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Abstract

The joint modelling of extremal events is of increasing attention. This paper develops a
semiparametric model for the situation where several multivariate extremal distributions are
linked through the action of a covariate on a baseline distrbution. Empirical likelihood inference
and estimation for this spectral density ratio model are discussed, and an application is given

to pairs of extreme temperatures at different sites, under forest cover and in the open.
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1 Introduction

As human society becomes more complex, it becomes more vulnerable to rare but catastrophic
events, such as the oil spill in the Gulf of Mexico or the continuing turbulence in the financial mar-
kets. Assessment of the risks of such events involves the estimation of small probabilities and hence
entails extrapolation into the tails of multivariate distributions, often beyond any existing data. The
mathematical basis for this is the statistics of multivariate extremes, which is a topic of current
interest from both theoretical and applied viewpoints. Published applications include air quality

monitoring (Heffernan and Tawn, 2004), wave surge analysis (Ramos and Ledford, 2009), aviation



safety (Einmahl et al., 2009), precipitation studies (Jaruskova , 2009), and finance (Embrechts et
al., 2009). A central concept in multivariate extreme value theory is the so-called spectral distribu-
tion, which determines the degree of dependence of the extremes of different variables. The spectral
distribution must satisfy certain marginal moment constraints, so it is awkward both to devise suit-
able models and to find estimators that obey the constraints. A variety of parametric models have
been proposed, for small to moderate numbers of dimensions (Tawn, 1988; Coles and Tawn, 1991;
Kotz and Nadarajah, 2000, Chapter 3), and others are currently under development. Boldi and
Davison (2007) introduced a constrained mixture of Dirichlet distributions which is weakly dense
in the class of all possible spectral measures, and Einmahl and Segers (2009) recently proposed a
nonparametric estimator that imposes the marginal constraints using empirical likelihood (Owen,
1988, 2001).

However, all these approaches consider only a single spectral distribution H, whereas in some
settings it may be necessary to consider a family of spectral measures, Hy, ..., Hx_1, to capture
the effect of covariates on joint extremes. In this paper, we discuss the joint modelling of extremal
events when data are gathered from several samples to each of which corresponds a vector of
covariates. The work is motivated by data on air temperatures under the forest canopy and in a
nearby open field at several sites around Switzerland (Renaud and Rebetez, 2009). Each site is
characterized by a covariate x, that summarises features such as its altitude, the soil type and
dominant tree species, and the scientific questions require not merely the fitting of distributions to
the extreme temperatures, but also the quantification of how their joint distribution depends on
the site features. This is of interest for ecological reasons such as the shelter offered by different
types of forest during heat waves (Ferrez et al., 2011) and for the design of wooded parks in urban
areas, which can offer relief during heatwaves.

A simple approach to the modelling of such data would be to fit parametric distributions to the
individual subpopulations, and to allow the parameters to depend on the covariates using some form
of regression model. We take a different approach, for several reasons. First, the number of flexible
parametric models is limited, so that a good fit to all the subpopulations is not assured by any
single model; moreover the interpretation of single parameters in terms of the distributional shape
may be unclear. Second, in our application the focus of interest is on the effects of the covariates,
and if possible we prefer to avoid having to choose a particular parametric model. Third, just

as there are efficiency gains from using the threshold exceedance rather than the block maximum



approach to extremal modelling (Coles, 2001), it seems less wasteful of data to attempt to combine
the models for the individual subpopulations. Our strategy allows us to estimate each of the spectral
distribution functions Hy using all K samples. Beyond the obvious efficiency gains, this borrowing
of strength also allows improved estimation for subpopulations whose samples are too small to be
individually informative about their tails.

The key idea is to build a semiparametric spectral density ratio model, wherein the spectral
distribution functions are unspecified but related through a known weight function, such as an ex-
ponential tilt. Density ratio models have been applied in scenarios including logistic discrimination
(Qin and Zhang, 1997), kernel density estimation (Fokianos, 2004), case-control studies (Kedem et
al., 2009) and instrumental variable methods (Cheng et al., 2009). The model proposed here differs
from these because of the imposition of marginal moment conditions, the inclusion of covariates,

and the setting of rare event modelling.

