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Abstract 
 
Since its early heuristic development, Direct Search Methods (DSM) have proved to 
be robust and reliable, both from theoretical and practical perspectives. Some of 
these algorithms are now able to solve noisy, nonsmooth or nonconvex problems 
and its algorithmic structure favours parallelization, drawing the attention of the 
structural optimization community as a promising alternative to the use of Meta-
Heuristics. 
 
In the present work, the performance of DSM is compared to Genetic Algorithms, 
when solving hard or expensive structural optimization problems. Parallel 
implementations are considered when large computational times are involved in 
function evaluation.  
 
Keywords: Structural Optimization, Derivative-Free Optimization, Direct Search 
Methods, Pattern Search Methods, Mesh Adaptive Direct Search, Genetic 
Algorithms, Parallel Computing. 
 
1  Introduction 
 
Direct Search Methods (DSM) is a class of algorithms suited for Derivative-Free 
Optimization. The members of this class do not use, neither approximate, derivatives 
of the objective function. Progress is made by only comparing objective function 
values, computed at sets of points which satisfy some geometrical requirements      
[1, 2]. The type of sets which need to be considered will, in particular, depend on the 
problem smoothness. 
 
Since its early heuristic development, in the 50’s and 60’s (see, for example, [3]), 
the practical application of these algorithms has proved to be robust and reliable in 
locating at least local optimums. This empirical conclusion was confirmed by 
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several works related to convergence analysis, which have drawn the attention of the 
mathematical community since the 90’s. Examples are [4] and [5], where the 
convergence of two particular instances of DSM is analyzed (Pattern Search 
Methods and Mesh Adaptive Direct Search, respectively). 
 
Only recently the structural optimization community was attracted by the features of 
this class of algorithms [6]. In fact, structural optimization typically uses Gradient 
Based Methods (GBM), which are extremely efficient but require appropriate 
smoothness of the problem functions and, at least, the availability of first order 
derivatives. When discontinuities are present, if there are discrete variables, or when 
gradient information is unavailable or unreliable for use, a set of methodologies 
named as Meta-Heuristics has been considered. Genetic Algorithms (GA) [7], one 
instance of this class of Meta-Heuristics, are robust methods, from an empirical 
point of view, suited for application to a broad range of problems, but requiring a 
high number of function evaluations. This last point could be a major drawback 
when expensive finite elements analysis must be performed in order to compute 
function values. 
 
As previously mentioned, DSM are designed to solve general problems with 
unknown derivatives, often working well in practice with noisy, nonsmooth or 
nonconvex functions. Also, the number of function evaluations required by a DSM 
is commonly considered to be higher than the one required by a GBM, but lower 
than the total number of function values computed by a GA. Recent work, not only 
allowed to improve the numerical performance of Pattern Search Methods [8, 9], but 
also extended the convergence analysis of this class of algorithms to nonsmooth and 
even discontinuous functions [5, 10].  
 
The continuous increase of computational power and, in particular, the wide 
spreading of parallel computing had a major impact in structural analysis and 
optimization, widening the spectrum of problems which we are now able to tackle. 
Thus, parallelization is a valuable feature, when choosing an algorithm to solve a 
structural optimization problem. GA are intrinsically suitable for parallelization, 
which means that the high computational times related to serial implementations, 
resulting from the high number of function evaluations performed, can be overcome 
by considering  high level performance computing in clusters.  
 
The same applies to DSM, and several algorithmic instances were proposed which 
consider parallelization techniques [11, 12, 13]. Specifically, already released 
packages, like NOMAD [14] or PSWARM [15], provide parallel implementations of 
DSM that can be used for structural optimization. 
 
The present work accesses the numerical performance of some recent 
implementations of DSM and its competitiveness against GA, both when 
considering serial and parallel codes. In Section 2, we briefly describe DSM, 
focusing in the potential available for parallelization. In Section 3, two structural 
examples are used to compare DSM and GA. The first problem consists in the 
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optimization of a press brake to produce an uniform plate bending angle along the 
bending line. The problem is formulated as the unconstrained minimization of the 
bending error, with design variables associated to the bed and ram dimensions. 
Three public domain codes, NOMAD [14], PSWARM [15] and SID-PSM [16], are 
used to access the capability of DSM to solve this problem. A second problem, 
concerning the expensive structural optimization of a semi-trailer chassis, is 
considered. The problem is formulated as a weigh minimization, with size and shape 
variables related to the dimensions of the chassis components. Parallel versions of 
NOMAD [14] and PSWARM [15] are used to compute a solution. In both cases 
comparisons are made against GA. 
 
