
1

Abstract

Since its early heuristic development, Direct Search Methods (DSM) have proved to
be robust and reliable, both from theoretical and practical perspectives. Some of
these algorithms are now able to solve noisy, nonsmooth or nonconvex problems
and its algorithmic structure favours parallelization, drawing the attention of the
structural optimization community as a promising alternative to the use of Meta-
Heuristics.

In the present work, the performance of DSM is compared to Genetic Algorithms,
when solving hard or expensive structural optimization problems. Parallel
implementations are considered when large computational times are involved in
function evaluation.

Keywords: Structural Optimization, Derivative-Free Optimization, Direct Search
Methods, Pattern Search Methods, Mesh Adaptive Direct Search, Genetic
Algorithms, Parallel Computing.

1 Introduction

Direct Search Methods (DSM) is a class of algorithms suited for Derivative-Free
Optimization. The members of this class do not use, neither approximate, derivatives
of the objective function. Progress is made by only comparing objective function
values, computed at sets of points which satisfy some geometrical requirements
[1, 2]. The type of sets which need to be considered will, in particular, depend on the
problem smoothness.

Since its early heuristic development, in the 50’s and 60’s (see, for example, [3]),
the practical application of these algorithms has proved to be robust and reliable in
locating at least local optimums. This empirical conclusion was confirmed by

Parallel Direct Search
in Structural Optimization

J.B. Cardoso1, P.G. Coelho1 and A.L. Custódio2,
1 Department of Mechanical and Industrial Engineering, New University of Lisbon,
Portugal,
2 CMA and Department of Mathematics, New University of Lisbon, Portugal

2

several works related to convergence analysis, which have drawn the attention of the
mathematical community since the 90’s. Examples are [4] and [5], where the
convergence of two particular instances of DSM is analyzed (Pattern Search
Methods and Mesh Adaptive Direct Search, respectively).

Only recently the structural optimization community was attracted by the features of
this class of algorithms [6]. In fact, structural optimization typically uses Gradient
Based Methods (GBM), which are extremely efficient but require appropriate
smoothness of the problem functions and, at least, the availability of first order
derivatives. When discontinuities are present, if there are discrete variables, or when
gradient information is unavailable or unreliable for use, a set of methodologies
named as Meta-Heuristics has been considered. Genetic Algorithms (GA) [7], one
instance of this class of Meta-Heuristics, are robust methods, from an empirical
point of view, suited for application to a broad range of problems, but requiring a
high number of function evaluations. This last point could be a major drawback
when expensive finite elements analysis must be performed in order to compute
function values.

As previously mentioned, DSM are designed to solve general problems with
unknown derivatives, often working well in practice with noisy, nonsmooth or
nonconvex functions. Also, the number of function evaluations required by a DSM
is commonly considered to be higher than the one required by a GBM, but lower
than the total number of function values computed by a GA. Recent work, not only
allowed to improve the numerical performance of Pattern Search Methods [8, 9], but
also extended the convergence analysis of this class of algorithms to nonsmooth and
even discontinuous functions [5, 10].

The continuous increase of computational power and, in particular, the wide
spreading of parallel computing had a major impact in structural analysis and
optimization, widening the spectrum of problems which we are now able to tackle.
Thus, parallelization is a valuable feature, when choosing an algorithm to solve a
structural optimization problem. GA are intrinsically suitable for parallelization,
which means that the high computational times related to serial implementations,
resulting from the high number of function evaluations performed, can be overcome
by considering high level performance computing in clusters.

The same applies to DSM, and several algorithmic instances were proposed which
consider parallelization techniques [11, 12, 13]. Specifically, already released
packages, like NOMAD [14] or PSWARM [15], provide parallel implementations of
DSM that can be used for structural optimization.

The present work accesses the numerical performance of some recent
implementations of DSM and its competitiveness against GA, both when
considering serial and parallel codes. In Section 2, we briefly describe DSM,
focusing in the potential available for parallelization. In Section 3, two structural
examples are used to compare DSM and GA. The first problem consists in the

3

optimization of a press brake to produce an uniform plate bending angle along the
bending line. The problem is formulated as the unconstrained minimization of the
bending error, with design variables associated to the bed and ram dimensions.
Three public domain codes, NOMAD [14], PSWARM [15] and SID-PSM [16], are
used to access the capability of DSM to solve this problem. A second problem,
concerning the expensive structural optimization of a semi-trailer chassis, is
considered. The problem is formulated as a weigh minimization, with size and shape
variables related to the dimensions of the chassis components. Parallel versions of
NOMAD [14] and PSWARM [15] are used to compute a solution. In both cases
comparisons are made against GA.

