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In this work, we address the reconstruction of characteristic source functions in a potential
problem, from the knowledge of full and partial boundary data. The inverse problem is
formulated as an inverse obstacle problem and two iterative methods are applied. A decom-
position method based on the Kirsch-Kress method (requires Cauchy data reconstruction)
and a Newton-type of method based on the domain derivative (requires the resolution of
direct transmission problems). For the reconstruction of Cauchy data we use the method
of fundamental solutions (MFS) and we show that, for partial data, we can consider only
one exterior artificial boundary. We test the domain derivative method using the MFS
(for transmission problems) and present theoretical results that justifies this numerical
approximation. The feasibility of these methods will be illustrated by numerical simulations
for both full and partial data.
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1. Introduction

The identification and reconstruction of source functions from boundary data is
an inverse problem with many applications in nondestructive testing (eg. [1]). It
is well known that, for a potential problem, a general source function can not be
identified from boundary data (see [2], [3] for an overview on the subject). Several
works have addressed the identification of particular source functions. For instance,
point sources (eg. [3], [5]), surface sources (eg. [4]), source functions with known
Laplacian (cf. [6]), characteristic source functions (cf. [7]). More generally, the same
type of limitations on the identification occur on inverse acoustic source problems.
In this case, however, the source can be identified from an infinite number of
boundary measurements by varying the wavenumber (cf. [8]).

In this work, we address the identification and reconstruction of characteristic
source functions f = χω defined on a 2D star shaped domain ω ⊂⊂ Ω, from
the knowledge of full and partial boundary data on Σ ⊆ ∂Ω. This ill-posed and
non linear problem has been addressed in [9] where an iterative method was im-
plemented via domain derivative, using the boundary element method (BEM) as
numerical solver. More recently, a method based on the reciprocity gap functional
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was proposed and tested in [10]. In both cases, the study was only for full boundary
data.

We propose two approaches for the shape reconstruction: First, a decomposition
method based on the Kirsch-Kress method (cf. [11]). Second, the domain derivative
method proposed in [9] but using the MFS as numerical solver. The first approach
requires, at a first step, the reconstruction of Cauchy data using the MFS (cf. [12]
for an overview and [13] for theoretical results on the MFS for inverse problems).
The second approach requires the MFS for (direct) transmission problems.

One of the main advantages of the MFS for direct problems (eg. [14]) is that pro-
vides fast and accurate results (at least for smooth boundaries and smooth data)
and has small implementation costs. It is also a meshfree method and is particular
suited for iterative methods that requires solving several direct problems per itera-
tion. Recently, the MFS approximation for a transmission potential problem have
been successfully implemented (cf. [15]) and we present some theoretical results
that justifies this numerical method.

This work is the result of the proceedings paper [16] and is organized as follows:
In section 3 we present some results that justifies the MFS approximation for direct
transmission problems. Section 4 describes the decomposition method and we prove
that for partial boundary data, the MFS for Cauchy data fitting requires only one
exterior artificial boundary. Section 5 concerns the iterative method using domain
derivative. Last section concerns numerical simulations and discussion. We start
with the direct and inverse problems formulation.

2. Direct and inverse problems

Let Ω be a domain in R2, that is, an open, bounded and simply connected set with
regular boundary Γ := ∂Ω (at least C1). Denote by χω the characteristic function

χω(x) =
{

1 if x ∈ ω
0 otherwise

on a domain ω ⊂⊂ Ω with (regular) boundary γ := ∂ω.

The direct problem is, given a characteristic source function χω and an input
function gΓ on Γ, compute gn

Γ := ∂nu on Γ, where u solves

{
∆u = χω in Ω
u = gΓ on Γ .

Since χω ∈ L2(Ω) and considering gΓ ∈ H1/2(Γ) then this problem is well posed in
H1(Ω). Define

HΓ := H1/2(Γ)×H−1/2(Γ).

In this setting, the pair of compatible Cauchy data (gΓ, gn
Γ) belongs to HΓ.