2  Direct Search Methods (DSM) 
 
The distinguishing feature of a DSM from other Derivative-Free Optimization 
algorithms is that no models are built for the objective function. The iterations 
proceed by only comparing objective function values. Typically the objective 
function is sampled at sets of points with good geometrical properties. Different 
algorithms make use of different sets. For instance, positive bases or positive 
spanning sets are used by DSM of directional type, like Pattern Search [17], 
Generating Set Search [1] or Mesh Adaptive Direct Search [5], while in the case of 
the simplex of Nelder-Mead [18] sampling is performed in sets of n+1 affinely 
independent points, named as simplex. 
 
In this work we will focus on DSM of directional type. An iteration of these 
algorithms is organized around a search step and a poll step. The search step is 
optional and unnecessary for the convergence analysis, once that only a finite 
number of function evaluations is performed. The main purpose of this step is to 
improve the algorithmic efficiency. Quadratic interpolation models [9], particle 
swarm heuristics [19], surrogate based optimization [20] are some of the strategies 
possible to consider at this phase. If a better point is found then the iteration is 
declared as successful and the poll step is omitted. Generating Set Search [1] 
requires a sufficient improvement of the objective function value in order to declare 
that a better point was found, while Pattern Search [17] and Mesh Adaptive Direct 
Search [5] only require simple improvement.  
 
If no better point was found, in order to retain the convergence properties of the 
method, which confer robustness to the algorithm, the poll step must be considered. 
At this step, a local search is performed around the current iterate by testing points 
corresponding to directions belonging to a positive basis or a positive spanning set, 
scaled by a step size parameter.  
 
A positive spanning set is a set of vectors that spans n through nonnegative 
combinations of its elements. A positive basis is a positive spanning set such that no 
proper subset of it retains the same property. For any vector in the space, regardless 
of its position, it can be stated that at least one of the elements of a positive spanning 
set or a positive basis makes an acute angle with it. This is the main motivation for 
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considering these types of sets in Derivative-Free Optimization. Figure 1 shows two 
different choices for positive bases in 2. 
 
 
 
 
 
 
 
 
   
 

 
Figure 1: For 2, a minimal and a maximal positive basis, respectively. 

 
If a better point is found, then the iteration is declared as successful, the point is 
accepted as the new current iterate and the step size is kept constant (or can even be 
increased). Otherwise, the current iterate is maintained and the step size parameter is 
obligatory decreased. Any unsuccessful poll step of a DSM will correspond to a total 
number of function evaluations which equals the number of elements in the positive 
spanning set or in the positive basis considered. 
 
Opportunistic strategies can be implemented for the poll step of the algorithms, 
meaning that the testing procedure will stop once that a better point is found. In this 
case, the order imposed to the poll directions is crucial to improve the algorithmic 
efficiency. Custódio and Vicente [8] proposed ordering strategies based in the 
computation of simplex descent indicators, at no additional cost in terms of total 
number of function evaluations. 
 
When requiring simple improvement of the objective function value, in order to 
accept the corresponding point as the new current iterate, some care must be taken in 
the computation of the positive bases or positive spanning sets to be used and in the 
update of the step size parameter. Namely, to preserve the convergence properties of 
the algorithms, some integer/rational requirements must be satisfied. In this case, all 
the points generated by the DSM must lie on an implicit integer/rational lattice or 
mesh, which will be coarsened for successful iterations and refined for unsuccessful 
ones. If there is enough smoothness in the objective function, and the number of 
positive spanning sets or positive bases considered during the course of the 
optimization process remains finite, convergence to some form of stationarity 
(depending on the objective function smoothness) can be established for at least a 
subsequence of the sequence of iterates generated by the DSM [4, 17]. 
 
The restriction to use a finite number of positive spanning sets or positive bases 
imposes a directional dependence, which could affect convergence if the objective 
function is nonsmooth, or in the presence of general constraints. This was the main 
motivation for the development of Mesh Adaptive Direct Search (MADS) [5], 
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another algorithmic instance of the DSM class. MADS generates a set of poll 
directions asymptotically dense in n. From a first probabilistic implementation 
(LTMADS [5]), the algorithm evolved to a deterministic strategy for computing the 
poll directions (ORTHOMADS [21]), which additionally ensures orthogonality of 
the vectors. 
 
