0)y2 + 2µ0xy

))
,

(x, y) ∈ w0,

u1(x, y) =

(
−2xy + exp(x) cos(y) −

exp(x)

λ1 + µ1

((λ1 + µ1)x − λ1 − 3µ1) sin(y),

1

λ1 + µ1

(
(λ1 − µ1)y2 + (λ1 + 3µ1)x2

)
− exp(x)(x cos(y) + sin(x))

)
,

(x, y) ∈ w1,(4.3)

where the values of the Lamé constants are given by λ0 = 2.5, λ1 = 5.2, µ0 = 6.5
and µ1 = 12.

In Table 4.1 the first column m is the number of collocation points, the second
column Cond(A), identified as the condition number of the matrix A, is given by
‖A‖2‖A+‖2, where A+ is the pseudoinverse of A and the third and fourth columns
are the absolute errors in w0 and w1, respectively. The results presented in Table 4.1
show that the matrix A has, as expected, a very large condition number. However,
is possible to obtain an approximate solution, of the problem (4.3), with a very small
error ‖E‖m

∞, namely for m = 640 we have ‖E‖m
∞ ≈ 10−12 near machine precision. In

Figures 4.2(a) and 4.2(b) we present the absolute error for the MFS solution of (4.3)
obtained with 640 collocation points and 1280 source points, and we observe that
the maximum of the absolute error for both coordinates of the solution is less than
6 × 10−12.

Table 4.1

Condition number, maximum of errors for Example 1.

m Cond(A) ‖E0‖m
∞ ‖E1‖m

∞

40 2.81057 × 106 2.86132 × 100 2.6406 × 100

80 1.46688 × 109 5.89266 × 10−2 5.94683 × 10−2

160 9.23019 × 1013 9.81098 × 10−6 2.08591 × 10−5

320 4.10794 × 1014 8.92367 × 10−10 2.39192 × 10−9

640 4.90659 × 1014 4.23245 × 10−13 4.33431 × 10−12

800 7.74936 × 1014 2.81997 × 10−13 4.89209 × 10−12
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(a) (b)

Fig. 4.2. Example 1- Absolute error for each coordinate of the MFS approximation with 640
collocation points and 1280 source points. (a) Error for the first coordinate, |u(x, y).e1− ũ(x, y).e1|.
(b) Error for the second coordinate, |u(x, y).e2 − ũ(x, y).e2|.

Example 2: In this example we consider (cf. Figure 4.1(b))
• Ω = {(x, y) ∈ R2 : x2 + y2 < 52},
• the interface γ1 given by the parametrization

ϕ(t) = ρ(t) (cos(t), sin(t)) , 0 ≤ t ≤ 2π,

with ρ(t) =
105π +

√
2 (315 + 42 cos(4t) − 10 cos(8t) + 210 sin(2t) − 18 sin(6t))

210π
.

• w1 =
{
(x, y) ∈ R2 : x2 + y2 < ρ(arctan(y/x))2

}
.

The Dirichlet boundary condition and the interface conditions are determined from
the following exact solution

u0(x, y) =

(
−y(y − 1) −

exp(x) sin(y)

λ0 + µ0

((x − 1)λ0 + (x − 3)µ0) ,

y(λ0 + µ0 + 2yµ0)

λ0 + µ0

− x exp(x) cos(y)

)
,

(x, y) ∈ w0,

u1(x, y) =

(
y(λ1 + µ1 + 2xµ1)

λ1 + µ1

+ y sin(x) exp(y),

x(1 − x) −
exp(y) cos(x)

λ1 + µ1

((y − 1)λ1 + (y − 3)µ1)

)
,

(x, y) ∈ w1,(4.4)

where the values of the Lamé constants are given by λ0 = 10, λ1 = 25, µ0 = 15 and
µ1 = 50.
From the results listed in Table 4.2 we can see, like on the previous example, for each
value of m we have a ill conditioned system of equations, the condition number of
matrix A is large and increasing with m. However the MFS solution has small errors.
For instance, when m = 640 we have ‖E‖m

