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Abstract We show that the exact distribution of a positive linear combination
of independent Gumbel random variables can be written as the sum of a lin-
ear combination of independent log Gamma distributions, and an independent
shifted Generalized Integer Gamma distribution. Given the complexity of this ex-
act distribution, we develop a near-exact distribution using a shifted Generalized
Near-Integer Gamma distribution. Our numerical studies confirm the quality of
this near-exact approximation as assessed by a proximity measure often used in
related studies.
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1 Introduction

Despite the wide range of applications in which the distribution of the linear com-
bination of independent Gumbel random variables may be useful, few results are
available on this distribution. Nadarajah (2008) presents the exact distribution of
the linear combination of p independent Gumbel random variables, using Fox H
and Meijer G functions, but the computational investment required by these func-
tions limits the practical usefulness of this result. Here we focus on positive linear
combinations — which include convex linear combinations and sums as particular
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cases — and our aim is to develop approximations which are accurate and man-
ageable. Our exact and near-exact approximations are based on the Generalized
Integer Gamma (GIG) and Generalized Near-Integer Gamma (GNIG) distribu-
tions, which were introduced by Coelho (1998, 2004), and which have by now been
used in a number of applications in multivariate analysis (Marques and Coelho,
2008; Coelho and Marques, 2010, 2011; Marques et al., 2011; Coelho et al., 2011).
Details on the GIG and GNIG distributions are available in the Appendix A.

In Section 2.1 we show that the exact distribution of a positive linear combina-
tion of independent Gumbel random variables may be written as the sum of two
independent random variables: the first corresponding to a linear combination of
independent log Gamma random variables, and the second to a shifted Generalized
Integer Gamma (SGIG) random variable. We should mention that our results may
be readily applied to the product of powers of independent Weibull random vari-
ables, through a simple transformation, since if Xj ∼ Gumbel(µj , σj), then Yj =
exp{−Xj} ∼ Weibull(exp{µj/σj}, σ

−1
j ), thus implying that exp{−

∑p
j=1 αjXj} =

∏p
i=1 Y

αj

j , for any αj ∈ R, for j = 1, . . . , p. In Section 2.2 we develop a near-exact
distribution, using a shifted Generalized Near-Integer Gamma (SGNIG) distribu-
tion with a precision parameter related with the depth of the SGNIG distribution;
in the sequel we follow the convention that the last parameter in a shifted distri-
bution is the shift parameter. Numerical studies are reported in Section 3.

2 Distribution Theory

2.1 Exact Distribution

Let X1, . . . , Xp denote p independent Gumbel random variables, with location
parameter µj ∈ R and scale parameter σj ∈ R

+, for j = 1, . . . , p; that is

Xj
ind.
∼ Gumbel(µj , σj), FXj

(x) = exp{− exp{(x− µj)/σj}}, x ∈ R,

for j = 1, . . . , p. The characteristic functions of Xj and W =
∑p

j=1 αjXj , for
αj ∈ R, are respectively defined as

ΦXj
(t) = Γ (1− itσj) exp{itµj}, ΦW (t) =

p
∏

j=1

Γ (1− itσjαj) exp{itµjαj},

for t ∈ R.

However, the exact distribution of the linear combination of independent Gum-
bel random variables does not have a manageable expression in practical terms.
Although Nadarajah (2008) has presented the exact distribution of such a linear
combination in terms of Fox H and Meijer G functions, since these functions are
defined either by an unsolved integral or by an elaborate and slowly convergent
infinite series their use in practical terms is not feasible. For this reason we propose
in the next theorem a new characterization of the exact distribution of a linear
combination of independent Gumbel random variables which will enable us to de-
velop a sharp approximation in the next subsection. Below we use the notation N∗

to denote the set {n ∈ N : n ≥ 2}.
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Theorem 1 Let Xj
ind.
∼ Gumbel(µj , σj), with µj ∈ R and σj ∈ R

+. The exact

characteristic function of W =
∑p

j=1 αjXj, with αj ∈ R, j = 1, . . . , p, can be

written as ΦW (t) = ΦW1
(t)ΦW2

(t), where for any γ ∈ N∗ and t ∈ R

ΦW1
(t) =

p
∏

j=1

Γ (γ − itσjαj)