Audet and Dennis [22] and Abramson et al. [23] have extended DSM to mixed 
variable Derivative-Free Optimization. In this case the problem contains both 
continuous and discrete variables, where the latter ones can even be categorical, 
meaning that no order relation is defined between the set of admissible values. In 
this case, the user needs to define a local neighbourhood for the discrete variables. 
Similarly to what has been described, the poll step performs a local search with 
respect to the continuous variables, keeping the discrete variables at the fixed value 
reached in the previous iteration. Positive spanning sets or positive bases are used in 
this local search. Additionally, the poll step evaluates the points belonging to the 
local neighbourhood of the discrete variables (keeping constant the continuous, with 
value equal to the one reached at the previous iteration). 
 
In case of failure, an extended poll step is executed. Promising poll centres are 
selected from the points evaluated in the local neighbourhood of the discrete 
variables. For each one of the selected poll centres, a local search is performed with 
respect to the continuous variables, considering the previously used positive 
spanning set or positive basis. Success means that a better point was found by 
comparison with the current iterate (and not with the poll centre extracted from the 
local neighbourhood). 
 
The high complexity of the objective functions present in practical applications, 
which traduces in expensive computational times, and the need to treat problems 
with a high number of variables, motivate parallel implementations of DSM. 
Asynchronous Parallel Pattern Search [11] is one of the first algorithms belonging to 
the DSM class, which considers parallel strategies. In fact, taking into account the 
structure of the poll step, it is very natural to parallelize it by evaluating different 
points at different processors. The use of asynchronous strategies can lead to an 
improvement in efficiency, when the computational times related to function 
evaluation differ considerably between points or when the processors present 
different performance characteristics or are subject to varying loads. 
 
Recently, Audet et al. [13] proposed to use Parallel Space Decomposition in MADS 
algorithm. The resulting algorithm (PSD-MADS) splits the variables of the original 
problem in a fixed number of subsets (where some variables can belong to more 
than one subset). Each processor will solve a subproblem of the original one, 
respecting to one of the variables subsets and fixing the remaining variables to the 
values corresponding to the best point found so far. All subproblems are solved 
using the MADS algorithm. One particular process will act on the original problem, 
considering all variables, but testing at each poll step a particular single direction. 
The set of all directions considered by MADS in this particular process should be 
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asymptotically dense in n. Computing a solution for a given subproblem will cause 
the update of the process performing the optimization on the whole set of variables. 
 
In the present work we consider three computational implementations of DSM. The 
first, SID-PSM [16], is a serial Pattern Search Method, which uses simplex 
derivatives to improve efficiency. The search step is based on the minimization of 
quadratic polynomial interpolation models [9], which are computed by using 
previous function evaluations (minimum Frobenius norm models, at the beginning 
of the optimization process, and regression models, by the end). Previous evaluated 
points are also used to build simplex gradients which allow the reordering of the poll 
directions, before starting to poll [8]. 
 
The second implementation considered is PSWARM [15]. This computational code 
is also a Pattern Search Method, but with a search step defined by a particle swarm 
heuristic, like described in [19]. The code is available in serial and parallel versions, 
in the latter case using a synchronous strategy. 
 
NOMAD is a numerical implementation of MADS [5]. Serial and parallel versions 
are available, in the latter case with and without synchrony. In the present work we 
considered the Parallel Space Decomposition of MADS, implemented in PSD-
MADS [13], and also P-MADS implementation. This last code corresponds to an 
unmodified implementation of MADS, where different points are evaluated in 
parallel by different processors. 
 
3  Examples 
 
In order to access the performance of DSM to solve structural optimization 
problems, two examples were analysed. The first problem consists in the 
optimization of a press brake, where an analytical formulation is available for the 
objective function. The objective function is not too expensive to evaluate but the 
optimum point is located in a steepest valley, where the objective function is 
nondifferentiable. The second problem consists in the structural optimization of a 
semi-trailer chassis design. In this case, each function evaluation requires an 
expensive numerical simulation using a finite elements model. 
 
3.1 Press Brake Design Optimization 
 
A press brake is a machine tool designed to bend flat metal plates, along a straight 
line, to a certain angle. A typical press brake presents a C-frame design, with a 
moving ram, which holds a punch, and a die located on a bed frame. Upon inserting 
the workpiece between the bed and the ram, a pair of hydraulic actuators forces the 
punch inside the die, bending the flat plate to the desired angle. 
 