∞ ≈ 10−10. Figure 4.3 show plots of the
absolute error to the MFS solution ũ with m = 640. In Figures 4.4 and 4.5 we present
the absolute error on each domain w0 and w1, that means, the absolute error for the
MFS solutions ũ0 and ũ1, respectively. From Figure 4.5 we see that the maximum of
the absolute errors to the MFS solution ũ1 is achieved near the boundary that defines
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Table 4.2

Condition number, maximum of errors for Example 2.

m Cond(A) ‖E0‖m
∞ ‖E1‖m

∞

40 7.33891 × 105 1.21219 × 100 4.91204 × 101

80 1.4063 × 107 7.98405 × 10−2 8.77217 × 10−1

160 1.47196 × 1011 2.16442 × 10−5 4.48811 × 10−4

320 3.75166 × 1013 6.34955 × 10−9 1.37902 × 10−10

640 4.30366 × 1013 1.47982 × 10−12 9.04521 × 10−11

the interface. We have a similar situation for the absolute error to the MFS solution
ũ0, the maximum of the absolute error is obtained near the boundary of Ω (see Figure
4.4).

(a) (b)

Fig. 4.3. Example 2- Absolute error for each coordinate of the MFS solution ũ with 640
collocation points and 1280 source points. (a) Error for the first coordinate, |u(x, y).e1− ũ(x, y).e1|.
(b) Error for the second coordinate, |u(x, y).e2 − ũ(x, y).e2|.
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(a) (b)

Fig. 4.4. Example 2- Absolute error for each coordinate of the MFS with with 640 collocation
points and 1280 source points, on domain w0. (a) Error for the first coordinate, |u0(x, y).e1 −
ũ0(x, y).e1—. (b) Error for the second coordinate, |u0(x, y).e2 − ũ0(x, y).e2|.

(a) (b)

Fig. 4.5. Example 2- Absolute error for each coordinate of the MFS solution with with 640
collocation points and 1280 source points, on the interior of the interface γ1. (a) Error for the first
coordinate, |u1(x, y).e1−ũ1(x, y).e1|. (b) Error for the second coordinate, |u1(x, y).e2−ũ1(x, y).e2|.
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Example 3: In the last example we consider the domain Ω, the interface γ1 and
the domain w1 defined as follows (cf. Figure 4.1(c)).

• Ω = {(x, y) ∈ R2 : (x− 3.5)2 + (y − 3)2 < 2.52},
• γ1 is given by the parametrization

ϕ(t) = (3.5, 2.5) +
(
1 + 0.2 cos(2t)2

)
(cos(t), sin(t)) , 0 ≤ t ≤ 2π,

• w1 =
{
(x, y) ∈ R2 : (x− 3.5)2 + (y − 2.5)2 < ρ(x, y)2

}
, with

ρ(x, y) = 1.0 + 0.2 cos (2 arctan ((y − 2.5)/(x− 3.5)))2 .

The Dirichlet boundary condition and the interface conditions are determined from
the following exact solution

u0(x, y) =

(
1

r2β0

(
y2(β0 + y(λ0 + 3µ0)) + x2(−β0 + y(3λ0 + 5µ0)) + eyyr2β0 sin(x)

)
,

x
(
−x2 + (y − 2)y

)

r2
−

1

β0

ey(yβ0 − λ0 − 3µ0) cos(x)

)
,

(x, y) ∈ w0,

u1(x, y) =

(
−y2 −

2x(x + y)

r2
+

1

r
−

1

β1

ex((−1 + x)λ1 + (−3 + x)µ1) sin(y)

−2xy −
2y(y + x)

r2
+

1

r
+

2xy(λ1 + 2µ1)

β1

− exx cos(y)

)
,

(x, y) ∈ w1,(4.5)

where r = x2 + y2, βi = λi + µi, i = 0, 1.
The purpose of this example is consider several values for the Lamé coefficients λ0, µ0

(small and large values) and analyse the absolute errors of the MFS solutions. In this
example we scale ‖E‖m

∞, as follows to get the relative errors

rm
∞ =

‖E‖m
∞

maxi,j ‖u(xi, yj)‖∞
.