2 Spectral density ratio model

2.1 Models for multivariate extremes

We begin with D-dimensional extreme value distributions specified in the classical one-sample
framework. Let Z1,Zs,... be independent and identically distributed vectors of continuous ran-
dom variables on R” whose distribution function F' lies in the joint domain of attraction of an
extreme value distribution G. Without loss of generality, suppose that F' has unit Fréchet marginal
distributions, i.e., exp(—1/z), for z > 0. Pickands’ (1981) representation theorem asserts that the
limiting distribution of the standardised maximum M,, = n~! max{Z1,...,Z,} may be written as
G(z) = exp{—V(z)}, where
V(z)=D max{w;/z1,...,wp/zp} dH(w).
Sp

Here H represents the so-called spectral measure defined on the unit simplex in R?, i.e., Sp = {w S
RY : Zil w; =1, w = (w,...,wp)}. Further connections between the exponential measure V
and the spectral distribution function H can be found in Coles and Tawn (1991) or Beirlant et

al. (2004, §8.2). The distribution H determines the interaction between joint extremes, but must



satisfy the normalization and moment conditions

/dH(w):l, / wdH (w) = D™ '1p, (1)
Sp Sp

where 1p is the D-vector of ones.

A pseudo-polar transformation is helpful in understanding H: if we map the joint extremal

data eq,...,ep, which have unit Fréchet marginal distributions, into the pseudo-angular coordi-
nates wy = e1/r,...,wp = ep/r, with pseudo-radius r = e; + --- + ep, then the directional
part wi,...,wp has measure H. The limiting cases of independence and dependence in the two-

dimensional case illustrate this: if extreme values of the two variables tend to occur individually
then the mass of H is concentrated close to the limits 0 and 1, whereas if the extremes tend to
occur together then H places most of its mass near w = 1/2. This pseudo-polar representation also
arises in a point process characterization. As n — oo, the counting process of the rescaled standard
Fréchet observations, N,, = {n='Z; : i = 1,...,n}, converges in distribution to a Poisson process

whose intensity measure on Rf factorizes as

A(dz) = d—g x D dH(w), r>0,weE Sp.
T

These pseudo-polar representations generalise to the K-sample case. Suppose that we have inde-
pendent sets of observations {wy1, . . . , Wxn,, } from K unknown spectral distributions (Hy, ..., Hx_1).

The measures must satisfy the normalization and moment constraints

fSD dHo(’w) =1, fSD wdHo(w) = D_llp,

fSD dHl(w) = 1a fSD wdHl(w) = D_l]-Da

fSD dHKfl(’w) =1, fSD wdHK,l(w) :D_l]_D.

A similar point process representation can be given for the K-sample case by replacing the uni-
variate point process with a multivariate point process. For each sample x, we now suppose that
Z1vr Zog, - - . are sequences of independent and identically distributed vectors on R”, with a distri-
bution function Fj; in the joint domain of attraction of G. The counting process for the K-sample

problem may be denoted by Ny = (Npy, - -y Noy_, ), where n = (ng,...,ng—1) and

Ne={n'Zi:i=1,....n.}, k=0,...,K—1.



The process N, converges to a multivariate Poisson process on Rf D with intensity process A =
(Ao, ..., AKk—1), as min{ng,...,ng_1} — oo, where each component of the intensity process fac-
torizes along the radial and directional parts, respective to each sample, viz.:

Ag(dz) = d% x D dH,(w), k=0,...

K

S K —1, re > 0,w € Sp.

The next section introduces the spectral density ratio model for modelling K -sample multivariate
extremes. Just as the point process characterization for one-sample multivariate extremes avoids
the wastefulness of data implied by block maximum strategies, our model enables more effective

use of the available data in the K-sample framework.

2.2 Introducing the model

Later we focus our attention on the simplex Sp on which spectral measures are defined, but for
now we let H, denote any distribution function. Our interest lies in the measures (Ho, ..., Hx_1),

which are linked through a positive function g, with known functional form

dH,
{(Ho,...,HKl) : dHoEww; = g(w, ), for some g(w,v,) >0; k=0,..., K — 1}. (3)
Here v = (71,...,7Kx—1)" represents a g-vector of parameters, and we set g(w,7) = 1 for iden-

tifiability. This specification is common to many models (Efron and Tibshirani, 1996; Qin and
Zhang, 1997; Fokianos et al., 2001; Fokianos, 2004; Cheng et al., 2009). Under (3) the distributions
H,; are left unspecified but related through a known weight function. The measure Hy acts as a
reference from which the other K — 1 measures are obtained, through a distortion controlled by g
and v,. Some examples are given below, where we take the two-sample case for ease of notation.
Let g(w; a, 8) = exp{a + Sc(w)}, where « is a scale parameter, 8 a is p x 1 vector parameter, and
c(w) is a known distortion function, such as ¢(w) = w. We then obtain a model where the log-ratio
of the densities is linear in the parameters, log{dH; (w)/dHo(w)} = a+ Bw. The logistic regression
model can be derived by applying Bayes’ theorem, and the multinomial logistic regression model
arises for p > 1. A property of such models known as independence of irrelevant alternatives implies
that the inference is independent of the baseline dH, (Fokianos, 2004). This type of semiparamet-
ric approach provides gains in efficiency by estimating each density dH, on the basis of the entire
sample (Gilbert et al., 1999; Fokianos, 2004; Kedem et al., 2009). Specification (3) can also be used

to construct density estimates, by taking g(w; a, ) = exp{a + Ss(w)}, with s(w) denoting a vector



of sufficient statistics. Efron and Tibshirani (1996) used this representation to estimate a density
dH;/dw on the basis of a carrier density dHp/dw obtained by nonparametric kernel procedures,
the idea being that dHy should control local adaptation to the data, while the exponential term
exp{a + Bs(w)} should capture global features.