Note that the above direct problem can also be formulated as the transmission
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problem





∆u+ = 0 in Ωc := Ω \ ω
u+ = gΓ on Γ
[u] = 0 on γ
[∂nu] = 0 on γ
∆u− = 1 in ω

where [u] = u+ − u− and [∂nu] = ∂nu+ − ∂nu− are the jump of the trace and
normal trace across γ, respectively. We assume that the normal direction on γ
points outwards with respect to Ωc (hence, inwards with respect to ω).

Let up be a function that satisfies ∆up = 1 in ω (take for instance up(x) = x.x/4).
Then, considering





∆u+
H = 0 in Ωc := Ω \ ω

u+
H = gΓ on Γ

[uH ] = up on γ
[∂nuH ] = ∂nup on γ
∆u−H = 0 in ω

we have

(u+, u−) = (u+
H , u−H − up).

We shall also consider the more general transmission problem

(T )





∆u+ = 0 in Ωc := Ω \ ω
u+ = gΓ on Γ
[u] = gγ on γ
[∂nu] = gn

γ on γ
∆u− = 0 in ω

.

This problem is well posed in H1(Ωc) × H1(ω), taking the input functions
(gΓ, gγ , gn

γ ) in H1/2(Γ)×Hγ .

The inverse problem is to retrieve χω (or equivalently the shape of ω) from
a pair of compatible Cauchy boundary data (gΓ, gn

Γ). We will also consider the
inverse problem for partial boundary data. This problem can be formulated as
follows: Consider the disjoint union

Γ = Σ ∪Π ∪ (
Γ \ Σ

)

where, Σ is a relatively open (non-empty) subset of Γ such that Γ \ Σ 6= ∅. Define
the spaces

H1/2(Σ) :=
{

u|Σ : u ∈ H1/2(Γ)
}

and

H̃1/2(Σ) :=
{

u ∈ H1/2(Σ) : supp u ⊂ Σ
}

.
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Let

H−1/2(Σ) :=
(
H̃1/2(Σ)

)′

and

H̃−1/2(Σ) :=
(
H1/2(Σ)

)′

be the dual space of H̃1/2(Σ) and H1/2(Σ), respectively (see [17]). The inverse
problem for partial boundary data is to retrieve the characteristic function χω

from a pair of Cauchy data (gΣ, gn
Σ) ∈ HΣ := H1/2(Σ)×H−1/2(Σ).

2.1. Identification

It is well known that the Dirichlet-to-Neumann map for this problem can be ob-
tained by a single measurement and that, in general, it is not possible to recover a
characteristic function from this data (eg. [9]). However, for characteristic functions
defined on star shaped domains we have the following identification result, due to
Novikov.

Theorem 2.1 : [7] Let ω ⊂⊂ Ω be a star shaped domain. Then, a single pair of
full compatible Cauchy data (gΓ, gn

Γ) determines uniquely χω.

Since suppχω ⊂⊂ Ω then Holmgren’s lemma and the above theorem provides
the following identification from partial data.

Proposition 2.2: A single pair of partial compatible Cauchy data (gΣ, gn
Σ) de-

termines uniquely a characteristic function defined on a star shaped domain.

Proof : We follow [8]. Suppose that exists u ∈ H1(Ω) satisfying





∆u = χσ in Ω
u = 0 on Σ
∂nu = 0 on Σ

where σ ⊂⊂ Ω is any domain. Then, ∆u = 0 in the open set Ω \ σ. Since Σ ⊂
Γ ⊂ ∂ (Ω \ σ) and (u|Σ, ∂nu|Σ) = (0, 0) then, by Holmgren’s lemma, u = 0 in
Ω\σ. This implies (u|Γ, ∂nu|Γ) = (0, 0). In particular, if χω1 , χω2 are characteristic
functions defined on star shaped domains ω1, ω2 ⊂⊂ Ω generating boundary data
(g1

Γ, gn,1
Γ ) and (g2

Γ, gn,2
Γ ), respectively, with g1

Σ = g2
Σ and gn,1

Σ = gn,2
Σ then we must

have (g1
Γ, gn,1

Γ ) = (g2
Γ, gn,2

Γ ) and the identification follows from the above Theorem.
¤

3. The MFS for transmission problems

Consider some 2D regular domains Ω̂, ω̂i, ω̂e such that Ω ⊂⊂ Ω̂, ω̂i ⊂⊂ ω and
ω ⊂⊂ ω̂e. Define Ω̂c = Ω̂ \ ω̂i and note that Ωc ⊂⊂ Ω̂c. Following the above
notation, we define the boundaries Γ̂ := ∂Ω̂, γ̂i := ∂ω̂i and γ̂e := ∂ω̂e (see Fig. 1).