2 Direct Search Methods (DSM)

The distinguishing feature of a DSM from other Derivative-Free Optimization
algorithms is that no models are built for the objective function. The iterations
proceed by only comparing objective function values. Typically the objective
function is sampled at sets of points with good geometrical properties. Different
algorithms make use of different sets. For instance, positive bases or positive
spanning sets are used by DSM of directional type, like Pattern Search [17],
Generating Set Search [1] or Mesh Adaptive Direct Search [5], while in the case of
the simplex of Nelder-Mead [18] sampling is performed in sets of n+1 affinely
independent points, named as simplex.

In this work we will focus on DSM of directional type. An iteration of these
algorithms is organized around a search step and a poll step. The search step is
optional and unnecessary for the convergence analysis, once that only a finite
number of function evaluations is performed. The main purpose of this step is to
improve the algorithmic efficiency. Quadratic interpolation models [9], particle
swarm heuristics [19], surrogate based optimization [20] are some of the strategies
possible to consider at this phase. If a better point is found then the iteration is
declared as successful and the poll step is omitted. Generating Set Search [1]
requires a sufficient improvement of the objective function value in order to declare
that a better point was found, while Pattern Search [17] and Mesh Adaptive Direct
Search [5] only require simple improvement.

If no better point was found, in order to retain the convergence properties of the
method, which confer robustness to the algorithm, the poll step must be considered.
At this step, a local search is performed around the current iterate by testing points
corresponding to directions belonging to a positive basis or a positive spanning set,
scaled by a step size parameter.

A positive spanning set is a set of vectors that spans n through nonnegative
combinations of its elements. A positive basis is a positive spanning set such that no
proper subset of it retains the same property. For any vector in the space, regardless
of its position, it can be stated that at least one of the elements of a positive spanning
set or a positive basis makes an acute angle with it. This is the main motivation for

4

considering these types of sets in Derivative-Free Optimization. Figure 1 shows two
different choices for positive bases in 2.

Figure 1: For 2, a minimal and a maximal positive basis, respectively.

If a better point is found, then the iteration is declared as successful, the point is
accepted as the new current iterate and the step size is kept constant (or can even be
increased). Otherwise, the current iterate is maintained and the step size parameter is
obligatory decreased. Any unsuccessful poll step of a DSM will correspond to a total
number of function evaluations which equals the number of elements in the positive
spanning set or in the positive basis considered.

Opportunistic strategies can be implemented for the poll step of the algorithms,
meaning that the testing procedure will stop once that a better point is found. In this
case, the order imposed to the poll directions is crucial to improve the algorithmic
efficiency. Custódio and Vicente [8] proposed ordering strategies based in the
computation of simplex descent indicators, at no additional cost in terms of total
number of function evaluations.

When requiring simple improvement of the objective function value, in order to
accept the corresponding point as the new current iterate, some care must be taken in
the computation of the positive bases or positive spanning sets to be used and in the
update of the step size parameter. Namely, to preserve the convergence properties of
the algorithms, some integer/rational requirements must be satisfied. In this case, all
the points generated by the DSM must lie on an implicit integer/rational lattice or
mesh, which will be coarsened for successful iterations and refined for unsuccessful
ones. If there is enough smoothness in the objective function, and the number of
positive spanning sets or positive bases considered during the course of the
optimization process remains finite, convergence to some form of stationarity
(depending on the objective function smoothness) can be established for at least a
subsequence of the sequence of iterates generated by the DSM [4, 17].

The restriction to use a finite number of positive spanning sets or positive bases
imposes a directional dependence, which could affect convergence if the objective
function is nonsmooth, or in the presence of general constraints. This was the main
motivation for the development of Mesh Adaptive Direct Search (MADS) [5],

1

2

3

1

2 3

4

a) b)

5

another algorithmic instance of the DSM class. MADS generates a set of poll
directions asymptotically dense in n. From a first probabilistic implementation
(LTMADS [5]), the algorithm evolved to a deterministic strategy for computing the
poll directions (ORTHOMADS [21]), which additionally ensures orthogonality of
the vectors.