Specification (3) also turns out to be natural for modelling the K-sample multivariate extreme

value framework discussed in §2.1, with the constraints (2) restated as

st g(w,v0)dHo(w) = 1, f wg(w,~o0)dHo(w) = D '1p,
fSD g(w,v1)dHy(w) = 1, f wg(w,y1)dHo(w) = D~ '1p, @
fSD g(w, yx—1)dHp(w) =1, fSD wg(w, vk _1)dHo(w) = D™ 11p.

We suppress the dependence of o on 3, and vice versa, but it should be noted in what follows that
the normalization constraints in (4) force these parameters to be associated, and in particular if
p = 1 they need to be perfectly correlated. Below we refer to the general semiparametric setting
(3), subject to the normalization and marginal moment constraints (4), as the spectral density ratio

model. We propose to fit it through empirical likelihood methods (Owen, 1988, 2001).

2.3 Estimation

Let v = {v1,...,v,} denote the combined sample {wo1, ..., Wong,- > W(K—-1)1,- > W(K-1)nx_; }
from all K unknown spectral distributions H,,. The likelihood of the K-sample multivariate extreme

value problem under (3) is

K—1 ng n K—1 ng
L(v,Hy) = [] [ dHr(wi;) = pi [T TT9Cwes )
k=0 j=1 i=1 k=1 j=1

where p; = dHy(v;) = Ho(v;") — Ho(v; ) denotes the size of the jump of the baseline spectral
distribution function at the observed v;.

We restrict our attention to the tilting function g(w,v,) = exp{a, + Bxc(w)}, where v, =
(s, Br); for identifiability we set ag = B9 = 0. The loglikelihood is thus

K— lnk

U(v, Hy) = Zlog (p:) + Z Z {ar + Bre(wrj) }- (5)

k=1 j=1



Empirical likelihood estimation of the spectral density ratio model involves maximizing ¢ with
respect to p;, for a fixed 7, subject to the empirical versions of constraints (4), conveniently rewritten

as

p; > 0, v; € Sp
> pi=1, > pi{vi-D'1p} =0,
=1 =1

lei{g(via71) -1} =0, 2]91‘{%9(%’)’1) - D '1p} =0, (6)

Zpi{g(viﬁKq) -1} =0, Zpi{%’g(via’mq) - D '1p}=0.
i=1 i=1

Using an approach similar to that of Qin and Lawless (1994), it is shown in Appendix A that if
we use Lagrange multiplier procedures to profile p; with the normalization and marginal moment

constraints (6), then the jump size for the baseline spectral distribution function can be written as

1 1
Di = — K—1 ) (7)
o1+ > peg(vi, k) + 6T M(vi,7)

where p,; = n,/no,

M(%’Y) :g(v7’7)®<v_D_11D)7 (8)

and G(v,y) = (1,91(v,71),---,95x-1(v,7x—1))*. Here and below, 6 = (dg,...,dk—1)" denotes
the Lagrange multipliers corresponding to the marginal moment constraints, which are determined

through the conditions

U i Tk D1
72 9“ Tr) = D =0, k=0,...,K—1. (9)
no « 1+ Zk 1 Pkg(vu'yk) + 6TM(UZ’ )

Thus apart from a constant the profiled empirical loglikelihood for v can be written as

K-1 K—1 ng

60 == tog {14 3 pglee) + MO b+ 30D fa+ et (10

i=1 k=1 k=0 j=0

and so the semiparametric empirical likelihood estimator 4 = arg max, £, () of the spectral density



ratio model can be obtained by combining (9) with the score equations

oty _En: Prg(Vi, V) + 0" Mo, (vi,7)
Oy, im1 1+Zk=1 Prg(vi, Vi) + 6T M(vi, )

or . K K, i Ik 6TM () o
% _ prc(w J)g(v V) + 6" Mg, (vi,7) 3 )
B =1 1+ Zk 1 ka(”z»’Yk) 6T M(vi, ) §=0

Here, M,, and Mg, represent the partial derivatives of the moment estimating function (8); for

x =0,
(11)

=0, k=0,....,K—1.

explict expressions see (22). The existence of the semiparametric likelihood estimates 7 is a corollary
of Lemma 1 in Qin and Lawless (1994) which states that under suitable regularity conditions the
semiparametric empirical likelihood estimator lies in the interior of the ball ||y — || < n~1/3, and
thus is centred on the true value ~,, as n — oco.