On these artificial boundaries, we define the following layer representations

u1(x) = SLΓ̂(φ)(x) + SLγ̂i
(ϕ)(x), x ∈ R2 \ (Γ̂ ∪ γ̂i) (1)
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(a) (b)

Figure 1. The artificial domains Ω̂, ω̂i and ω̂e.

u2(x) = SLγ̂e
(ψ)(x), x ∈ R2 \ γ̂e. (2)

in terms of single layer potentials

SLΓ̂(φ)(x) :=
∫

Γ̂
Φx(y)φ(y)dσy.

Here,

Φy(x) := − 1
2π

log |x− y|

is a fundamental solution centered at y, that is, ∆Φy = −δy and δ is the Dirac
delta.

Note that

∆u1 = 0 in Ωc and ∆u2 = 0 in ω. (3)

Thus, to solve (T ) using this representation we have to solve the following system
of integral equations





SLΓ,Γ̂(φ) + SLΓ,γ̂i
(ϕ) = gΓ

SLγ,Γ̂(φ) + SLγ,γ̂i
(ϕ)− SLγ,γ̂e

(ψ) = gγ

SLn
γ,Γ̂

(φ) + SLn
γ,γ̂i

(ϕ)− SLn
γ,γ̂e

(ψ) = gn
γ

,

where SLΓ,Γ̂ and SLn
Γ,Γ̂

are the trace and normal trace of SLΓ̂ on Γ, respectively.
This system is solvable for input functions (gΓ, gγ , gn

γ ) in the range of the linear
and bounded operator M : H−1/2(Γ̂) × H−1/2(γ̂i) × H−1/2(γ̂e) → H1/2(Γ) × Hγ

given by

M(φ, ϕ, ψ) :=




SLΓ,Γ̂ SLΓ,γ̂i
0

SLγ,Γ̂ SLγ,γ̂i
−SLγ,γ̂e

SLn
γ,Γ̂

SLn
γ,γ̂i

−SLn
γ,γ̂e







φ
ϕ
ψ


 .

However, the above operator is not surjective. Instead, we prove that the restriction
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ofM to an appropriate space is injective and has dense range. In our framework, the
previous restriction on the functional space is only needed for the 2D case, because
of the asymptotic behavior of the fundamental solution. Consider the space

H±1/2(Γ) :=
{

u ∈ H±1/2(Γ) :
∫

Γ
u = 0

}
' H±1/2(Γ)/R

where, for H−1/2(Γ) the above integral must be interpreted in the duality sense.

Proposition 3.1: The restriction of M to H−1/2(Γ̂)×H−1/2(γ̂i)×H−1/2(γ̂e) is
injective.

Proof : Consider the above single layer representations (1) and (2) u1, u2, for some
densities (φ, ϕ, ψ) ∈ kerM. This last condition and equations (3) imply that the
pair (u1, u2) solves the transmission problem (T) for null input data. Thus u1 = 0
in Ωc and u2 = 0 in ω. By analytic continuation, the traces (coming from Ω̂c) u1|∂Ω̂c

and ∂nu1|∂Ω̂c
are null. In the same way, the traces (coming from inside γ̂e) u2|∂ω̂e

and ∂nu2|∂ω̂e
are null. Since the single layer representation implies the continuity

of the trace across the boundary we must have u1|∂Ω̂c
= 0 and u2|∂ω̂e

= 0 coming
from outside of Ω̂c and ω̂e, respectively. Now, since the exterior problems