Audet and Dennis [22] and Abramson et al. [23] have extended DSM to mixed
variable Derivative-Free Optimization. In this case the problem contains both
continuous and discrete variables, where the latter ones can even be categorical,
meaning that no order relation is defined between the set of admissible values. In
this case, the user needs to define a local neighbourhood for the discrete variables.
Similarly to what has been described, the poll step performs a local search with
respect to the continuous variables, keeping the discrete variables at the fixed value
reached in the previous iteration. Positive spanning sets or positive bases are used in
this local search. Additionally, the poll step evaluates the points belonging to the
local neighbourhood of the discrete variables (keeping constant the continuous, with
value equal to the one reached at the previous iteration).

In case of failure, an extended poll step is executed. Promising poll centres are
selected from the points evaluated in the local neighbourhood of the discrete
variables. For each one of the selected poll centres, a local search is performed with
respect to the continuous variables, considering the previously used positive
spanning set or positive basis. Success means that a better point was found by
comparison with the current iterate (and not with the poll centre extracted from the
local neighbourhood).

The high complexity of the objective functions present in practical applications,
which traduces in expensive computational times, and the need to treat problems
with a high number of variables, motivate parallel implementations of DSM.
Asynchronous Parallel Pattern Search [11] is one of the first algorithms belonging to
the DSM class, which considers parallel strategies. In fact, taking into account the
structure of the poll step, it is very natural to parallelize it by evaluating different
points at different processors. The use of asynchronous strategies can lead to an
improvement in efficiency, when the computational times related to function
evaluation differ considerably between points or when the processors present
different performance characteristics or are subject to varying loads.

Recently, Audet et al. [13] proposed to use Parallel Space Decomposition in MADS
algorithm. The resulting algorithm (PSD-MADS) splits the variables of the original
problem in a fixed number of subsets (where some variables can belong to more
than one subset). Each processor will solve a subproblem of the original one,
respecting to one of the variables subsets and fixing the remaining variables to the
values corresponding to the best point found so far. All subproblems are solved
using the MADS algorithm. One particular process will act on the original problem,
considering all variables, but testing at each poll step a particular single direction.
The set of all directions considered by MADS in this particular process should be

6

asymptotically dense in n. Computing a solution for a given subproblem will cause
the update of the process performing the optimization on the whole set of variables.

In the present work we consider three computational implementations of DSM. The
first, SID-PSM [16], is a serial Pattern Search Method, which uses simplex
derivatives to improve efficiency. The search step is based on the minimization of
quadratic polynomial interpolation models [9], which are computed by using
previous function evaluations (minimum Frobenius norm models, at the beginning
of the optimization process, and regression models, by the end). Previous evaluated
points are also used to build simplex gradients which allow the reordering of the poll
directions, before starting to poll [8].

The second implementation considered is PSWARM [15]. This computational code
is also a Pattern Search Method, but with a search step defined by a particle swarm
heuristic, like described in [19]. The code is available in serial and parallel versions,
in the latter case using a synchronous strategy.

NOMAD is a numerical implementation of MADS [5]. Serial and parallel versions
are available, in the latter case with and without synchrony. In the present work we
considered the Parallel Space Decomposition of MADS, implemented in PSD-
MADS [13], and also P-MADS implementation. This last code corresponds to an
unmodified implementation of MADS, where different points are evaluated in
parallel by different processors.

3 Examples

In order to access the performance of DSM to solve structural optimization
problems, two examples were analysed. The first problem consists in the
optimization of a press brake, where an analytical formulation is available for the
objective function. The objective function is not too expensive to evaluate but the
optimum point is located in a steepest valley, where the objective function is
nondifferentiable. The second problem consists in the structural optimization of a
semi-trailer chassis design. In this case, each function evaluation requires an
expensive numerical simulation using a finite elements model.

3.1 Press Brake Design Optimization

A press brake is a machine tool designed to bend flat metal plates, along a straight
line, to a certain angle. A typical press brake presents a C-frame design, with a
moving ram, which holds a punch, and a die located on a bed frame. Upon inserting
the workpiece between the bed and the ram, a pair of hydraulic actuators forces the
punch inside the die, bending the flat plate to the desired angle.

