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Abstract. The probability generating function is a powerful technique for studying the
law of finite sums of independent discrete random variables taking integer positive values.
For real valued discrete random variables, the well known elementary theory of Dirichlet
series and the symbolic computation packages available nowadays, such as Mathematica
5 TM, allows us to extend to general discrete random variables this technique. Being so,
the purpose of this work is twofold. Firstly we show that discrete random variables taking
real values, non necessarily integer or rational, may be studied with probability generating
functions. Secondly we intend to draw attention to some practical ways of performing the
necessary calculations.

1. Classical probability generating functions

Generating functions are an useful and up to date tool in nowadays practical mathe-
matics, in particular in discrete mathematics and combinatorics (see [Lando 03]) and, in
the case of probability generating functions, in distributional convergence results as in
[Kallenberg 02][p. 84]. Its uses in basic probability are demonstrated in the classic reference
[Feller 68][p. 266]. More recently, probability generating functions for integer valued random
variables have been studied intensively mainly with some applied purposes in mind. See, for
instance [Dowling et al 97], [Marques et al 89], [Nakamura et al 93], [Nakamura et al 93a],
[Nakamura et al 93b], [Rémillard et al 00], [Rueda et al 91] and [Rueda et al 99].

The natural extension of the definition of probability generating function to non nega-
tive real valued random variable X, as the expectation of the function tX , is very clearly
presented in the treatise [Hoffmann-Jørgensen 94][p. 288] where some of the consequences,
drawn directly from this definition, are stated.

Let us briefly formulate some classical results on probability generating functions for inte-
ger valued random variables recalling the useful connection between the topics of probability
generating functions and of analytic function theory. Let X be a random variable taking
values in Z and consider that for all k ∈ Z we have pk := P[X = k] ∈ [0, 1].
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The probability generating function (PGF) of X, denoted by ψX , is given by by ψX(z) =
E[zX ] =

∫
Ω zXdP for all z in the set DX in which it is well defined, that is,

DX = {z ∈ C :
∫

Ω
zXdP ∈ C} = {z ∈ C :

∫

Ω
| z |X dP < +∞} .

As we have that when δa represents the Dirac measure with support in {a}, the law of X
is the probability measure µX given by µX =

∑+∞
n=−∞ pnδn we can conclude that, by the

standard result on the integration with respect to the law of X,

∀z ∈ DX ψX(z) =
n=+∞∑

n=−∞
pnzn .(1.1)

That means that the PGF of X is given by a Laurent series around zero in its domain of
existence as a complex function. The domain of simple convergence of such a series is a set
of the form C(ρ1, ρ2) = {0 ≤ ρ1 ≤| z |≤ ρ2 ≤ +∞} where by Hadamard’s formula we have:
ρ1 = lim supn→+∞ n

√
p−n and ρ2 = 1/ lim supn→+∞ n

√
pn. As the series in (1.1) is absolutely

(and uniformly) convergent in the closure of C(r1, r2) for every ρ1 < r1 < r2 < ρ2 we have
that DX = C(ρ1, ρ2). If for all n < 0 we have that pn = 0 then, ψX is represented by a
Taylor series around zero, {| z |< 1} ⊂ DX and so,

∀n ∈ N pn =
ψ

(n)
X (0)
n!

,

thus showing that ψX generates the probabilities in a very nice way that, in some cases, is
useful in practice. In the general case, one can still, in a sense, generate the probabilities
from the PGF as we have for some γr, the border of the circle of radius r ∈]ρ1, ρ2[ centered
at zero, that

∀n ∈ Z pn =
1

2πi

∫

γr

ψX(ξ)
ξn+1

dξ .

The main purpose of this paper is to extend probability generating function techniques
to discrete random variables taking real values non necessarily integer.

2. Probability generating functions for real valued random variables

Consider, from now on, a discrete random variable X taking the sequence of real val-
ues (αk)k∈Z such that for some sequence of probabilities (pk)k∈Z ∈ [0, 1]Z, thus verifying∑+∞

k=−∞ pk = 1, we have that P[X = αk] = pk for all k ∈ Z. The law of X is the probability
measure µX is given by µX =

∑+∞
k=−∞ pkδαk

. We will constantly use that for any t > 0 and
x ∈ R, tx := ex ln(t) is well defined. The formal definition follows naturally.