∆u = 0 in R2 \ Ω̂
u = 0 on Γ̂
u = O(1) |x| → ∞

,





∆v = 0 in R2 \ ω̂e

v = 0 on γ̂e

v = O(1) |x| → ∞
,

(u, v) ∈ H1
loc(R2 \ Ω̂) × H1

loc(R2 \ ω̂e), are well posed and (φ, ϕ, ψ) ∈ H−1/2(Γ̂) ×
H−1/2(γ̂i) × H−1/2(γ̂e) then, (u1, u2) satisfy the above problems. It follows that
the normal traces ∂nu1|Γ̂ (coming from outside of Ω̂c) and ∂nu2|γ̂e

(coming from
outside of ω̂e) are null and therefore the normal jumps of u1 and u2 across Γ̂ and
γ̂e, respectively, are null. It is easy to establish that in the above conditions, the
normal jump of u1 across γ̂i is also null, from where it follows that

φ = ϕ = ψ = 0.

¤

The following lemma will be usefull to prove the denseness of the range.

Lemma 3.2: The adjoint of M is the operator M∗ : H−1/2(Γ) × (Hγ)′ →
H1/2(Γ̂)×H1/2(γ̂i)×H1/2(γ̂e) given by

M∗ =




SLΓ̂,Γ SLΓ̂,γ DLΓ̂,γ

SLγ̂i,Γ SLγ̂i,γ DLγ̂i,γ

0 −SLγ̂e,γ −DLγ̂e,γ




where DLΓ̂,γ is the trace on Γ̂ of the double layer potential DLγ.

Proof : We recall that the double layer potential is defined by

DLγ(φ)(x) =
∫

γ
∂ny

Φx(y)φ(y)dσy.
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The result follows from the well known properties of the single and double layer
potentials (eg [17]). ¤

Proposition 3.3: The restriction of M to H−1/2(Γ̂)×H−1/2(γ̂i)×H−1/2(γ̂e) has
dense range.

Proof : It is sufficient to prove that the restriction ofM∗ toH−1/2(Γ)×H−1/2(γ)×
H1/2(γ) is injective. Let (φ, ϕ, ψ) ∈ kerM∗ and consider the function

u1 = SLΓ(φ) + SLγ(ϕ) + DLγ(ψ).

By hypothesis, u1 = 0 on Γ̂ ∪ γ̂i and since ∆u1 = 0 in R2 \ (Γ ∪ γ) then using the
arguments of the previous proposition we must have

u1|∂Ωc
= ∂nu1|∂Ωc

= 0

(coming from the exterior of Ωc). Thus,

φ = [∂nu1]Γ = ∂nu1|Γ, ϕ = [∂nu1]γ = ∂nu1|γ , −ψ = [u1]γ = u1|γ

where the traces are taken coming from the interior of Ωc.
Now, define the function (we are still assuming that the normal direction points

inwards to ω)

u2 = SLγ(−ϕ) + DLγ(−ψ).

By hypothesis, u2 = 0 in γ̂e and by analytic continuation arguments, we must have
u2 = 0 in R2 \ ω. From this,

ϕ = [∂nu2]γ = ∂nu2|γ , −ψ = [u2]γ = u2|γ ,

taking the traces coming from inside of ω. Therefore,





u1|Γ = 0
u1|γ − u2|γ = −ψ − (−ψ) = 0
∂nu1|γ − ∂nu2|γ = ϕ− ϕ = 0

and the pair (u1, u2) solves problem (T ) with null input data hence, u1 = 0 in
Ωc and u2 = 0 in ω. We conclude that u1 = 0 in R2 \ ∂Ωc and u2 = 0 in R2 \ ∂ω
and therefore the jumps φ, ϕ, ψ must be null. ¤

In particular,

Corollary 3.4: The space

span
({

(Φy|Γ, Φy|γ , ∂nΦy|γ) : y ∈ Γ̂ ∪ γ̂i

}
∪ {(0,Φz|γ , ∂nΦz|γ) : z ∈ γ̂e}

)
+ R

is dense in H1/2(Γ)×Hγ.