On using the estimates obtained from the score equations (11), the maximum likelihood esti-
mator of the size of the jump of the baseline spectral density function turns out to be

1

L+ 3255 prg (v, Ae) + 07 M(vi, )

so the maximum likelihood estimator of the baseline spectral distribution function is

~

pi =

~ - 1 ¢ 1
Ho(w) = > pil(vi <w) = — - = —1(v; <w), (12)
; o zz:; 1 +Z£{:11 pkg(v'h’yk) +6TM(’U’H’7)
and for k = 1,..., K — 1 the other spectral spectral distribution functions are estimated as
= zn:ﬁig(via:}/\k)l(vi - L Zn: 9(vi, ) I(v; <w). (13)
=1 o =1 1 + Zk 1 pkg(vw ’Yk) + 6TM(U25 )

2.4 Inference

The following result states the asymptotic normality of the semiparametric empirical likelihood

estimator and a version of Wilks’ theorem for the spectral density ratio model.

Theorem 1 Consider the following estimating equation representation of the profile empirical like-
lihood as a function of the baseline spectral distribution function
n K—1 ng n
Sup{ [Tp: II H g(wij, k) i >0, vi € Sp, Y pi€(vi,7) = 0},
i=1 k=1 j=1 i=1

where
E(U,'y) _ g('U,'Y) - ]-K
G(v,7) ® (v =D '1p)

Suppose that



i) 0E(v,7)/0y and O?E(v,7)/0vOYT are continuous over some neighbourhood of the true param-

eter Yo;

i) [|0€(v,7) /07|, ||0%E(v,7)/0v0Y"|| and ||E(v,¥)||> are bounded by some function B(v) inte-

grable with respect to the baseline spectral measure Hy over this neighbourhood;
iit) E{0E(v,v)/0~} has rank q; and
iv) E{E(v,7) (S(v,’y))T} is positive definite.
Then
1. the semiparametric empirical likelihood estimator, ¥ = argmax., ¢y (7), satisfies
n'2(3 = 7,) < N(0, %),
where —=> denotes convergence in distribution and ¥ is defined in (23); and

2. ify° = ((al,bl), ceey (aK_l,bK_l)) with ag, by, # 0, fork=1,..., K —1, then under Hy : v =
~9, we have

o~ L
2{6,(7) = (")} = X5 /a1

The following corollary characterizes the limiting behavior of the empirical likelihood ratio for

other hypotheses.
Corollary 2 Under the regularity conditions of Theorem 1 the following large sample results hold.

1. Lety = (yi,yn) wherey, and~yy are mx1 and (g—m)x1 vectors. Let~? = ((al,bl), el (am,bm))
with ay, by, #0, for k=1,...,m; under Hy : 71 = v° we have

~ A ~ c
2 {ép(’)’I»’YH) - gp(’hoa%?)} — X3n/2+1a
where 39 mazimizes Ly (72, ) with respect to .

2. Lety = (i, ) where vy and vy are mx1 and (q—m)x1 vectors. Lety° = ((a1,b1), ..., (Gm,bm))

with ay, by, =0, for k=1,...,m; under Hy : 71 = v° we have
~ A ~ c
2 {63, 3) — 6O A} an/ga

where Y mazimizes £, (72, yu) with respect to vi.



A benchmark to verify whether the specification of the weight function g is adequate can be
based on the one-sample empirical likelihood estimate H,, (Einmahl and Segers, 2009). Following
Qin and Zhang (1997), we suggest using the statistic

Ay =n?||H, — Hyl|lw =n'? sup |Ho(w) — Ho(w)|, £=0,...,K —1, (14)
0<w<1
a p-value for which can be estimated using the bootstrap, as follows. Generate bootstrap samples

{w'? *(0)

1 s Wen, ) from g(v, :y\ﬁ)dflo, and use the combined bootstrap sample v*() = {vf(b), . ,’U;;(b)}

to compute
A = 2 sup{|H,(w) — Ho(w)| i w e v*®}, k=0,...,K—1,b=1,...,B. (15)

We then compare the B bootstrapped statistics A*(®) with the values of (14) obtained with the
observed combined sample v, i.e., A% = sup{|H,(w) — Hu(w)| : w € v}; the p-value for the

goodness of fit test is then

I(AXD) > A =0,..., K —1.

Mw

P.=pB"!