Definition 2.1. The probability generating function (PGF) of X is defined for all
t > 0 by:

ψX(t) = E[tX ] =
∫

R

tXdµX =
+∞∑

k=−∞
pkt

αk .

Remark 2.2. Let us observe that E[tX ] is always well defined as a Lebesgue integral of a
well defined positive function although, possibly, equal to +∞, and that, ψX takes at least
a real value as we have

ψX(1) =
+∞∑

k=−∞
pk = 1 .
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A natural question is then to determine the exact description of the convergence domain of
ψX , that is the set DX := {t > 0 : ψX(t) < +∞} where the PGF of X is, in fact, a real
valued function. We will address this question in theorem 2.5 below referring to section 5
for some of the results on Dirichlet series that we use in the proof.

It is convenient to notice that PGF is one among other very important functional trans-
forms, namely the characteristic function and the moment generating function. For future
reference let us define precisely these notions. Let X be a real valued random variable with
law µX . Following [Kallenberg 02, p. 84] we denote by µ̂X the characteristic function of
X, defined for all t ∈ R by:

µ̂X(t) = E[eitX ] =
∫

R

eitxdµX(x) .

For s ∈ C write s = σ + it. Another functional transformation of the law of a random
variable gives us the moment generating function

Definition 2.3. The moment generating function (MGF) µ̃X of a real valued random
variable X is defined to be

µ̃X(z) = E[ezX ] =
∫

R

ezxdµX(x) .(2.1)

for all z in the set D̃X = {z ∈ C :
∫

R
| ezx | dµX(x) < +∞}, that is, such that the integral

on the right exits.

Remark 2.4. For any random variable X the natural domain of its MGF is never empty
as 0 ∈ D̃X . However, important properties depend crucially on D̃X having a non empty
interior. For that reason some authors (see [Resnick 01, p. 294]) consider that µ̃X is defined
only in that case. On subsection 5.2 we will deal more thoroughly with this question.

There are natural relations among these functional transforms. For all t for each the
functional transforms involved are well defined we have:

µ̃X(it) =
∫

R

eitxdµ(x) = µ̂(t) and µ̃X(ln(t)) = ψX(t) .(2.2)

Consider the following further convention on the notation used above, that is, X is a
random variable taking as values the ordered sequence of real values (αk)k∈Z each one with
the corresponding probability pk and suppose that for k < 0 we have αk < 0, α0 = 0 and
for k > 0 we have αk > 0.

Theorem 2.5. Let X be a random variable and let ψX denote its PGF. We then have that:
1. If X takes an finite number of real values

DX =]0,+∞[ .

2. If X takes an infinite number of real values without accumulation points

∃u0, v0 ∈] −∞, 0] , ]eu0 , e−v0 [⊂ DX ⊂ [eu0 , e−v0 ] .(2.3)

3. If X is a discrete random variable with exponential decaying tails, that is, if for some
k, c > 0 we have that P[| X |> x] ≤ ke−cx then we get also the condition expressed by
formula (2.3).

Proof. In the first case we have that the PGF takes the form

ψX(t) =
+N∑

k=−M

pkt
αk =

p−M

tα−M
+ . . .

p−1

t−α1
+ p0 + p1t

α1 + · · · + pN tαN ,
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for some integers M and N and the result announced is obviously true. For the second
result, defining

{
qk = p−k

βk = −α−k ,

we have that:

ψX(t) =
+∞∑

k=1

qke
−βk ln(t) + p0 +

+∞∑

k=1

pke
−αk ln( 1

t
)(2.4)

where the sequences (αk)k∈N∗ and (βk)k∈N∗ are increasing. Under the hypotheses that these
sequences do not have a limit in R, in the formula (2.4) above we have expressed ψX as a
sum of a constant p0 and two Dirichlet series taken at ln(t) and at ln(1/t). The description of
the the set of convergence of ψX can then be tied up with the description of the convergence
sets of two Dirichlet series, one for the positive values other for the negative values of the
random variable. Consider the Dirichlet series defined by

+∞∑

k=1

qke
−βks and

+∞∑

k=1

pke
−αks

and apply the results on absolutely convergent series, recalled in the last section on Dirichlet
series, to obtain u0 and v0 the abscissas of absolute convergence of the series on the left and
on the right respectively. As

∑+∞
k=−∞ pk = 1 we then have v0, u0 ≤ 0. This now obviously

implies the result as

ln(t) > u0 ⇔ t > eu0 and ln(
1
t
) > v0 ⇔ t < e−v0 .