In order to construct the MFS approximation for the transmission problem, we
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consider (for simplicity, we shall drop the constants)

ũ1 =
m1∑

j=1

αjΦ(x− yΓ̂
j )

︸ ︷︷ ︸
S̃LΓ̂(α1,...,αm1 )

+
m2∑

j=m1+1

αjΦ(x− yγ̂i

j )

︸ ︷︷ ︸
S̃Lγ̂i

(αm1+1,...,αm2 )

, ũ2 =
m∑

j=m2+1

αjΦ(x− yγ̂e

j )

︸ ︷︷ ︸
S̃Lγ̂e (αm2+1,...,αm)

(4)

where yΓ̂
j are source points on the artificial boundary curve Γ̂. These functions

ũ1, ũ2 can be seen as a discretization of the single layer integrals (1) and (2)
defining the representations u1 and u2. The corresponding discretization of M is
M̃ : Rm → L2(Γ)× L2(γ)2,

M̃(α1, . . . , αm) :=




S̃LΓ,Γ̂ S̃LΓ,γ̂i
0

S̃Lγ,Γ̂ S̃Lγ,γ̂i
−S̃Lγ,γ̂e

S̃L
n

γ,Γ̂ S̃L
n

γ,γ̂i
−S̃L

n

γ,γ̂e







α1
...

αm


 .

Lemma 3.5: M̃ is injective and, in particular,

S =
{(

Φyj
|Γ,Φyj

|γ , ∂nΦyj
|γ

)
: yj ∈ Γ̂ ∪ γ̂i, j = 1, . . . , n

}

∪ {(0, Φzk
|γ , ∂nΦzk

|γ) : zk ∈ γ̂e, k = 1, . . . , m}

is linearly independent.

Proof : Take (α1, . . . , αm) ∈ kerM̃ and consider (ũ1, ũ2) defined as in (4). Then,
the pair (ũ1, ũ2) solves (T) with null input data hence ũ1 = 0 in Ωc and ũ2 = 0 in
ω. By analytic continuation, ũ1 = 0 in R2 \ {yΓ̂

j , yγ̂i

j } and ũ2 = 0 in R2 \ {yγ̂e

j }. The
result now follows from the fact that

{Φ(• − yj) : j = 1, . . . ,m}

is linearly independent. ¤

The coefficients can be computed by imposing

M̃(α1, . . . , αm)(xΓ
j , xγ

j , xγ
j ) =




gΓ(xΓ
j )

gγ(xγ
j )

gn
γ (xγ

j )




on some collocation points xΓ
j ∈ Γ, xγ

j ∈ γ or in a least squares sense.

4. Shape reconstruction using a decomposition method

In this section we introduce a method for the reconstruction of γ = ∂ω from the
available Cauchy data on Σ ⊂ Γ. In a first step, we use an appropriate harmonic
function, ũ1, to fit this data. Clearly, if ũ1 is harmonic in some domain Ω \ σ ⊃
Ωc and (ũ1|Σ, ∂nũ1|Σ) = (gΣ, gn

Σ) then by analytic continuation and Holmgren’s
lemma, u1 is the solution of the direct problem in Ωc. However, such function
might not exist on such domain, even for compatible Cauchy data. In order to
properly deal with this ill-posed nature of the problem the fitting of the data must
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be considered using some sort of regularization technique (here we shall consider
Tikhonov).

On a second (non linear) step we search for γ̃ in a proper class of shapes, in order
to minimize the norm of the residual

∣∣∣∣∂nũ2|γ̃ − ∂nũ1|γ̃ + ∂nup|γ̃
∣∣∣∣

2
,

where

{
∆ũ2 = 0 in ω̃
ũ2 = ũ1 − up on γ̃ = ∂ω̃

and up(x) = x · x/4.

For the first step, we consider a representation of ũ1 in terms of a linear combi-
nation of fundamental solutions centered at some source points (MFS for Cauchy
data) which we describe in the following section.

4.1. The MFS applied to Cauchy data fitting

4.1.1. Full data

Let u1 be defined by equation (1). In order to fit the boundary data
(gΓ, gn

Γ) ∈ HΓ

(
= H1/2(Γ)×H−1/2(Γ)

)
we consider the boundary integral equa-

tions KΓ(φ, ψ) = (gΓ, gn
Γ), where KΓ : H1/2(Γ̂) ×H1/2(γ̂i) → HΓ is the linear and

bounded operator

KΓ(φ, ψ) :=

[
SLΓ,Γ̃ SLΓ,γ̂i

SLn
Γ,Γ̃

SLn
Γ,γ̂i

][
φ
ψ

]
.