Γ (γ)
, (1)

and

ΦW2
(t) =

{ p
∏

j=1

γ−2
∏

k=0

(

1 + k

σjαj

)(

1 + k

σjαj
− it

)

−1}

exp

{

it

p
∑

j=1

µjαj

}

. (2)

Proof : Since we may write the characteristic function of W as

ΦW (t) =

p
∏

j=1

Γ (1− itσjαj) exp{itµjαj}

=

{ p
∏

j=1

Γ (γ − itσjαj)

Γ (γ)

Γ (γ)

Γ (γ − itσjαj)

Γ (1− itσjαj)

Γ (1)

}

exp

{

it

p
∑

j=1

µjαj

}

=

p
∏

j=1

Γ (γ − itσjαj)

Γ (γ)

{ p
∏

j=1

γ−2
∏

k=0

(1 + k) (1 + k − itσjαj)
−1

}

exp

{

it

p
∑

j=1

µjαj

}

=

p
∏

j=1

Γ (γ − itσjαj)

Γ (γ)

{ p
∏

j=1

γ−2
∏

k=0

(

1 + k

σjαj

)(

1 + k

σjαj
− it

)

−1}

exp

{

it

p
∑

j=1

µjαj

}

.

the result in the theorem follows. �

If we consider now the case where αj > 0 (j = 1, . . . , p), the exact distribution
of W =

∑p
j=1 αjXj is the same as that of the sum of two independent random

variables, W1 and W2, where

W1 = −

p
∑

j=1

σjαj logZj , Zj
ind.
∼ Gamma(γ, 1), γ ∈ N∗, (3)

is a linear combination of p independent log Gamma random variables and W2

is distributed according to a shifted sum of p × (γ − 1) independent Exponential
distributions with parameters (1+k)/(βjαj), for j = 1, . . . , p and k = 0, . . . , γ−2,
with shift parameter

∑p
j=1 µjαj . If we sum the Exponential distributions with the

same parameter, equation (2) can be written as

ΦW2
(t) =

{ ℓ
∏

j=1

(λj)
rj (λj − it)−rj

}

exp

{

it

p
∑

j=1

µjαj

}

, (4)

where ℓ is the number of Exponential distributions with different parameters, λj

are the parameters of such Exponential distributions, and rj is the number of
Exponential distributions with the same rate parameter λj , for j = 1, . . . , p. We
have thus established the following corollary to Theorem 1.
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Corollary 1 Let Xj
ind.
∼ Gumbel(µj , σj), with µj ∈ R and σj ∈ R

+. If W =
∑p

j=1 αjXj, with αj ∈ R
+, j = 1, . . . , p, then it holds that W

d
= W1 + W2, with

W1 as in (3) and

W2 ∼ SGIG

(

r, λ, ℓ,

p
∑

j=1

µjαj

)

, r = (r1, . . . , rp), λ = (λ1, . . . , λp). (5)

In particular the Corollary above allows us to characterize the distribution of
the sum of p independent Gumbel random variables. It is instructive to consider
the case of the sum of p independent Gumbel random variables when σj = σ,
j = 1, . . . , p, for which simple expressions of the characteristic functions are readily
available

ΦW1
(t) =

(

Γ (γ − itσ)

Γ (γ)

)p

, ΦW2
(t) =

{ γ−2
∏

j=0

(λj)
rj (λj − it)−rj

}

exp

{

it

p
∑

j=1

µj

}

,

(6)
with rj = p, λj = (1 + j)/σ, for j = 0, . . . , γ − 2; this implies that in such case

W2 ∼ SGIG

(

p1T

γ−1, σ
−1(1, . . . , γ − 1), γ − 1,

p
∑

j=1

µj

)

,

where 1γ−1 denotes a γ − 1 vector of ones. The parameter γ is related with the
depth of the SGIG distribution and it may be used as a precision parameter, since,
as we will see in Section 3, for large values of γ we obtain better results for the
near-exact distribution we propose below.