In Table 4.3 we list, for several values of m, the condition number of the matrix A in
the sense of the pseudoinverse matrix, Cond(A) = ‖A‖2‖A+‖2, the absolute errors
‖E‖m

∞ and the relative errors rm
∞ for the MFS solution of (4.5) (for several values of

λ0 and µ0). We note that for the cases when the Lamé coefficients λ0, µ0 has the
large and small values the absolute error is bigger. However the condition number of
the matrix A has similar values for all the values of λ0, µ0.

5. Conclusions.

In this paper, we have proposed a meshfree method based on fundamental solu-
tions basis functions for solving a linear elasticity problem with interfaces. The main
idea of these methods is to consider representations of the solution as a linear combi-
nation of point source fundamental tensors centered at some points placed outside the
domain of interest (cf. (3.4)-(3.5)). The vectorial coefficients of these linear combi-
nations can be computed by imposing, on some boundary points (collocation points),
the boundary conditions of the transmission problem. We presented injectivity and
density results in order to justify the proposed method. Several numerical examples
in 2D domains were presented in order to show the accuracy and feasibility of the
method. Overall, we obtained good results for smooth domains and smooth bound-
ary data. Possible extensions to the 3D problem require only surface discretizations
and are straightforward.
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Table 4.3

Condition number, maximum of errors and relative errors for Example 3 with λ1 = µ1 = 10
and several values of the Lamé coefficients λ0, µ0.

λ0 = 10, µ0 = 5 λ0 = 1000, µ0 = 5000

m Cond(A) ‖E‖m
∞ rm

∞ Cond(A) ‖E‖m
∞ rm

∞

40 1.00770 × 105 5.09696 × 100 5.78813 × 10−3 9.20707 × 107 1.58734 × 101 3.51017 × 10−2

80 3.98901 × 106 3.21298 × 10−3 3.64867 × 10−6 4.15415 × 109 1.77547 × 10−3 2.53424 × 10−6

160 7.63681 × 1010 3.01274 × 10−7 6.66225 × 10−10 1.25902 × 1013 2.72164 × 10−7 6.01853 × 10−10

320 4.33864 × 1013 3.09228 × 10−11 3.51161 × 10−14 4.49825 × 1013 2.05168 × 10−8 4.537 × 10−11

640 4.29489 × 1013 3.24434 × 10−11 3.68428 × 10−14 4.29489 × 1013 5.17174 × 10−9 7.38194 × 10−12

λ0 = 0.1, µ0 = 0.5 λ0 = 0.0001, µ0 = 0.0005

m Cond(A) ‖E‖m
∞ rm

∞ Cond(A) ‖E‖m
∞ rm

∞

40 3.84064 × 104 1.33479 × 102 2.95169 × 10−1 3.18481 × 105 2.25465 × 102 4.98584 × 10−1

80 5.50975 × 106 1.32662 × 10−2 2.90369 × 10−5 3.68906 × 108 1.54663 × 102 3.42016 × 10−1

160 4.81489 × 1010 3.50037 × 10−7 7.74058 × 10−10 2.32623 × 1013 9.87367 × 10−6 2.18342 × 10−8

320 4.17899 × 1013 1.31593 × 10−11 1.8783 × 10−14 4.50297 × 1013 2.46195 × 10−9 5.38905 × 10−12

640 4.06605 × 1013 1.74225 × 10−11 2.48682 × 10−14 4.50166 × 1013 9.2848 × 10−9 1.32528 × 10−11
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