*

b

1

2.5 Covariates

To avoid complex model selection problems, we introduce covariate modelling only in a second stage.
If covariates had been introduced earlier, it could be troublesome to identify whether poor fit of a
model was due to the tilting function or to the covariate structure. Hence, after empirical likelihood
inference for the tilt parameters has been conducted we study their association with p covariates
of interest stored in a (K x p) design matrix X = (2f,...,2%_;)". Motivated by the asymptotic
normality of the semiparametric empirical likelihood estimator 7, we use a simple regression model

wherein only B\ = (B\O, e ,BK_l)T ~ (G is considered, so that
E(B| X) = X0. (16)

Using the sample data {(z7, Bk)},f:})l, we propose to assess the effect of each of the p covariates
on the extremal dependence by conducting inference over § = (4, ...,6,)". Consider the auxiliary

variable Z,.(6) = 27 (B, — 276) and let p, = dG(B;). The profile empirical likelihood of @ is

K-1 K-1 K—1
0,(0) = sup{ Il Prip >0, > pp=1, > piL2k(0) = 0}-
k=0 k=0 k=0

10



We choose model (16) for its simplicity but more general models could have been used to describe
the degree of association between extremal dependence, as measured by the tilt parameters, and the
covariates of interest. Inference for the maximum empirical likelihood estimator 6 = arg maxg £, (6)
can then be performed using a Wilks’ theorem, which suggests a x2 calibration with coverage error
of order O(n~1) (Owen, 1991), though for small samples bootstrap calibration is preferable. If

similar reasoning is applied to & = (Qy, ..., @x—_1)" we obtain the fitted parameters 7 = (a, 3)

3 Simulation study

3.1 A K-sample bivariate spectral density ratio model
To model the spectral density corresponding to each subpopulation, we consider a family of sym-
metric Beta distributions,

1
(¢x)

where B(¢) = f(l){u(l —u)}?~1du. The mean for each spectral density equals 1/2, so that constraints

dHy(w) = & w1 (1 —w)?ldw, ¢.>0,k=0,...,K —1, (17)

(4) are satisfied. Using the distortion function ¢(w) = log{w(1 — w)} we can rewrite (17) as
dH,(w) = exp{ax + byc(w)}dw,
(aﬁabl‘ﬁ) :(_1OgB(¢K)a¢K_1)7 HZO?"'7K_1'

Hence, making use of (17), we obtain the following spectral density representation of the K-sample

bivariate extreme value beta model,

dH,
T = e {an + Auclw)}. (13)
where the tilt parameters are
(a,‘mﬁn) = (log{B(¢0)/B(¢m)}7¢fi_¢0)7 "{:07"'7K_1' (19)

A consequence of (19) is that (g, Sy) = (0,0), so this parametrization of the spectral density
ratio model (18) is identifiable. This model is closed: tilting always produces a symmetric beta

distribution.

11



3.2 Numerical exercise

We now report computational experience with the model described in §3.1. We use 1000 simulated
data sets with K = 3 and n = 180, such that ng = n; = ny = 60, chosen for comparability with the
data in §4. Here we consider ¢y = 0.5, ¢1 = 1 and ¢ = 2, but our conclusions also hold for other
parameter values. Given the computational cost of obtaining full optimisation estimates, in practice
we have found it best to use a two-step strategy wherein one maximizes the unconstrained outer
objective function (5) with respect to 7, and minimizes the inner dual problem with respect to the
nuisance parameter §. For large n the inner dual problem not only has much lower dimensionality
than the corresponding primal problem, but it also has the advantage of being subject to a set of
linear constraints that can be removed by using a pseudo-logarithmic function (Owen, 2001, p. 62).
For a representation of the inner dual optimisation problem and further computational remarks,
see Appendix B. A similar two-step estimation strategy is used by Chauduri et al. (2007), and a
more general discussion on two-step nearly optimal estimators which asymptotically behave like
M -estimators can be found in van der Vaart (1998, p. 71).

Table 1 shows a summary of the estimates; the true values of the tilting parameters were
computed using (19). The estimates of the exponential tilt parameters and the Lagrange multipliers
are on average close to their true values, but the latter are much more variable. Table 1 also shows
that the estimates from the two-step method are on average close to the average full optimisation
estimates. QQ-plots of the estimates, not shown here, confirm the approximate normality of the tilt
parameters suggested by Theorem 1. To illustrate the asymptotic results obtained in the previous
section in each these simulations we tested the null hypothesis that the baseline sample and sample 1
have the same form of extremal dependence as the baseline sample, i.e., Hy : a3 = 1 = 0. The
rejection rate for comparing the empirical likelihood ratio statistic with the 95% quantile of a 2
distribution was 78.7%, suggesting that a bootstrap approach would be preferable.

Figure 1 compares semiparametric empirical likelihood estimates of the spectral measures with
those based on the empirical likelihood estimate of Einmahl and Segers (2009), for a run with
(¢o, 1, d2) = (0.1,1,5) and (ng,n1,n2) = (25,50,25). This is representative of a situation where

one of the samples has more extremes, from which the others can borrow strength.