The last result stated in the theorem is an immediate consequence of proposition 5.3 in the
last section as we have that DX = {| ez |: z ∈ D̃X}.
Remark 2.6. The use of Dirichlet series or MGF is further justified as it allows to determi-
nate the parameters u0, v0 in the theorem above. In fact, if X takes an infinite number of
values without accumulation points then u0, v0 are given by formulas (5.2) or (5.3). If X is
discrete having an exponential decaying tail then we may get σ+

0 and σ−
0 as defined in the

proof of proposition 5.3 and then it is clear that u0 = σ−
0 and v0 = −σ+

0 .

2.1. Generating the probabilities. One reason for the denomination used in the defini-
tion is the following result. We will recall first some notation. Let t > 0 and define, for such
a t, the floor function as

	t
 = sup{n ∈ N : n ≤ t} ,

that is, the greatest integer less or equal to t and the fractional part of t as

frac(t) = t − 	t
 .

Also, as a notation, let us say that
∏−1

l=0 al = 1.

Theorem 2.7. Let X be a random variable taking only a finite number of values (αk)−M≤k≤N ,
suppose that the values in this sequence are ordered as an increasing sequence and let

ψX(t) =
+N∑

k=−M

pkt
αk =

p−M

tα−M
+ . . .

p−1

t−α1
+ p0 + p1t

α1 + · · · + pN tαN ,(2.5)
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denote the PGF of the random variable X. Then, obviously, we have that:

p−M = P[X = α−M ] = lim
t→0+

(tα−M × ψX(t))

and derivating enough times:

p−M+1 = lim
t→0+

1

tfrac(α−M−α−M+1)

(tα−M ψX(t))�α−M−α−M+1�
∏�α−M−α−M+1�−1

l=0 (α−M − α−M+1 − l)
.

By induction we can get the formulas for the remaining values of X.

Proof. For the first result it is enough to observe that:

tα−M × ψX(t) = p−M +

p−M−1t
α−M−α−M−1 + · · · + p0t

α−M + p1t
α1+α−M + . . .

For the second result in the statement of the theorem and, in case we have 	α−M−α−M+1
 ≥
1, just derive the preceeding formula above 	α−M − α−M+1
 times.

Remark 2.8. The practical interest of this theorem if reduced by the fact that with the
software allowing symbolic calculus it is easy to extract the coefficient for a given exponent
of t. We will show this in a couple of examples below.

2.2. Fundamental properties of PGF. The next result shows that the PGF, whenever
properly defined, characterizes the MGF of a random variable and consequently characterizes
the distribution of this random variable.

Theorem 2.9. Let X, Y be random variables such that for some neighborhood V of 1 ∈
DX ∩ DY we have ψX and ψY well defined and verifying

∀t ∈ V ψX(t) = ψY (t) .(2.6)

Then µ̃X ≡ µ̃Y and consequently X
d= Y .

Proof. Condition (2.6) implies that µ̃X and µ̃Y are well defined on

D = {s = σ + it ∈ C : σ ∈ {ln(u) : u ∈ Int(V )}} ⊂ DX ∩ DY

and that for s ∈ D we have µ̃X(s) = µ̃Y (s). As, by proposition 5.4, µ̃X and µ̃Y are holo-
morphic functions on DX and DY , respectively, they are certainly equal as two holomorphic
functions coinciding in a set having an accumulation point coincide. In order to conclude it
suffices to observe that as µ̃X ≡ µ̃Y we have

∀t ∈ R µ̂X(t) = µ̃X(0 + it) = µ̃Y (0 + it) = µ̂Y (t) .

That is, the characteristic functions of X and Y coincide . Being so it is well known that

X
d= Y , as wanted.