The bending angle is very sensitive to the penetration, i.e. to the relative 
displacement of the punch and the die. For example, a variation of 0.05mm in the 



7 

penetration will cause a variation of 1º in the bending angle for a 1mm thick plate, 
bent in a 10mm die. The angular precision of the workpiece depends on the 
uniformity of the bending angle along the bending line. This uniformity is achieved 
with a constant penetration of the punch and the die, obtained through parallel 
deflections of the ram and the bed. The ram and the bed are long, narrow beams, but 
their finite stiffness causes non-constant penetration and non-uniform bending 
angles. 
 
Using structural analysis methodologies, this problem is formulated as the 
unconstrained minimization of the bending error with the design variables associated 
to the dimensions of the bed and ram. For a detailed description and analysis of the 
formulation see [24]. 
 
In the present work, we choose one of the particular layouts proposed in [24], which 
is characterized by a rectangular cross-section for the ram and a T-shape for the bed. 
This layout, together with the six design variables considered, (x1, x2, …, x6), and the 
corresponding bounds, is represented in Figure 2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: A press brake. 
 
In [24], the authors proved the nondifferentiability of the objective function at the 
optimum, which motivated the use of GA to solve the problem. In the present work, 
three numerical implementations of DSM, namely SID-PSM, NOMAD and 
PSWARM, are used with the same purpose. 
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Since function evaluation is not too expensive (approximately 0.0014 seconds for 
each function value), serial versions were considered for the three codes, using the 
default options. The initial point provided to the optimizers was (1600, 70, 130, 600, 
90, 1600), corresponding to the upper bound on the problem variables. The stopping 
criteria for the DSM was reaching a step size of 10−5 or performing 9600 function 
evaluations. This last computational budget corresponds to the total number of 
function evaluations allowed for GA (150 generations, each one with 64 individuals 
and a chromosome length of 96 genes, 16 for each variable). The variables were 
scaled to the [0, 1] multi-interval before running SID-PSM and PSWARM. 
 
For stochastic algorithms, like GA and PSWARM, a total of 10 different runs were 
performed. Results for the best, worst and average number of function evaluations 
required and final objective function value can be found in Table 1. Only the best 
point computed is reported. 
 

Table 1: Results for the optimization of the press brake design. 
 

Algorithm GA NOMAD SID-PSM PSWARM 
x1 (mm) 434.21 435.60 545.52 431.83 
x2 (mm) 69.99 70.00 70.00 69.78 
x3 (mm) 129.98 130.00 129.96 129.97 
x4 (mm) 599.95 599.99 599.80 600.00 
x5 (mm) 89.82 74.17 89.79 90.00 
x6 (mm) 1377.32 1496.79 1599.92 1371.19 

Obj.Func. 
Value 

Minimum 0.025604 
0.025650 0.02664 

0.02567 
Average 0.026418 0.02629 

Maximum 0.027619 0.02859 
Number of 
Obj.Func. 

Evaluations 

Minimum 9600 
1897 171 

769 
Average 9600 881 

Maximum 9600 1018 
 
DSM computed good quality solutions, with a considerable reduction in the total 
number of function evaluations required, when compared to GA. SID-PSM is 
remarkably faster, requiring only 1.8% of the number of function evaluations used 
by GA. Nevertheless, the final function value computed by this solver exceeds in 
4% the best result obtained with GA. 
 
Although NOMAD and PSWARM require a higher number of function evaluations 
than SID-PSM (SID-PSM budget represents 9% and 19.4% of the total number of 
function evaluations computed by NOMAD and PSWARM, respectively), these two 
computational codes are still more efficient than GA. The total number of functions 
evaluations performed by each solver represents 19.8% and 9.2% of the one for GA, 
respectively. Also, the best final computed solutions are only 0.18% and 0.26% 
higher than the best solution computed by a GA. 
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3.2 Semi-Trailer Design Optimization 
 
A semi-trailer, as shown in Figure 3, is formed by a chassis, where axis and wheels 
are attached, and a load carrying platform. This platform is built with beams and 
plates and designed to withstand the several operating loads. The design scenario 
considered corresponds to the torsion occurring in the platform, when performing a 
curve. The stiffness of the platform plays an important part in the semi-trailer 
performance, and the structural optimization with a minimum stiffness constraint is 
here carried out. 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: A semi-trailer. 
 