12
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Figure 1: Comparison of the spectral distribution functions estimated by empirical likelihood
(above) and using the spectral density ratio model (below); the dashed lines represent the true

distribution functions.
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Table 1: Estimates of the tilting parameters and the Lagrange multipliers, based on 1000 simula-

tions; RMSE stands for root mean square error.

Outputs for the K
tilting parameters 0 1 2
True values (0,0)  (1.14,0.50)  (2.94,1.50)
Average full optimisation estimates (0,0)  (1.19,0.53)  (2.96,1.52)
RMSE 0 (0.52,0.24) (0.81,0.45)
Average two-step estimates (0,0) (1.21,0.53)  (3.08,1.59)
RMSE 0 (0.46,0.21) (0.76,0.43)
Outputs for the K
Lagrange multipliers 0 1 2
True values 0 0 0
Average full optimisation estimate 0.13 -0.39 0.23
RMSE 6.08 9.10 6.79
Average two-step estimates 0.10 —-0.27 0.13
RMSE 5.92 9.02 6.68

14



4 Extreme temperature analysis case study

In this section we describe an application to modelling the dependence between extreme air tem-
peratures under the forest canopy and in a nearby open field at 14 sites. We took the data from the
Long-term Forest Ecosystem Research database maintained by LWF (Langfristige Waldékosystem-

Forschung). Further information may be found at
http://www.wsl.ch/forschung/forschungsunits/wald

Temperatures are measured two meters above ground in circular metal shelters, and have been
collected at every ten minutes since 1997 (Ferrez et al., 2011). We take daily maxima of the residual
series that result from removal of the annual cycle in both location and scale. After thresholding the
residuals of each sample at its 98% quantile, we reduce the initial 38,923 observations to n = 785
pairs of residuals, one of the pair being under the forest canopy and the other being in the open. We
treat the pairs as mutually independent, and investigate how the dependence within them depends
on characteristics of the 14 samples, focusing here on the effect of slope.

The estimates of the tilting parameters when our model is applied using the distortion function
c(w) = log{w(l — w)} are given in Table 2; the baseline sample is Beatenberg. A negative esti-
mated tilt parameter corresponds to lower extremal dependence than in the baseline sample. For
example, since (a1, 31) = (—1.26,—0.72), Bettlachstock is interpreted as having weaker dependence
of extremes during heat waves than Beatenberg, though the standard errors suggest that this is
not a significant effect. All forests with negative @, and st display weaker dependence of extremes
than the baseline. The estimated spectral distributions are plotted in Figure 2. The more positive
the estimated tilt parameters, the more the distribution concentrates at 1/2. Two forests with
much larger estimates, Isole and Jussy, correspond to more ‘S-shaped’ spectral distributions. To
evaluate the fit of the spectral density ratio model, 1000 bootstrap samples were generated and
used to compute (15). All p-values suggest that the spectral density ratio model is appropriate for
the data; the smallest p-value is 0.17 for Schénis.

A plot of tilting parameters against slope in Figure 3 suggests that, with the exception of Isone
and Jussy, there may be a mild quadratic effect of slope on extremal dependence; this was also

suggested by Ferrez et al. (2011), based on a parametric analysis. We assess the evidence for this

15



Table 2: Characteristics of sites, estimated tilting parameters and standard errors. Beatenberg is

the baseline station

Location No. Slope Estimates Asymptotic S.E.

. e (%) a B Ya 3,
Beatenberg 57 33 - - - -

Bettlachstock 54 66 —-1.26 —-0.72 0.75 0.42
Celerina 53 34 -194 -1.08 0.70 0.39
Chironico 45 35 —-141 -0.80 0.76 0.42
Isone 45 58 8.78 5.78 2.35 1.59
Jussy 62 3 5.07 3.26 1.48 0.97
Lausanne 63 7 0.07 0.04 0.83 0.49
National Park 99 11 1.47 0.91 1.00 0.61
Neunkirch 42 58 —-2.00 -1.11 0.71 0.39
Novaggio 65 68 —-0.26 —-0.15 0.80 0.46
Othmarsingen 57 27 —-1.65 —0.93 0.71 0.40
Schéanis 58 60 —-1.49 -0.85 0.72 0.40
Visp 64 80 0.11 0.06 0.83 0.49
Vordemwald 61 14 —2.26 —1.23 0.68 0.38
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Figure 2: Estimates of the spectral distribution functions obtained by empirical likelihood estima-
tion of the spectral density ratio model; the grey line represents the individual sample empirical

likelihood estimates.
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Figure 3: Slope of the forest plotted against estimated tilting parameters. The solid line corresponds

to the model without Isone and Jussy; the dashed line corresponds to the model with all forests.

by dropping Isone and Jussy and conducting nonparametric inference by empirical likelihood over
the fitted linear model: E(B\ | X) =0.62—0.07 x slope+7 x 10~* x slope. A bootstrap calibration
yields the confidence intervals (—0.12;0.01) and (—107%;2 x 10=%), for the coefficients of the linear
and quadratic effects of slope, respectively, thus casting doubt on the significance of a quadratic

association between the sheltering capacity of the forest and its slope.