The bending angle is very sensitive to the penetration, i.e. to the relative
displacement of the punch and the die. For example, a variation of 0.05mm in the

7

penetration will cause a variation of 1º in the bending angle for a 1mm thick plate,
bent in a 10mm die. The angular precision of the workpiece depends on the
uniformity of the bending angle along the bending line. This uniformity is achieved
with a constant penetration of the punch and the die, obtained through parallel
deflections of the ram and the bed. The ram and the bed are long, narrow beams, but
their finite stiffness causes non-constant penetration and non-uniform bending
angles.

Using structural analysis methodologies, this problem is formulated as the
unconstrained minimization of the bending error with the design variables associated
to the dimensions of the bed and ram. For a detailed description and analysis of the
formulation see [24].

In the present work, we choose one of the particular layouts proposed in [24], which
is characterized by a rectangular cross-section for the ram and a T-shape for the bed.
This layout, together with the six design variables considered, (x1, x2, …, x6), and the
corresponding bounds, is represented in Figure 2.

Figure 2: A press brake.

In [24], the authors proved the nondifferentiability of the objective function at the
optimum, which motivated the use of GA to solve the problem. In the present work,
three numerical implementations of DSM, namely SID-PSM, NOMAD and
PSWARM, are used with the same purpose.

1600

834 - x3

x4

x3

x2 x1 Bed

x1 ∈ [0,1600]
x2 ∈ [0,70]
x3 ∈ [0,130]
x4 ∈ [0,600]
x5 ∈ [0,90]
x6 ∈ [0,1600]

Moving
Ram

Bed Frame

C-frame Hydraulic
Cylinders

Pin

Punch

Die

x6

x5

1600

Ram

8

Since function evaluation is not too expensive (approximately 0.0014 seconds for
each function value), serial versions were considered for the three codes, using the
default options. The initial point provided to the optimizers was (1600, 70, 130, 600,
90, 1600), corresponding to the upper bound on the problem variables. The stopping
criteria for the DSM was reaching a step size of 10−5 or performing 9600 function
evaluations. This last computational budget corresponds to the total number of
function evaluations allowed for GA (150 generations, each one with 64 individuals
and a chromosome length of 96 genes, 16 for each variable). The variables were
scaled to the [0, 1] multi-interval before running SID-PSM and PSWARM.

For stochastic algorithms, like GA and PSWARM, a total of 10 different runs were
performed. Results for the best, worst and average number of function evaluations
required and final objective function value can be found in Table 1. Only the best
point computed is reported.

Table 1: Results for the optimization of the press brake design.

Algorithm GA NOMAD SID-PSM PSWARM
x1 (mm) 434.21 435.60 545.52 431.83
x2 (mm) 69.99 70.00 70.00 69.78
x3 (mm) 129.98 130.00 129.96 129.97
x4 (mm) 599.95 599.99 599.80 600.00
x5 (mm) 89.82 74.17 89.79 90.00
x6 (mm) 1377.32 1496.79 1599.92 1371.19

Obj.Func.
Value

Minimum 0.025604
0.025650 0.02664

0.02567
Average 0.026418 0.02629

Maximum 0.027619 0.02859
Number of
Obj.Func.

Evaluations

Minimum 9600
1897 171

769
Average 9600 881

Maximum 9600 1018

DSM computed good quality solutions, with a considerable reduction in the total
number of function evaluations required, when compared to GA. SID-PSM is
remarkably faster, requiring only 1.8% of the number of function evaluations used
by GA. Nevertheless, the final function value computed by this solver exceeds in
4% the best result obtained with GA.

Although NOMAD and PSWARM require a higher number of function evaluations
than SID-PSM (SID-PSM budget represents 9% and 19.4% of the total number of
function evaluations computed by NOMAD and PSWARM, respectively), these two
computational codes are still more efficient than GA. The total number of functions
evaluations performed by each solver represents 19.8% and 9.2% of the one for GA,
respectively. Also, the best final computed solutions are only 0.18% and 0.26%
higher than the best solution computed by a GA.

9

3.2 Semi-Trailer Design Optimization

A semi-trailer, as shown in Figure 3, is formed by a chassis, where axis and wheels
are attached, and a load carrying platform. This platform is built with beams and
plates and designed to withstand the several operating loads. The design scenario
considered corresponds to the torsion occurring in the platform, when performing a
curve. The stiffness of the platform plays an important part in the semi-trailer
performance, and the structural optimization with a minimum stiffness constraint is
here carried out.