We have the following result (cf. [18]).

Lemma 4.1: The restriction of KΓ to H1/2(Γ̂)×H1/2(γ̂i) has dense range in HΓ

hence

span
{

(Φy|Γ, ∂nΦy|Γ) : y ∈ Γ̂ ∪ γ̂i

}
+ R

is dense in HΓ.

Remark 1 : In the previous density result, an interior artificial curve γ̂i ⊂ ω
must be considered. In particular, we must have some knowledge on the location
and dimension of ω. This is not a big restriction since, as discussed in [10], the
barycenter and measure of ω can be retrieved from the Cauchy data.

The above result justifies the MFS approximation for the Cauchy problem given
by a linear combination of fundamental solutions centered at several source points
y1, . . . , ym ∈ Γ̂ ∪ γ̂i, that is we consider the expansion

ũ1 :=
m∑

i=1

αiΦyi
, yi ∈ Γ̂ ∪ γ̂i.
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Lemma 4.2: The set

K =
{

(Φyj
|Γ, ∂nΦyj

|Γ) : yj ∈ Γ̂ ∪ γ̂i, j = 1, . . . , m
}

is linearly independent.

Proof : Let (α1, . . . , αm) be such that

m∑

i=1

αiΦyi
(x) = 0 and

m∑

i=1

αi∂nΦyi
(x) = 0, ∀x ∈ Γ.

Defining ũ1 =
∑m

i=1 αiΦyi
we have (ũ1|Γ, ∂nũ1|Γ) = (0, 0). On the other hand,

∆u = 0 in Ω and by Holmgren’s lemma and analytic continuation, u = 0 in
R2 \ {y1, . . . , ym}. Since {Φ(• − yj) : j = 1, . . . ,m} is independent, the result
follows. ¤

We compute the coefficients in order to fit the boundary conditions on some col-
location points x1, . . . , xn ∈ Γ (n ≥ m/2). Due to ill-conditioning problems, some
regularization method must be considered and we apply the Tikhonov regulariza-
tion method. Thus, we compute the coefficients αi by solving the system

(µI + A∗A)X = A∗B

where µ > 0 is the regularization parameter, I is the identity matrix,

A =




Φy1(x1) . . . Φym
(x1)

. . . . . . . . .
Φy1(xn) . . . Φym

(xn)
∂nΦy1(x1) . . . ∂nΦym

(x1)
. . . . . . . . .

∂nΦy1(xn) . . . ∂nΦym
(xn)




and B =




gΓ(x1)
. . .

gΓ(xn)
gn
Γ(x1)
. . .

gn
Γ(xn)




.

4.1.2. Partial data

The above method can still be applied to fit partial Cauchy data. In this section
we prove that for partial data we can apply the method considering only one
exterior artificial boundary (albeit worst numerical results).

In the following, we shall drop the constants by taking an artificial domain
(bounded, open and simply connected) Ω̂ such that Ω̂ ⊂ R2 \Ω. Denote by Γ̂ = ∂Ω̂
his (regular) boundary and define the linear operator KΣ : H−1/2(Γ̂) → HΣ by

KΣφ =
(
SLΣ,Γ̂φ, SLn

Σ,Γ̂
φ
)

where SLΣ,Γ̂ is the restriction of SLΓ,Γ̂ to Σ. We claim that this operator satisfies
similar injective and denseness properties.

Lemma 4.3: KΣ is injective.

Proof : Consider φ ∈ kerKΣ and define

u1 = SLΓ̂φ.

By hypothesis, the pair of Cauchy data (u1, ∂nu1) |Σ is null and since ∆u1 = 0
in R2 \ Γ̂ it follows that u1 = 0 in R2 \ Ω̂. Since the single layer representation
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implies the continuity of the trace across the boundary Γ̂, the normal trace is also
continuous across Γ̂ and we conclude that φ = 0. ¤

Following the above section, before establishing the denseness result, we start by
computing the adjoint of KΣ.