The next result shows that given a sequence of random variables (Xn)n∈N, the convergence
of the corresponding sequence of PGF to a PGF of a random variable X on a set having a
non empty interior is enough to ensure the sequence (Xn)n∈N converges in distribution to
X.

Theorem 2.10. Let X1, . . . , Xn, . . . X real valued random variables, and ψ1, . . . ψn, . . . ψ
the correspondent PGF. Suppose that for V , some neighborhood of 1 ∈ DX , we have that:

∀n ∈ N V ⊂ DXn(2.7)
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and

∀t ∈ V lim
n→+∞

ψn(t) = ψ(t) .(2.8)

Then, (Xn)n∈N converges in distribution to X.

Proof. Let D := {s = σ + it ∈ C : eσ ∈ V }. Then condition (2.8) implies that

∀s = σ + it ∈ D lim
n→+∞

µ̃Xn(σ) = lim
n→+∞

µXn(eσ) = µX(eσ) = µ̃X(σ)

Consider now s = σ + it ∈ D arbitrary. Considering the complex measure µXn −µX and its
correspondent total variation | µXn − µX | it is clear that:

| µ̃Xn(s) − µ̃X(s) |≤
∫

R

| esx | d | µXn − µX | (x) =| µXn − µX | (eσx) < +∞ .

Moreover we have limn→+∞ | µXn − µX | (eσx) = 0 that is, (µ̃Xn)n∈N converges over D

towards µ̃X . Being so, by theorem 5.6 we have that (Xn)n∈N converges in law to X.

2.3. The PGF of a sum of iid random variables. One important usage of PGF is the
determination of the law of a sum of independent random variables when the laws of the
terms are known. Examples of this usage will be shown in section 3. As in the case of
non negative integer valued random variables, the following simple result on the PGF of a
sum of independent random variables is obtained as a consequence of elementary facts from
probability theory.

Theorem 2.11. Let X and Y be two independent discrete real valued random variables.
Then

ψX+Y (t) = ψX(t) × ψY (t)

and if µX =
∑+∞

k=−∞ pkδαk
and µY =

∑+∞
l=−∞ qlδβl

, and DX+Y = DX ∩ DY , then

∀t ∈ DX+Y ψX+Y (t) =
+∞∑

k,l=−∞
pkql tαk+βl ,

Proof. The first equality is a consequence of the independence of X and Y . The second
equality is simple given by the usual product of two absolutely convergent series.

Using this result it is now possible to obtain, in a very simple way, the PGF of a finite
sequence of independent identically distributed random variables.

Corollary 2.12. Let X1, X2, . . . , Xm be a sequence of independent and identically dis-
tributed with X a discrete real valued random variable. Then we have that for all t > 0:

ψX1+X2+···+Xm(t) = (ψX(t))m

and if µX =
∑+∞

k=−∞ pkδαk
then for every t ∈ DX :

ψX1+X2+···+Xm(t) =
+∞∑

i1,...,im=−∞
pi1 . . . pimtαi1

+···+αim

Proof. The first equality is a consequence of the theorem and the second one is a consequence
of the product formula for absolutely convergent series.
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3. Two calculation examples

The next examples show how to take advantage of the symbolic calculation capabilities
of usual software in order to obtain the distribution function of a sum of a finite number
independent copies of a random variable taking a finite number of real values. In he first
example the random variable takes rational positive and negative values. In the second
example the random variable takes irrational values.

The discrete random variable taking rational values X1 defined below appears naturally
in the context of fair marking multiple choice questions.

X1 =






−1 with probability 1/16
−2/3 with probability 3/16
−1/3 with probability 3/16
0 with probability 1/8
1/3 with probability 3/16
2/3 with probability 3/16
1 with probability 1/16 .

(3.1)

The PGF of X1 is given by

ψX1(t) =
1
16

t−1 +
3
16

t−2/3 +
3
16

t−1/3 +
2
16

+
3
16

t1/3 +
3
16

t2/3 +
1
16

t .

For a deeper understanding of fair marking an exam with a set of, say, ten multiple choice
questions it is important to know the distribution of the sum of ten independent copies of
X1 which we denote by Y . We know that ψY = (ψX1(t))

10, With a symbolic computation
package we have expanded this power in a sum of 61 terms of the form a× tα and extracted
each term of the sum. From each one of these terms we extracted the coefficient a and the
power α of t thus obtaining the probabilities and the corresponding values taken by Y .