5 Discussion

This paper introduces the spectral density ratio model for multivariate extremes, designed for con-
texts where K samples are available and there is the need to understand how extremal dependence is
related to covariates. The rich semiparametric formulation allows us to link a family of K unknown
spectral densities, constrained by marginal moment constraints, using a tilting function and regres-
sion specification that may be tailored to the problem at hand. Although flexible, the approach
requires a substantial computational investment, and it would valuable to find faster algorithms,

particularly as bootstrap resampling may be needed for reliable inference in applications.
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Appendix A: Profiling the baseline spectral distribution func-

tion with normalization and marginal moment constraints

Let v; = (vgl), ce vgd))T. The Lagrangian corresponding to the empirical likelihood optimisation problem of interest
is
K—1 ng
L= Zlogm + )0 > {on + Bre(we;)}
k=1 j=1
n D K-1
—m(Epi-1)-n z nk{ S o) =1} 103 3 burd i) - 0 |
i=1 d=1 k=0
Setting the derivative of L with respect to p; to 0, we obtain
1 K-1 D K-1
;—no—n Z( i) = 1) —no Y > dak(v;Vg(vi, ) = D7) =0, i=1,...,n.
v k=1 d=1 k=0

Thus Y7, p;0L/Op; = n —no = 0, whence n = ng, and hence
1 1
"1+ 3k (g(ui, k) — 1)+ no/m 0y Yy LS ak (0 g(vi, ) — D)

In order to obtain expressions for the 7, set dL/da,, =0, for k = 1,..., K — 1. It follows that

D
n no _
nn:l_i Z(Sde !
n n d=1
and
1 1

= - . '
10 1+ SR prg(vi, i) + D01 Sy Sarg(vs, vi) (0} — DY)
If we define § = (80,...,0_1)", then
_1 1

no 1+ ZkK:_11 Prg(vi, 1) + ST M(vi, )

where

M(’”:’Y) = g(“ﬁ) ® (U - DillD)v g(U,’Y) = (1,9(’!}7’}/1),. . '79(7}77K71))T'
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Appendix B: Convex dual representation and the inner opti-

misation problem

The convex dual representation of the empirical likelihood problem under analysis is helpful for computational

purposes. Here the necessary dual involves minimising

n K—-1
() = —Zlog{l S praloi ) +6TM(vl-,w)},

i=1 k=1
subject to the linear constraints 1 + Zf;ll prg(vi, Vi) + 6T M(v;,y) > 0, for i = 1,...,n. These constraints can be
removed by using the pseudo-logarithmic function introduced by Owen (2001, p. 235), i.e.,

log(s)v s > €,
logy (s) =
log(e) — 1.5 + 2s/e — s2/(2¢2), s <,

for some small € > 0. Then the initial problem of interest simplifies into one of minimising
K-1

£406) = =3 10wy {14 3 pra(vi ) + "M (i)
k=1

i=1
over § € REP | for which a Newton algorithm can be implemented by recursive least squares. We write the gradient
and Hessian of L4 as
oL oL?
—2 = Uy, * _yTy,
95 9505™
and y = (y1,...,Yn), are defined as

where U = (u1,...,un)T

Us

1/2
K-1
{bgi?{wkzl pkg(vi,mwTM(vm)H X Mo, )],

log',’ {1 + 305! kg (i) + 8T M(vs, 'y)}

yi = 73
(1062 {1+ SIS puatvsm) + 67MGwi,) |

and logg) denotes the i-th derivative of the pseudo-logarithmic function.
Numerical optimisation can then be performed by updating & according to the rule § — 6+ (UTU)~1UTy, which
uses the preceding values of the Lagrange multipliers ¢ corresponding to the marginal moment constraints, and an

increment (UTU)~1UTy; the latter is readily obtained by least squares regression of y on U.