Lemma 4.4: The adjoint of KΣ is given by

K∗Σ(ψ1, ψ2) = SLΓ̂,Σψ1 + DLΓ̂,Σψ2, (ψ1, ψ2) ∈ H∗
Σ

Proof : Let φ ∈ H−1/2(Γ̂) and ψ = (ψ1, ψ2) ∈ H∗
Σ = H̃−1/2(Σ)× H̃1/2(Σ).

〈KΣφ, ψ〉HΣ×H∗
Σ

=
〈
SLΣ,Γ̂φ, ψ1

〉
H1/2(Σ)×H̃−1/2(Σ)

+
〈
SLn

Σ,Γ̂
φ, ψ2

〉
H−1/2(Σ)×H̃1/2(Σ)

=
∫

Σ

∫

Γ̂
Φy(x)φ(x)dσxψ1(y)dσy +

∫

Σ

∫

Γ̂
∂ny

Φy(x)φ(x)dσxψ2(y)dσy

=
∫

Γ̂

∫

Σ
Φy(x)ψ1(y)dσyφ(x)dσx +

∫

Γ̂

∫

Σ
∂ny

Φy(x)ψ2(y)dσyφ(x)dσx

=
∫

Γ̂

∫

Σ

(
Φy(x)ψ1(y) + ∂ny

Φy(x)ψ2(y)
)
dσyφ(x)dσx

=
〈
φ, SLΓ̂,Σψ1 + DLΓ̂,Σψ2

〉
H−1/2(Γ̂)×H1/2(Γ̂)

.

¤

Proposition 4.5: KΣ has dense range and therefore,

span
{

(Φy|Σ, ∂nΦy|Σ) : y ∈ Γ̂
}

is dense in HΣ.

Proof : Under the identification (see [17])

H̃−1/2(Σ) '
{

u ∈ H−1/2(Γ) : supp u ⊂ Σ
}

let (ψ1, ψ2) ∈ kerK∗Σ and consider

u1 = SLΓψ̃1 + DLΓψ2,

where ψ̃1 ∈ H−1/2(Γ) is the extension of ψ1 by zero to the whole boundary, Γ. By
hypothesis, u1 = 0 on Γ̂ and ∆1u = 0 in R2 \ Γ implies u1 = 0 in R2 \ Ω. Hence,

ψ̃1 = [∂nu1]|Γ = ∂nu−1 |Γ and ψ2 = −[u1]|Γ = −u−1 |Γ.

On the other hand ψ2 ∈ H̃1/2(Σ), therefore supp ψ2 ⊂ Σ and we get

(ψ̃1, ψ2) = (0, 0)

on the open (non empty) set Γ \ Σ. The above jump identities gives

(u1, ∂nu1)|Γ\Σ = (0, 0)
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and by Holmgren’s lemma, it follows u1 = 0 in Ω hence, ψ̃1 = ψ2 = 0. ¤

5. Shape reconstruction using the domain derivative

Instead of decomposing ill-posedness and non-linearity of the inverse problem as
proposed in previous section, we now consider the inverse problem formulated as
a non linear and ill-posed equation

F (γ) = gn
Γ

where F : A → L2(Γ) is defined by F (γα) = ∂nuα|Γ and uα ∈ H1(Ω) satisfies

{
∆uα = χωα

in Ω
uα = gΓ on Γ ,

for gΓ ∈ H1/2(Γ) and γα = ∂ωα ∈ A where

A :=
{
γ = ∂ω ∈ C1 : ω ⊂⊂ Ω

}

denotes the set of admissible shapes.
By linearising the above equation, we obtain

F (γα) + F ′(γα)h = gn
Γ .

Proposition 5.1: [9] The Fréchet derivative of F at γα is given by

F ′(γα)h = ∂nu′|Γ

where u′ ∈ H1
0 (Ω) satisfies





∆u′ = 0 in Ω \ γα

[u′] = 0 on γα

[∂nu′] = h · n on γα

(5)

From this, applying the Levenberg-Marquardt method we obtain the update step

(
µI + J>J

)
h = −J> (F (γα)− gn

Γ) (6)

where J = [∂nu′] is the Jacobian matrix. Note that each iteration step requires
several direct transmission problems. We apply the MFS, as described in section
3, to solve these problems.