A finite elements model, comprising 12747 nodes and 11864 elements, (see Figure 
4a) was built in ANSYS [25] with shell elements. The rear suspension linking points 
are fixed and a 5000 Nm torque is applied to the king pin, i.e., the pin that couples 
the semi-trailer with the tractor. Figure 4b represents the resulting deformed chassis. 
 
 
 
 
 
 
 
 
 
 
 
 

 
a)               b) 

 
Figure 4: a) Finite elements model of the semi-trailer chassis;  

b) Chassis deformation. 
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A set of 12 design variables, containing 7 discrete, 1 logical and 4 continuous, was 
chosen. The discrete variables consist in the thickness of the components 
represented in Figure 5 and listed in Table 2. The continuous variables represent 
component dimensions as shown in Figure 6. Table 2 shows the variables allowable 
ranges. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Details of the structure of the semi-trailer chassis. 
 
 
 

Table 2: Design variables considered in the optimization of  
the semi-trailer chassis structure. 

 
Variable 
Number Description Variable Range 

(mm) 
1 Main beam web 5, 6, 8, 10 
2 Main beam lower flange 12, 15 
3 Main beam upper flange 12, 15 
4 Main transversal reinforcements 3, 3.5, 4, 4.5 
5 U reinforcements for king pin 4, 5, 6, 8 
6 U reinforcements for axles 2, 4, 5, 6 
7 King pin plate 5, 6, 8, 10 
8 IPN80 profiles Used/Not used 
9 Height for U reinforcements for axles 180 ≤ X9 ≤ 240 
10 Width for U reinforcements for king pin 200 ≤ X10 ≤ 350 
11 Width for main transversal reinforcements 142 ≤ X11 ≤ 186 

12 Flange width for main transversal 
reinforcements 24 ≤ X12 ≤ 44 
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Figure 6: Continuous design variables for the semi-trailer chassis. 
 

This structural optimization problem is formulated as the weight minimization of the 
semi-trailer chassis structure, subject to variable bounds and a constraint on the 
frontal section rotation angle, which can not exceed 4.15º. This last constraint is 
modelled by imposing a maximum value of 180 mm to the sum of the vertical 
displacements of points A and B (see Figure 5) and treated with a penalty function. 
Each function evaluation takes approximately 400 seconds of computational time.  
 
From the three DSM implementations considered, NOMAD is the only that provides 
both parallel versions (PSD-MADS and P-MADS) and the capability to solve mixed 
variable problems. PSWARM provides a parallel implementation but it is restricted 
to continuous variables, which motivated a first approach to the problem by relaxing 
all the discrete variables to continuous ones. 
 
In this case the variable bounds were set equal to the lowest and highest values in 
each variable range (see Table 2). An initial point was selected corresponding to the 
upper bound on the design variables. The codes were run on a distributed memory 
Beowulf type cluster with 10 processors, imposing a limit of 960 for the total 
number of functions evaluations computed. Additionally, a minimum step size of 
10−5 was allowed. Numerical results are shown in Table 3. 
 
NOMAD was also used to solve the initial mixed variable problem, where the 
discrete variables were treated as integers, using the simple strategy implemented in 
the code which rounds variables and allows a minimum step size of one. An 
alternative approach was to consider these variables as categorical, defining the 
corresponding neighbourhoods. The computational results obtained with this second 
approach were worst than the ones reported. 
 
To validate the computed results, the problem was also solved using a parallel 
implementation of GA, under a simple master-server model. A total of 32 
generations, each one with 30 individuals was considered. At each generation, the 

Height for U reinforcements for axles 

X9 

X9 

X9 

Width for U reinforcements for king pin 

X10 
X10 

Flange width for 
main transversal 
reinforcements 

X11 
X12 

X12 

Width for main transversal reinforcements 



12 

points to evaluate were spread among 10 processors. Each point was represented by 
a chromosome with 29 genes, as reported in Table 4.  
 

Table 3: Results for the optimization of the semi-trailer chassis design, 
considering continuous design variables. 

 
Variable 
Number Description PSD-MADS P-MADS PSWARM 

1 Main beam web 5.00 5.00 5.00 
2 Main beam lower flange 13.57 13.76 12.19 
3 Main beam upper flange 12.00 12.00 12.00 
4 Main transversal reinforcements 3.00 3.00 3.73 
5 U reinforcements for king pin 4.00 4.00 6.48 
6 U reinforcements for axles 2.00 2.00 2.00 
7 King pin plate 5.00 5.00 5.76 
8 IPN80 profiles 0.00 0.00 0.00 
9 Height for U reinforcements for axles 180.00 180.00 180.00 
10 Width for U reinforcements for king pin 350.00 350.00 350.00 

11 Width for main transversal 
reinforcements 186.00 142.00 151.31 

12 Flange width for main transversal 
reinforcements 24.00 24.00 28.10 

Objective Function Value (N) 15258.47 15247.09 15512.65 
Number of Function Evaluations 589 900 962 
Computational Time 474m 57.290s 671m 36.597s 711m 5.058s 

 
 

Table 4: Chromosome structure considered in GA. 
 