2.2 Near-Exact Distribution

Based on the characterization of the exact distribution of W in Corollary 1, we
propose

ΦW ⋆
1
(t)ΦW2

(t)

as a near-exact characteristic function for W , where

ΦW ⋆
1
(t) =

(

l

l − it

)ρ

exp{itθ}, t ∈ R, (7)

is the characteristic function of W ⋆
1 ∼ SGamma(ρ, l, θ) (see Appendix A) and

replaces asymptotically ΦW1
(t) in (1), for increasing values of γ.

The parameters ρ, l, and θ, will be determined as the numerical solution of the
system of equations

∂jΦW ⋆
1
(t)

∂tj

∣

∣

∣

∣

∣

t=0

=
∂jΦW1

(t)

∂tj

∣

∣

∣

∣

t=0

, j = 1, 2, 3 . (8)

The resulting near-exact distribution is established in the next theorem.
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Theorem 2 If we use as an asymptotic approximation of ΦW1
(t) in (1) the char-

acteristic function ΦW ⋆
1
(t) in (7), we obtain as near-exact distribution for W =

∑p
j=1 αjXj, with Xj

ind.
∼ Gumbel(µj , σj), and αj ∈ R

+, for j = 1, . . . , p, the dis-

tribution

SGNIG

(

r⋆ = (r1, . . . , rℓ, ρ), λ
⋆ = (λ1, . . . , λℓ, l), ℓ+ 1, θ +

p
∑

j=1

µjαj

)

,

where rj, λj, and ℓ are given in (4) and ρ, l, and θ are obtained as the numerical

solution of (8).

Proof : It is enough to note that

ΦW ⋆
1
(t)ΦW2

(t) =

(

l

l − it

)ρ

exp{itθ}

{ ℓ
∏

j=1

(λj)
rj (λj − it)−rj

}

exp

{

it

p
∑

j=1

µjαj

}

=

{ ℓ
∏

j=1

(λj)
rj (λj − it)−rj )lρ(l − it)−ρ

}

exp

{

it

(

θ +

p
∑

j=1

µjαj

)}

.�

It is again instructive to consider the particular case addressed in (6), that is when
we consider the case of the sum of independent Gumbel random variables with the
same scale parameter. In this case the system of equations in (8) has the solution

ρ =
−4ν6

1 + 12ν4
1ν2 − 12ν2

1ν
2
2 + 4ν3

2

(2ν3
1 − 3ν1ν2 + ν3)2

, l =
−2ν2

1 + 2ν2
2ν3

1 − 3ν1ν2 + ν3
,

and

θ = ν1 −
2ν4

1 − 4ν2
1ν2 + 2ν2

2

ν3
1 − 3ν1ν2 + ν3

, νj = i−j ∂jΦW1
(t)

∂tj

∣

∣

∣

∣

t=0

j = 1, 2, 3 .

Hence in this case we obtain the near-exact distribution

SGNIG

(

r⋆ = (p1T

γ−1, ρ), λ
⋆ = σ−1(1, . . . , γ − 1, lσ), γ, θ +

p
∑

j=1

µj

)

.

Modules for the implementation of the near-exact distribution proposed may
be found in Appendix B.

3 Numerical Studies

To evaluate the quality of our near-exact approximation we consider the measure

∆ =
1

2π

∫ +∞

−∞

∣

∣

∣

∣

ΦW (t)− Φ⋆(t)

t

∣

∣

∣

∣

dt ,

which is known to verify the inequality

sup
w∈R

|FW (w)− F ⋆(w)| ≤ ∆ .
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Table 1 Values of ∆ for scenarios i, ii, and iii

Scenario i Scenario ii Scenario iii

γ (µi, σi, αi) (µii, σii, αii) (µiii, σiii, αiii)

4 1.4× 10−4 1.8× 10−4 3.4× 10−4

10 8.0× 10−6 1.0× 10−5 2.0× 10−5

15 2.3× 10−6 2.9× 10−6 5.8× 10−6

20 9.4× 10−7 1.2× 10−6 2.4× 10−6

50 5.8× 10−8 7.4× 10−8 1.5× 10−7

100 7.1× 10−9 9.1× 10−9 1.8× 10−8

500 5.6× 10−11 7.2× 10−11 1.4× 10−10

Here ΦW (t) and Φ⋆(t) denote respectively the exact and approximate characteristic
functions of W , and FW (w) and F ⋆(w) the corresponding cumulative distribution
functions; details on this measure can be found in (Marques and Coelho, 2008;
Coelho and Marques, 2010, 2011).