Appendix C: Proof of Theorem 1

a) By the asymptotic theory of M-estimators (van der Vaart, 1998, §5) and Taylor expansion, we obtain
Olp _ Obpy oty

et 24 - P 71/2)‘
M y=3 OV |y=y, 9V |y=4,

(3 —Ho) + op(n

Since by definition the estimate 7 solves the equation 0 = 94, /07, the latter expansion can be rewritten as

n1/2("?*’yo)={*%( 020, )—1 1 aep}h:%Hp(l). (20)

OyoyT nl/2 9y
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By the weak law of large numbers and the central limit theorem, with = evaluated at the true value 7,, a second
Bartlett identity and the asymptotic normality of 8¢, /0~ follow, i.e.,
1 0% 1 o¢
P G=o0p(1), —m =P £ N(0,Q). (21)
nl/2 o~

Let {Ek}ggll denote the canonical basis of RE~1  and use the auxiliary notation

n 9yoyT

Ma, (v,7) = (Ex ©G(v,7)) @ (v = D™ '1p), Mg, (v,7) = c(v)Ma, (v,7), (22)
with ©® and ® respectively denoting the Hadamard and Kronecker products. To avoid unnecessary complications
below we omit the arguments of most functions and use the shorthand notation g, to denote g(v,7x). The matrix
U has dimensions (K —1)(1 +p) x (K —1)(1 +p) and for s,x" = 1,..., K — 1 its entries are

_19%, _ /{ (Prgs + 0" May) (1 + Xps PrgE + 67 (M = Ma,,))dHo } ton(1)
n Bof} (142050 o) (L 5 prgie + 67 M) o
1 9L —(prgr + 0" Ma,,) (P g + 6 Mo, , )dHo
 ndoony :/{ (1+ 0 o) (U 55 pror + 0T M) } p(:
19 { (pregr +6" Mg, ) (1 + Sk PRIE + 0T (M — Mo, ))dHo
n daxdfx / 1+ S5 o) (L + S8 prg + 6T M)
1 o —(prgr + 5TMa,€)(pn/cgm +6TMg_, )dHo
T n0andB. /{ 1+ Xm0 o) (14 0 prgr + 6T M) } ort)
1o _/{pﬁ (©)%gx +x,§c<5TM,g dHO} /{ (pncgﬁ + 6T Mg, )2dHo }+O )
n 9B} 1+ 35 on 1+ 255 0) O+ S5 g +67M) [ 77
1 o, —(prcgr + JTMBR) (prrcgnr + 06" Mg ,)dHo
1 8BkdB :/{ (1 + X5 oe) (14 Xr prg + 6T M) } ot

The entries in the matrix Q = var (n_1/282p/8'y> are

1 Ak, a(k, 1 1 o, Ot Kl ab(k, x/,1) —a(k,l)a(x’,1
(2 - § nlad ~ G Lo (22, 20 ) _ sz{ )~ almDa(r )}
o 1=0 =

b+ o),

1+Zk 1 Pk n Oay’ Oa,y 1+Zk:1 o
(‘%p ‘%p) _ nFJer:B pi{ab(k, K, l) a(k, D)b(k, 1)}
o’ OBk 1+Zk A PR )
lcov( p) oS+ iS5 pi{ab 1,1 = al Dalw', D},
n da,” 0B, 1+Zk 1 o
1. (Wp ) pell+ 3050 pl{B(n 1) — b(k, z)}
" 0B 1 +Zk 1 ! .
( ) P ® + S0 pr{ab(s, w',1) — a(k, Da(s’, 1)}
B/BN 66“/ 1+ Zkzl Pk ’

where

. (pigi + 6T Ma,)?g;dHo o (pigi + 6T Ma,;)gjdHo
A(i, j) = 1 5, a(i,j) = yoa] —
(14357 prge + 6T M) 1+ 37,51 prgr + 0T M
ab(isj k) = / (pigi + 6 Mo, )(pjg; + 6T Mo, )grdHo aclisj) = / (pigi + 8;Ma,)cgjdHo
” 1+ XK g +6TM)2 ’ L+ 38 prge + 0T M’
B(i, ) :/ (picgs + 6" Mg, )%g;dHo b(i. ) :/ (picgs + 6" Mg, )%g;dHo
(14+ K prgr + 6T M)° 1+ 3K ppgr + 6™ M

C(i) = /(c)zgidHo, c(i) :/cgidHo,

22



and I' = —ac(k, k) + a(k, k)c(k), A = —ac(k,r') + a(k, k" )c(k'), @ = —ac(k,r’) + a(k,K')c(x’), and IT = C(k) —
{c(k)}? — 2ac(k, k) + 2a(k, k)c(k).
Combining the large sample results in (21) with (20), and making use of Slutsky’s theorem, we get

n'/2(3 = 7o) 55 N(0, %),

where
L =0"tu (23)
b) A second-order Taylor expansion yields
1 %4
0. (F) = ¢ O+7A_O p A_O+ 1’
p(N) =) + 57— )378“”:70(7 7°) +op(1)
thus implying that
o 0\y — 1/2(5 _ A0 la%p 1/2(5 _ O\T
2{lp(A) — (v} =n""2(F ") — n2F{ —A7)" 4 op(1). (24)
n O0vyoy [y=~0

The final result now follows by combining (24) with the large sample results stated in (21), and making use of

Slutsky’s theorem.
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