Figure 3: A semi-trailer.

A finite elements model, comprising 12747 nodes and 11864 elements, (see Figure
4a) was built in ANSYS [25] with shell elements. The rear suspension linking points
are fixed and a 5000 Nm torque is applied to the king pin, i.e., the pin that couples
the semi-trailer with the tractor. Figure 4b represents the resulting deformed chassis.

a) b)

Figure 4: a) Finite elements model of the semi-trailer chassis;

b) Chassis deformation.

10

A set of 12 design variables, containing 7 discrete, 1 logical and 4 continuous, was
chosen. The discrete variables consist in the thickness of the components
represented in Figure 5 and listed in Table 2. The continuous variables represent
component dimensions as shown in Figure 6. Table 2 shows the variables allowable
ranges.

Figure 5: Details of the structure of the semi-trailer chassis.

Table 2: Design variables considered in the optimization of
the semi-trailer chassis structure.

Variable
Number Description Variable Range

(mm)
1 Main beam web 5, 6, 8, 10
2 Main beam lower flange 12, 15
3 Main beam upper flange 12, 15
4 Main transversal reinforcements 3, 3.5, 4, 4.5
5 U reinforcements for king pin 4, 5, 6, 8
6 U reinforcements for axles 2, 4, 5, 6
7 King pin plate 5, 6, 8, 10
8 IPN80 profiles Used/Not used
9 Height for U reinforcements for axles 180 ≤ X9 ≤ 240
10 Width for U reinforcements for king pin 200 ≤ X10 ≤ 350
11 Width for main transversal reinforcements 142 ≤ X11 ≤ 186

12 Flange width for main transversal
reinforcements 24 ≤ X12 ≤ 44

Main beam web
Main beam lower flange

Main beam upper flange Main transversal reinforcements

Main transversal reinforcements

U reinforcements for king pin
U reinforcements for axles

King pin plate IPN80 Profiles

A

B

11

Figure 6: Continuous design variables for the semi-trailer chassis.

This structural optimization problem is formulated as the weight minimization of the
semi-trailer chassis structure, subject to variable bounds and a constraint on the
frontal section rotation angle, which can not exceed 4.15º. This last constraint is
modelled by imposing a maximum value of 180 mm to the sum of the vertical
displacements of points A and B (see Figure 5) and treated with a penalty function.
Each function evaluation takes approximately 400 seconds of computational time.

From the three DSM implementations considered, NOMAD is the only that provides
both parallel versions (PSD-MADS and P-MADS) and the capability to solve mixed
variable problems. PSWARM provides a parallel implementation but it is restricted
to continuous variables, which motivated a first approach to the problem by relaxing
all the discrete variables to continuous ones.

In this case the variable bounds were set equal to the lowest and highest values in
each variable range (see Table 2). An initial point was selected corresponding to the
upper bound on the design variables. The codes were run on a distributed memory
Beowulf type cluster with 10 processors, imposing a limit of 960 for the total
number of functions evaluations computed. Additionally, a minimum step size of
10−5 was allowed. Numerical results are shown in Table 3.

NOMAD was also used to solve the initial mixed variable problem, where the
discrete variables were treated as integers, using the simple strategy implemented in
the code which rounds variables and allows a minimum step size of one. An
alternative approach was to consider these variables as categorical, defining the
corresponding neighbourhoods. The computational results obtained with this second
approach were worst than the ones reported.

To validate the computed results, the problem was also solved using a parallel
implementation of GA, under a simple master-server model. A total of 32
generations, each one with 30 individuals was considered. At each generation, the

Height for U reinforcements for axles

X9

X9

X9

Width for U reinforcements for king pin

X10
X10

Flange width for
main transversal
reinforcements

X11
X12

X12

Width for main transversal reinforcements

12

points to evaluate were spread among 10 processors. Each point was represented by
a chromosome with 29 genes, as reported in Table 4.

Table 3: Results for the optimization of the semi-trailer chassis design,
considering continuous design variables.