In Table 1 we present values of ∆ for different choices of µj , βj , and αj ,
according to the following scenarios:

—Scenario i: µi = (2, 3), σi = (5, 6), and αi = 1T

2 ;
—Scenario ii: µii = (−4,−1, 2, 3), σii = (0.1, 0.2, 0.3, 0.4), and αii = (1, 2, 3, 4);
—Scenario iii: µiii = (−10, 10, 20, 30, 40), σiii = (1, 2, 3, 4, 5), and

αiii = (1/2, 1, 3/4, 5, 1).

In Table 2 we report further numerical results on measure ∆ for sums of inde-
pendent Gumbel random variables, all the same scale parameter, according to the
following scenarios:

—Scenario 1: µ1 = (2, 3), σ1 = 1/100× 1T

2 , and α1 = 1T

2 ;
—Scenario 2: µ2 = (−4,−1, 2, 3), σ2 = 5× 1T

5 , and α2 = 1T

4 ;
—Scenario 3: µ3 = (−10, 10, 20, 30, 40), σ3 = 50× 1T

5 , and α3 = 1T

5 .

Table 2 Values of ∆ for scenarios 1, 2, and 3

Scenario 1 Scenario 2 Scenario 3
γ (µ1, σ1, α1) (µ2, σ2, α2) (µ3, σ3, α3)

4 1.3× 10−4 4.5× 10−5 3.3× 10−5

10 7.5× 10−6 2.4× 10−6 1.8× 10−6

15 2.1× 10−6 6.9× 10−7 5.0× 10−7

20 8.8× 10−7 2.8× 10−7 2.1× 10−7

50 5.4× 10−8 1.7× 10−8 1.3× 10−8

100 6.7× 10−9 2.1× 10−9 1.6× 10−9

500 5.3× 10−11 1.7× 10−11 1.2× 10−11

We may observe that the values of ∆ are all quite low — indicating a good
approximation — and that the parameter γ is inversely related to ∆, and ∆ is
quite unresponsive to changes in the values of µj , βj , and αj .
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In Figure 1 we present examples of near-exact density and cumulative distri-
bution functions for positive linear combinations of independent Gumbel random
variables and in Figure 2 for sums of independent Gumbel random variables, all
with the same scale parameter.
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Fig. 1 Near-exact densities and distribution functions for the cases: (a–b) µ =
(−20,−1,−50, 12, 40), σ = (2, 1/2, 5/4, 10, 50), α = (2, 12, 24, 50, 10), and γ = 6;

(c–d) µ = (2, 3, 4, 51/2, π,−6,−7,−7), σ = (1/2, π, exp{1}, 21/2, 1.2, 3.1, 2, 1), α =
(1, 2, 3, 1/2, 5, 1, 1, 1, 1), and γ = 8; (e–f) µ = (1, 2, 3,−3,−2,−1), σ = (1, 2, 3, 4, 5, 6),
α = (2, 4, 6, 8, 10, 12), and γ = 8; (g–h) µ = (−2,−4), σ = (5, 6), α = (3, 7), and γ = 20.