6. Numerical Simulations

In the following numerical simulations, we considered Γ = ∂B(0, 4) and two obsta-
cles. First, a kite shaped domain ω1, with boundary defined by the parametrization

t ∈ [0, 2π[→ R2, t 7→ γ1(t) =
(
1.2 cos (t) + 0.9 cos2 (t), 2.0 sin (t)

)
.
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Figure 2. Reconstruction in A4 (full data without noise).

The second, ω2, has a peanut shape and the boundary is given by the parametriza-
tion

t ∈ [0, 2π[→ R2, t 7→ γ2(t) =
2 + 0.9 cos (2t)

2 + sin2 (t)
(cos (t), sin (t)) + (1, 1).

For both cases, we took the input function gΓ ≡ 0 and generated the measured
data, gn

Γ , solving the corresponding direct problem with the MFS.
The first simulations, concerns the recovery of the kite using the decomposition

method. Here, we considered the artificial boundaries Γ̂ = ∂B(0, 6) and γ̂1 =
∂B(0, 0.4) (these artificial boundaries are different from the ones considered in the
direct problem). The number of observation points

gn
Γ(x1), . . . , gn

Γ(xm)

were m = 80, uniformly distributed on the whole Γ (for full data). The Tikhonov
regularization parameter was µ = 10−8. The starting shape was γ(0) = ∂B(0, 2.0)
and we search for the updates in

A4 :=





4∑

j=0

(αj cos (jt) + α5+j sin (jt)) (cos t, sin t)



 ' R9.

The iterative procedure stops when the relative evolution of the objective function
is ≤ 10−2. For data without noise, the procedure stopped after 6 iterations and the
reconstruction result is presented in Fig. 2. In Fig. 3, we present the simulation
results for the same setting but with data affected by (up to) 5% of random noise
(this time, the procedure stopped after 10 iterations).

Next simulations (Fig. 4) concerns the reconstruction from partial boundary data
with and without noise. In this case, we considered m = 80 observation points
uniformly distributed over the arc (represented by the green dots)

Σ = {4(cos t, sin t), t ∈ [0, π]} .

Here, we observe a shadow effect, as the reconstruct is better in the arc where the
observation points are located (recall that, by proposition 2.2, the obstacle can be
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Figure 3. Reconstruction in A4 (full data with 5% of noise).

(a) (b)

Figure 4. Reconstruction in A4 from partial data without noise (left) and
with 5 % of noise (right).

identified from partial boundary data). The number of iterations computed were 9
for both situations.

Regarding the reconstruction of the kite from full and partial data using the
domain derivative we obtained the results plotted in Figs. 5 and 6. Here, it is
more clear, the shadow effect in the reconstruction from partial data. This may
be explained by different regularization effects of both methods. For instance, the
parameter µ > 0 in (6) is automatically controlled by the gain ratio (see [19] for
details).

Last simulations regards the reconstruction of the peanut shaped obstacle using
the domain derivative. The object is smaller than the kite and is not centered with
the exterior boundary. The partial observation points are now in the arc

Σ =
{

4(cos t, sin t), t ∈
[
π

2
,
3π

2

]}
.

Results of these simulations are presented in Figs. 7 and 8.
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Figure 5. Reconstruction of a kite from full data without noise (left) and
with 5 % of noise (right).
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Figure 6. Reconstruction of a kite from partial data without noise (left) and
with 5 % of noise (right).

7. Conclusions

In this work, we justified the MFS approximation for direct transmission problems
in a potential problem and applied the method to the reconstruction of obstacles
in the context of an inverse source problem. We applied two (iterative) methods:
one, based on the Kirsh-Kress method which relies on the MFS for Cauchy data
reconstruction and the other which is based on the domain derivative (relies on
the MFS for transmission problems). The main advantage of the MFS for both
approaches is that the method is fast, easy to implement and produces good re-
sults, making it well suited for iterative methods. The numerical results shows the
feasibility of the reconstruction for both full and partial data. In the last case, we
observed some shadow effects on the numerical results.
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(a) (b)

Figure 7. Peanut reconstruction in A4 from full data without noise (left) and
with 5 % of noise (right).

Figure 8. Peanut reconstruction in A4 (partial data without noise).
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