Variable
Number Description PSD-MADS P-MADS PSWARM

1 Main beam web 5.00 5.00 5.00
2 Main beam lower flange 13.57 13.76 12.19
3 Main beam upper flange 12.00 12.00 12.00
4 Main transversal reinforcements 3.00 3.00 3.73
5 U reinforcements for king pin 4.00 4.00 6.48
6 U reinforcements for axles 2.00 2.00 2.00
7 King pin plate 5.00 5.00 5.76
8 IPN80 profiles 0.00 0.00 0.00
9 Height for U reinforcements for axles 180.00 180.00 180.00
10 Width for U reinforcements for king pin 350.00 350.00 350.00

11 Width for main transversal
reinforcements 186.00 142.00 151.31

12 Flange width for main transversal
reinforcements 24.00 24.00 28.10

Objective Function Value (N) 15258.47 15247.09 15512.65
Number of Function Evaluations 589 900 962
Computational Time 474m 57.290s 671m 36.597s 711m 5.058s

Table 4: Chromosome structure considered in GA.

Variable
Number Description Genes Admissible values

(mm)
1 Description 1,2 5, 6, 8, 10
2 Main beam web 3 12, 15
3 Main beam lower flange 4 12, 15
4 Main beam upper flange 5,6 3, 3.5, 4, 4.5
5 Main transversal reinforcements 7,8 4, 5, 6, 8
6 U reinforcements for king pin 9,10 2, 4, 5, 6
7 U reinforcements for axles 11,12 5, 6, 8, 10
8 King pin plate 13 Used/Not used
9 IPN80 profiles 14,15,16,17 180 ≤ X9 ≤ 240

10 Height for U reinforcements for axles 18,19,20,21 200 ≤ X10 ≤ 350
11 Width for U reinforcements for King Pin 22,23,24,25 142 ≤ X11 ≤ 186
12 Width for main transversal reinforcements 26,27,28,29 24 ≤ X12 ≤ 44

13

The initial point and the additional stopping criteria consider for DSM were identical
to the ones used in the continuous approach. Numerical results for all the algorithms
can be found in Table 5.

Table 5: Results for the optimization of the semi-trailer chassis design,
considering mixed variables.

Variable
Number Description PSD-MADS P-MADS GA

1 Main beam web 5 5 5
2 Main beam lower flange 15 12 15
3 Main beam upper flange 12 12 12
4 Main transversal reinforcements 3 3 3
5 U reinforcements for king pin 4 8 4
6 U reinforcements for axles 2 2 2
7 King pin plate 5 5 5
8 IPN80 profiles Not used Not used Not used
9 Height for U reinforcements for axles 180.00 180.00 183.75
10 Width for U reinforcements for king pin 275.00 347.13 275.00

11 Width for main transversal
reinforcements 177.75 142.00 169.50

12 Flange width for main transversal
reinforcements 24.00 24.00 32.75

Objective Function Value (N) 15484.79 15543.45 15503.43
Number of Function Evaluations 468 960 960
Computational Time 380m 34.251s 641m 44.264s 714m 0.069s

When only continuous variables were considered, both NOMAD and PSWARM
were able to obtain very good solutions to the problem. GA were not used, since the
number of chromosomes required to accurately represent a continuous variable
would cause the algorithms to be extremely inefficient. Thus, for the continuous
approach DSM results are compared against the ones of GA when solving the mixed
variable version of the problem.

PSD-MADS was very fast in reaching the final solution, computing a number of
function evaluations that only represents 61% of the one considered by GA. This
percentage decreases to 49% for the mixed variable approach to the problem.
Similar gains are obtained in terms of computational time. PSD-MADS uses 66%
and 53% of the total time required by GA for the continuous and mixed variable
approaches, respectively. PSWARM performance is similar to the one of GA. Both
for the continuous and mixed variables versions of the problem, the best solutions
were found by DSM implementations.

Since the considered GA makes an efficient use of the available computer power
(each processor computes 3 functions per generation), the performance ratios

14

obtained for NOMAD and PSWARM demonstrate the ability of these algorithms to
fully exploit the available processors, by adequately spreading all the function
evaluations.

4 Conclusions

DSM seem to be a promising alternative to the use of Meta-Heuristics (such as GA)
in structural optimization problems.

Three different solvers (SID-PSM, NOMAD and PSWARM), belonging to this
algorithmic class, were tested in two different structural optimization problems. By
comparison with GA, each one of these solvers provided good quality solutions,
under low computational budgets of function evaluations. The total number of
objective function values computations is remarkably low in SID-PSM, thus a slight
decrease was noticed in the quality of the final solution.