4 Conclusions

In this paper we have shown that the exact distribution of the linear combination
of p independent Gumbel random variables is the same the distribution of the
sum of two independent random variables, the first one corresponds to a linear
combination of independent log Gamma distributions and the second one to a
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Fig. 2 Near-exact densities and distribution functions for the cases: (a–b) µ =
(2, 3, 4, 5, 6, 7, 8), σ = 5 × 1T

7 , and γ = 2; (c–d) µ = (2/10, 3/10, 4/10, 5/10), σ =
55/1000 × 1T

4 , and γ = 5; (e–f) µ = (−29,−25,−35), σ = 1/15 × 1T

3 , and γ = 7; (g–h)
µ = (−9,−5,−5,−7, 2, 3, 1/2), σ = 15× 1T

7 , and γ = 9.

shifted Generalized Integer Gamma distribution. Using this result it was possible
to derive a very accurate near-exact approximation which is at the same time
very simple to use. We introduced the parameter γ in the representation of the
distribution in study which works as a precision parameter since its value can be
chosen based on the precision and speed desired for the calculations. Numerical
studies presented show the hight quality of the near-exact distributions proposed
for the linear combination of Gumbel random variables.

Acknowledgements This research was partially supported by CMA/FCT/UNL, under the
project PEst-OE/MAT/UI0297/2011.
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A Appendix

Some Useful Results and Definitions on Distributions of Interest

We say that the random variable X has a Gamma distribution with shape parameter r > 0
and rate parameter λ > 0 if its probability density function is given by

fX(x) =
λr

Γ (r)
exp{−λx}xr−1 , x > 0

and we will denote this fact by X ∼ Gamma(r, λ).

Let Xj
ind.
∼ Gamma(rj , λj) with shape parameters rj ∈ N and rate parameters λj ∈ R

+,
all different, for j = 1, . . . , p. The Generalized Integer Gamma (GIG) distribution of depth
p ∈ N, introduced by Coelho (1998), is defined as the distribution of Y =

∑p
j=1 Xj , and we

denote this by Y ∼ GIG(r, λ, p), for r = (r1, . . . , rp) and λ = (λ1, . . . , λp). The density and
distribution functions of Y are

fY (y; r, λ, p) = K
p
∑

j=1
pj(y) exp{−λjy}, y > 0,

FY (y; r, λ, p) = 1−K
p
∑

j=1
Pj(y) exp{−λjy}, y > 0,

where K =
∏p

i=1 λ
ri
i ,

pi(y) =
ri
∑

k=1
ci,ky

k−1, Pi(y) =
ri
∑

k=1
ci,k(k − 1)!

k−1
∑

j=0

yk

j!λk−j
i

,

and the ci,k are given in (11)–(13) in Coelho (1998). The Generalized Near-Integer Gamma
(GNIG) distribution of depth (p+1) ∈ N, introduced by Coelho (2004), is defined has the distri-
bution of Y ⋆ = X⋆+

∑p
j=1 Xj , where X⋆ is independent of

∑p
j=1 Xj , and X⋆ ∼ Gamma(ρ, l),

with ρ ∈ R
+\N. We denote this by Y ⋆ ∼ GNIG(r⋆, λ⋆, p+1), where r⋆ = (r, ρ) and λ⋆ = (λ, l),

and the corresponding density and distribution functions are

fY ⋆ (y; r⋆, λ⋆, p+ 1) = Klρ
p
∑

j=1
exp{−λjy}

rj
∑

k=1

{

cj,k
Γ (k)

Γ (k+ρ)
yk+ρ−1

1F1(ρ, k+ρ,−(l−λj)y)

}

,

FY ⋆ (y; r⋆, λ⋆, p+ 1) = lρ yρ

Γ (ρ+1) 1
F1(ρ, ρ+1,−ly)−Klρ

p
∑

j=1
exp{−λjy}

rj
∑

k=1
c∗j,k

k−1
∑

i=0

yr+iλi
j

Γ (ρ+1+i) 1
F1(ρ, ρ+1+i,−(l− λj)y),

for y > 0 and where c∗j,k = (cj,kλ
k
j )/Γ (k); in the above expressions 1F1(·) denotes the Kummer

confluent hypergeometric function.
The random variable X∗ = X+θ is a shifted Gamma distribution with rate λ ∈ R

+, shape
r ∈ R

+, and shift θ ∈ R, if X ∼ Gamma(r, λ), and we denote this by X∗ ∼ SGamma(r, λ, θ);
the shifted GIG and GNIG distributions are analogously defined and denoted by SGIG(r, λ, p, θ)
and SGNIG(r⋆, λ⋆, p+ 1, θ).