In order to fully demonstrate the usefulness of our approach we present next the com-
mented lines of a very crude program for Mathematica 5 TM, used to produce the probability
distribution of Y and the correspondent graphic representation.

1. This first command defines ψX1 as a function of the variable t.
PGF[t ] := ((1/16)*t^ (-1)) + ((3/16)*t^ (-2/3)) + ((3/16)*t^ (-1/3)) +

((2/16)* t^ (0)) + ((3/16)*t^ (1/3)) + ((3/16)*t^ (2/3)) + ((1/16)*t^ (1))
2. Here the full expansion of (ψX1)

10, as a sum of terms of the form atα is defined as a
function of the variable t.

GPGF10[t ] := Expand[PGF[t]^ 10]
3. This next command just counts the number of terms of the form atα in the expansion.

numTer=Count[GPGF10[t], *t ^ ]
4. A list, which is function of the variable t, is made of the terms of the expansion.

TabProb[t ] = Table[Part[GPGF10[t], k], {k, 1, numTer}];
5. This command calculates αatα−1/a the derivative of the term atα divided by a in order

to get the exponent α.
derTabProb[n Integer, t ] := D[TabProb[t][[n]], t]/TabProb[1][[n]]

6. The exponent of a term atα is just the value of αatα−1/a when t = 1.
Exponents[n Integer] := derTabProb[n, t] /. t -> 1
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7. The list ProbExpon is just the probability distribution of (ψX1)
10 given by the pairs

having as a first element the value taken by the random variable and, as a second term,
the correspondent probability.

ProbExpon = Table[Exponents[k], TabProb[1][[k]], {k, 1, numTer}]
8. The probability distribution is sorted with the lexicographic order so that, smaller

values of the random variable come first.
SortProbExpon = Sort[ProbExpon]

9. This last command draws the graphic.
DistFunc = ListPlot[SortProbExpon, PlotStyle -> PointSize[.012]]

The graphic representation of the probability distribution of Y is given in the following
figure.

Note that a first inspection of this figure suggests the use of a normal approximation for Y .
For a second example consider a random variable X2 taking some irrational values defined

as in the following.

X2 =






−3/4 with probability 0.34
π with probability 0.33
2π with probability 0.33 .

(3.2)

Obviously the PGF of X2 is given by

ψX2(t) =
0.34
t3/4

+ 0.33tπ + 0.33t2π .

As above, we are interested in the law of Z the sum of ten identically distributed copies of
X2. We know that

ψZ(t) =
(

0.34
t3/4

+ 0.33tπ + 0.33t2π

)10

.

Proceeding as in the first example above, we get probability distribution of Z is given in
the following figure.
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Obviously, using a normal approximation for Z can’t be thought in this case.

4. Random variables taking an infinite number of values

In the preceeding section we showed how to effectively determine the probability dis-
tribution of a finite sum of independent identically distributed random variables taking a
finite number of real values using the PGF. In this section we will show that for a sum of
iid random variables taking an infinite number of real values with no accumulation points,
the same procedure can be used up to an approximation error, under some mild restrictive
hypotheses.

Let X be a discrete real valued random variable taking an infinite number of values. The
method we propose is as follows. Firstly we define a sequence real valued random variables
(XM,N )M,N∈N, taking a finite number of values. It is then easy to see that the the sequence
(XM,N )M,N∈N converges in law to X. We may then use a sum of independent copies of
XM,N , for M and N large enough, to approach the sum of independent copies of X.

As in the preceeding section, let (αk)k∈N denote the ordered sequence of real numbers
which are the values taken by X with the correspondent probabilities (pk)k∈N. Suppose that
α0 = 0 and that for k < 0 we have αk < 0 and for k > 0 we have αk > 0. Consider for each
M, N ∈ N the random variable XM,N such that:

{
p̃k := P[XM,N = αk] = P[X = αk] = pk ∀k ∈ {−M, . . . ,−1, 1, . . . , N}
p̃0 := P[XM,N = 0] = p0 +

∑−M−1
k=−∞ pk +

∑+∞
k=N+1 pk

(4.1)

This random variable XM,N takes the values {α−M , . . . , α−1, α1, . . . , αN−1} with same prob-
abilities as X and takes the value α0 = 0 with a probability equal to the sum of p0 plus the
sum of remaining probabilities for the other negative values taken by X, plus the sum of
remaining probabilities for the other positive values taken by X.