Efficient parallel implementations for some solvers of this class, like NOMAD and
PSWARM, are already available, the former being also suited for mixed variable
optimization problems.

References

[1] T. G. Kolda, R. M. Lewis, and V. Torczon, "Optimization by direct search:

New perspectives on some classical and modern methods", SIAM Rev., 45,
pp. 385–482, 2003.

[2] A. R. Conn, K. Scheinberg, and L. N. Vicente, "Introduction to Derivative-
Free Optimization", MPS-SIAM Series on Optimization, SIAM, Philadelphia,
2009.

[3] R. Hooke and T. A. Jeeves, “'Direct Search' solution of numerical and
statistical problems", J. ACM, 8, pp. 212–229, 1961.

[4] V. Torczon, "On the convergence of pattern search algorithms", SIAM J.
Optim., 7, pp. 1–25, 1997.

[5] C. Audet and J. E. Dennis Jr., "Mesh adaptive direct search algorithms for
constrained optimization", SIAM J. Optim., 17, pp. 188–217, 2006.

[6] S. Karakaya and O. Soykasap, "Buckling optimization of laminated composite
plates using genetic algorithm and generalized pattern search algorithm",
Struct. Multidisc. Optim., 39, pp. 477–486, 2009.

[7] D. E. Goldberg, "Genetic algorithms in search, optimization, and machine
learning", Addison-Wesley Longman Publishing Co., Inc., Boston, 1989.

[8] A. L. Custódio and L. N. Vicente, "Using sampling and simplex derivatives in
pattern search methods", SIAM J. Optim., 18, pp. 537–555, 2007.

[9] A. L. Custódio, H. Rocha, and L. N. Vicente, "Incorporating minimum
Frobenius norm models in direct search", Comput. Optim. and Appl., 46, pp.
265–278, 2010.

15

[10] L. N. Vicente and A. L. Custódio, "Analysis of direct searches for
discontinuous functions", to appear in Math. Program.

[11] P. D. Hough, T. G. Kolda, and V. J. Torczon, "Asynchronous parallel pattern
search for nonlinear optimization", SIAM J. Sci. Comput., 23, pp. 134–156,
2001.

[12] T. G. Kolda, "Revisiting asynchronous parallel pattern search for nonlinear
optimization", SIAM J. Optim., 16, pp. 563–586, 2005.

[13] C. Audet, J. E. Dennis Jr., and S. Le Digabel, "Parallel space decomposition of
the mesh adaptive direct search algorithm", SIAM J. Optim., 19, pp. 1150–
1170, 2008.

[14] http://www.gerad.ca/NOMAD/Project/Home.html
[15] http://www.norg.uminho.pt/aivaz/pswarm/
[16] http://www.mat.uc.pt/sid-psm/
[17] C. Audet and J. E. Dennis Jr., "Analysis of generalized pattern searches",

SIAM J. Optim., 13, pp. 889–903, 2003.
[18] J. A. Nelder and R. Mead, "A simplex method for function minimization",

Comput. J., 7, pp. 308–313, 1965.
[19] A. I. F. Vaz and L. N. Vicente, "A particle swarm pattern search method for

bound constrained global optimization", J. Global Optim., 39, pp. 197–219,
2007.

[20] A. J. Booker, J. E. Dennis Jr., P. D. Frank, D. B. Serafini, V. Torczon, and M.
Trosset, "A rigorous framework for optimization of expensive functions by
surrogates", Struct. Multidiscip. Optim., 17, pp. 1–13, 1998.

[21] M. A. Abramson, C. Audet, J. E. Dennis Jr., and S. Le Digabel, OrthoMADS:
"A deterministic MADS instance with orthogonal directions", SIAM J.
Optim., 20, pp. 948–966, 2009.

[22] C. Audet and J. E. Dennis Jr., "Pattern search algorithms for mixed variable
programming", SIAM J. Optim., 11, pp. 573–594, 2000.

[23] M. A. Abramson, C. Audet, J. W. Chrissis, and J. G. Walston, "Mesh adaptive
direct search algorithms for mixed variable optimization", Optim. Lett., 3, pp.
35–47, 2009.

[24] P. G. Coelho, L. O. Faria, and J. B. Cardoso, "Structural analysis and
optimisation of press brakes", Int. J. of Machine Tools Manuf., 45, pp. 1451–
1460, 2005.

[25] ANSYS®, ANSYS Inc™.\\