B Appendix

Computational implementation of the near-exact distribution developed

The computational implementation of the near-exact distribution proposed for the lin-
ear combination of Gumbel random variables may be made, for example, using the software
Mathematica.
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Fig. 3 Mathematica module for the cumulative distribution function of positive linear com-
binations of independent Gumbel random variables

LinearGumbelsCDF[alpha_,mu_,sigma_,gamma_,w_]:=Module[{l,rho,theta,mom,mom1,v,vs,n,isc,lambda,r,shift,c,g,P},
mom=Table[SetPrecision[I^(-h)*D[Product[Gamma[gamma-I*t*sigma[[j]]*alpha[[j]]]/Gamma[gamma],

{j,1,Length[mu]}],{t,h}]/.t->0,150],{h,1,3}];
mom1=Table[SetPrecision[I^(-h)*D[l^rho*(l-I*t)^(-rho)*Exp[I*t*theta],{t,h}]/.t->0,150],{h,1,3}];
{rho,l,theta}={rho,l,theta}/.Flatten[Solve[{mom[[1]]==mom1[[1]],mom[[2]]==mom1[[2]],
mom[[3]]==mom1[[3]]},{rho,l,theta}]];
v=Flatten[{Table[Table[((1+k)/(sigma[[j]]*alpha[[j]])),{k,0,gamma-2}],{j,1,Length[sigma]}]}];
vs = Sort[v];n=Length[v];lambda={vs[[1]]};r={1};isc=1;
Do[If[vs[[i]]==vs[[i-1]],{r[[isc]]=r[[isc]]+1},{isc=isc+1,lambda=Append[lambda,vs[[i]]],

r=Append[r,1]}],{i, 2, n}];
If[Count[r,_Integer]==Length[r] && And @@ Positive[r] && And @@ Positive[lambda], g = Length[r];
shift = theta + Sum[alpha[[j]]*mu[[j]], {j, 1, Length[sigma]}];
c=Table[Table[0,{j,1,Max[r]}],{i,1,g}];
Table[c=ReplacePart[c,(Product[(lambda[[j]]-lambda[[i]])^(-r[[j]]),{j,1,i-1}]*

Product[(lambda[[j]]-lambda[[i]])^(-r[[j]]),{j,i+1,g}])/(r[[i]]-1)!,{i,r[[i]]}],{i,1,g}];
Table[Table[c=ReplacePart[c,Sum[((r[[i]]-k+j-1)!*(Sum[r[[h]]/(lambda[[i]]-lambda[[h]])^j,
{h,1,i-1}]+Sum[r[[h]]/(lambda[[i]]-lambda[[h]])^j,{h,i+1,g}])*
c[[i]][[r[[i]]-(k-j)]])/(r[[i]]-k-1)!,{j, 1, k}]/k,{i,r[[i]]-k}],{k,1,r[[i]]-1}],{i,1,g}];

l^rho*(w - shift)^rho/Gamma[rho + 1]*Hypergeometric1F1[rho,rho+1,-l(w-shift)]
-Product[lambda[[j]]^r[[j]],{j,1,g}]*l^rho*Sum[Exp[-lambda[[j]]*(w-shift)]*
Sum[c[[j]][[k]]/lambda[[j]]^k*Gamma[k]*Sum[(w-shift)^(rho+i)*lambda[[j]]^i/Gamma[rho+1+i]
*Hypergeometric1F1[rho,rho+1+i,-(l-lambda[[j]])*(w-shift)],{i,0,k-1}],{k,1,r[[j]]}],{j,1,g}]]]

Fig. 4 Mathematica module for the density function of positive linear combinations of inde-
pendent Gumbel random variables

LinearGumbelsPDF[alpha_,mu_,sigma_,gamma_,w_]:=Module[{l,rho,theta,mom,mom1,v,vs,n,isc,lambda,r,shift,c,g,P},
mom=Table[SetPrecision[I^(-h)*D[Product[Gamma[gamma-I*t*sigma[[j]]*alpha[[j]]]/Gamma[gamma],