Variable 
Number Description Genes Admissible values 

(mm) 
1 Description 1,2 5, 6, 8, 10 
2 Main beam web 3 12, 15 
3 Main beam lower flange 4 12, 15 
4 Main beam upper flange 5,6 3, 3.5, 4, 4.5 
5 Main transversal reinforcements 7,8 4, 5, 6, 8 
6 U reinforcements for king pin 9,10 2, 4, 5, 6 
7 U reinforcements for axles 11,12 5, 6, 8, 10 
8 King pin plate 13 Used/Not used 
9 IPN80 profiles 14,15,16,17 180 ≤ X9 ≤ 240 

10 Height for U reinforcements for axles 18,19,20,21 200 ≤ X10 ≤ 350 
11 Width for U reinforcements for King Pin 22,23,24,25 142 ≤ X11 ≤ 186 
12 Width for main transversal reinforcements 26,27,28,29 24 ≤ X12 ≤ 44 
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The initial point and the additional stopping criteria consider for DSM were identical 
to the ones used in the continuous approach. Numerical results for all the algorithms 
can be found in Table 5. 
 

Table 5: Results for the optimization of the semi-trailer chassis design,  
considering mixed variables. 

 
Variable 
Number Description PSD-MADS P-MADS GA 

1 Main beam web 5 5 5 
2 Main beam lower flange 15 12 15 
3 Main beam upper flange 12 12 12 
4 Main transversal reinforcements 3 3 3 
5 U reinforcements for king pin 4 8 4 
6 U reinforcements for axles 2 2 2 
7 King pin plate 5 5 5 
8 IPN80 profiles Not used Not used Not used 
9 Height for U reinforcements for axles 180.00 180.00 183.75 
10 Width for U reinforcements for king pin 275.00 347.13 275.00 

11 Width for main transversal 
reinforcements 177.75 142.00 169.50 

12 Flange width for main transversal 
reinforcements 24.00 24.00 32.75 

Objective Function Value (N) 15484.79 15543.45 15503.43 
Number of Function Evaluations 468 960 960 
Computational Time 380m 34.251s 641m 44.264s 714m 0.069s 

 
When only continuous variables were considered, both NOMAD and PSWARM 
were able to obtain very good solutions to the problem. GA were not used, since the 
number of chromosomes required to accurately represent a continuous variable 
would cause the algorithms to be extremely inefficient. Thus, for the continuous 
approach DSM results are compared against the ones of GA when solving the mixed 
variable version of the problem. 
  
PSD-MADS was very fast in reaching the final solution, computing a number of 
function evaluations that only represents 61% of the one considered by GA. This 
percentage decreases to 49% for the mixed variable approach to the problem. 
Similar gains are obtained in terms of computational time. PSD-MADS uses 66% 
and 53% of the total time required by GA for the continuous and mixed variable 
approaches, respectively. PSWARM performance is similar to the one of GA. Both 
for the continuous and mixed variables versions of the problem, the best solutions 
were found by DSM implementations. 
 
Since the considered GA makes an efficient use of the available computer power 
(each processor computes 3 functions per generation), the performance ratios 
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obtained for NOMAD and PSWARM demonstrate the ability of these algorithms to 
fully exploit the available processors, by adequately spreading all the function 
evaluations. 
 
4  Conclusions 
 
DSM seem to be a promising alternative to the use of Meta-Heuristics (such as GA) 
in structural optimization problems.  
 
Three different solvers (SID-PSM, NOMAD and PSWARM), belonging to this 
algorithmic class, were tested in two different structural optimization problems. By 
comparison with GA, each one of these solvers provided good quality solutions, 
under low computational budgets of function evaluations. The total number of 
objective function values computations is remarkably low in SID-PSM, thus a slight 
decrease was noticed in the quality of the final solution. 
 
Efficient parallel implementations for some solvers of this class, like NOMAD and 
PSWARM, are already available, the former being also suited for mixed variable 
optimization problems.  
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