{j,1,Length[mu]}],{t,h}]/.t->0,150],{h,1,3}];
mom1=Table[SetPrecision[I^(-h)*D[l^rho*(l-I*t)^(-rho)*Exp[I*t*theta],{t,h}]/.t->0,150],{h,1,3}];
{rho,l,theta}={rho,l,theta}/.Flatten[Solve[{mom[[1]]==mom1[[1]],mom[[2]]==mom1[[2]],
mom[[3]]==mom1[[3]]},{rho, l, theta}]];
v=Flatten[{Table[Table[((1+k)/(sigma[[j]]*alpha[[j]])),{k,0,gamma-2}],{j,1,Length[sigma]}]}];
vs=Sort[v];n=Length[v];lambda={vs[[1]]};r={1};isc=1;
Do[If[vs[[i]]==vs[[i-1]],{r[[isc]]=r[[isc]]+1},{isc=isc+1,lambda=Append[lambda,vs[[i]]],

r=Append[r,1]}],{i, 2, n}];
If[Count[r,_Integer]==Length[r] && And @@ Positive[r] && And @@ Positive[lambda], g = Length[r];
shift=theta+Sum[alpha[[j]]*mu[[j]],{j,1,Length[sigma]}];
c=Table[Table[0,{j,1,Max[r]}],{i,1,g}];
Table[c=ReplacePart[c,(Product[(lambda[[j]]-lambda[[i]])^(-r[[j]]),{j,1,i-1}]*

Product[(lambda[[j]]-lambda[[i]])^(-r[[j]]),{j,i+1,g}])/(r[[i]]-1)!,{i,r[[i]]}],{i,1,g}];
Table[Table[c=ReplacePart[c,Sum[((r[[i]]-k+j-1)!*(Sum[r[[h]]/(lambda[[i]]-lambda[[h]])^j,
{h,1,i-1}]+Sum[r[[h]]/(lambda[[i]]-lambda[[h]])^j,{h,i+1,g}])*
c[[i]][[r[[i]]-(k-j)]])/(r[[i]]-k-1)!,{j,1,k}]/k,{i,r[[i]]-k}],{k,1,r[[i]]-1}],{i,1,g}];

Product[lambda[[j]]^r[[j]],{j,1,g}]*l^rho*Sum[Exp[-lambda[[j]]*(w-shift)]*Sum[c[[j]][[k]]*
Gamma[k]/Gamma[k + rho]*(w-shift)^(k+rho-1)*Hypergeometric1F1[rho,k+rho,-(l-lambda[[j]])*
(w-shift)],{k, 1, r[[j]]}], {j, 1, g}]]]

In Figures 3 and 4 we have Mathematica modules that may be used to compute respectively
the cumulative distribution and density functions of W . This ‘sample code’ was developed with
Mathematica 7.0. The code can be obtained from the first author (fjm@fct.unl.pt).

For example if we need to evaluate the cumulative distribution function of W at the value
w = 7.4165313 for

µ = (−1, 2, 3, 6) ; σ = (1/2, 5, 7/2, 3) ; α = (1/2, 1/3, 1/4, 1/5) ; γ = 10

we should use
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mu={-1,2,3,6};
sigma={1/2,5,7/2,3};
alpha={1/2,1/3,1/4,1/5};
gamma=10;
w=7.4165313;
SetPrecision[LinearGumbelsCDF[alpha,mu,sigma,gamma,w],20]

and the result is 0.89999999372369610112, which is obtained in more or less 0.3 seconds in a
2.00GHz processor. If we wish to plot the density and cumulative distribution function of W
for

µ = (−20,−1,−50, 12, 40) ; σ = (2, 1/2, 5/4, 10, 50) ; α = (2, 12, 24, 50, 10) ; γ = 6;

we should use

mu={-20,-1,-50,12,40};
sigma={2,1/2,5/4,10,50};
alpha={2,12,24,50,10};
gamma= 6;
Plot[LinearGumbelsPDF[alpha, mu, sigma, gamma, w],{w,-2000,4000}]
Plot[LinearGumbelsCDF[alpha, mu, sigma, gamma, w],{w,-2000,4000}]

and the result should be the first two plots in Figure 1.
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