Theorem 4.1. The sequence of random variables (XM,N )M,N∈N converges in law to X.

Proof. Let f be a continuous bounded function of R. As we have that µXM,N and µX are
given respectively by:

µXM,N =
N∑

k=−M

pkδαk
+

(−M−1∑

k=−∞
pk +

+∞∑

k=N+1

pk

)

δ0 and µX =
+∞∑

k=−∞
pkδαk

,
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we then have that:
| µX(f) − µXM,N (f) |=

=

∣
∣
∣
∣
∣

−M−1∑

k=−∞
pkf(αk) −

(−M−1∑

k=−∞
pk

)

f(0) +
+∞∑

k=N+1

pkf(αk) −
(

+∞∑

k=N+1

pk

)

f(0)

∣
∣
∣
∣
∣
=

=

∣
∣
∣
∣
∣

−M−1∑

k=−∞
pk(f(αk) − f(0)) +

+∞∑

k=N+1

pk(f(αk) − f(0))

∣
∣
∣
∣
∣

.

Let K denote the bound of | f |. We then will have:

| µX(f) − µXM,N (f) |≤ 2M

(

(
−M−1∑

k=−∞
pk) + (

+∞∑

k=N+1

pk)

)

.

As we have
∑+∞

k=−∞ pk = 1, the theorem is proved.

We may now proceed to the second step of our approximation procedure.

Theorem 4.2. Let m ≥ 1 be a fixed integer, X1, . . . , Xm be m independent copies of X and
XM,N

1 , . . . , XM,N
m be m independent copies of XM,N . Then the sequence of random variables

(XM,N
1 + · · · + XM,N

m )M,N∈N converges in law to X1 + · · · + Xm.

Proof. It is a simple consequence of the continuity theorem of Lévy-Cramér.

We now show that the sequence of the PGF of the random variables XM,N converges
uniformly to the PGF of X.

Theorem 4.3. Let u0 and v0 be as in theorem 2.5. The sequence (ψXM,N )M,N∈N converges
uniformly for ψX on ]eu0 , e−v0 [.

Proof. By the definitions we simply have to observe that:

| ψX(t) − ψXM,N (t) |≤ |
−M−1∑

k=−∞
pkt

αk | +

(

(
−M−1∑

k=−∞
pk) + (

+∞∑

k=N+1

pk)

)

+ |
+∞∑

k=N+1

pkt
αk |

and use the fact that on ]eu0 , e−v0 [ the terms
∑−M−1

k=−∞ pkt
αk and

∑+∞
k=N+1 pkt

αk are the
remaining terms of two uniformly convergent Dirichlet series.

In order to finish we will show that the sequence of PGF of XM,N
1 + · · ·+XM,N

m converges
uniformly to the PGF of X1 + · · · + Xm.

Theorem 4.4. With the same notations used in statement and in the proof of theorem 2.5
suppose that u0, v0 < 0. Then, for every m ≥ 1 and every ε > 0, there exists M0, N0 ∈ N,
u, v ∈ R verifying

1 ∈]eu, e−v[⊆]eu0 , e−v0 [ ,

such that for all M ≥ M0 and N ≥ N0,

∀t ∈ DX (ψX(t))m = (ψXM,N (t))m + RM,N
ε (t)

where

∀M ≥ M0 ∀N ≥ N0 ∀t ∈]eu, e−v[, | RM,N
ε (t) |≤ ε(1 + ε)m−1m .(4.2)
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Proof. As a consequence of having u0, v0 < 0 we have 1 ∈]eu0 , e−v0 [. By the results on
Dirichlet series, the series defining ψX converges uniformly in ]eu0 , e−v0 [ and so:

lim
M,N→+∞

sup
t∈]eu0 ,e−v0 [

| ψX(t) − ψXM,N (t) |= 0 .

It is then possible to choose M0, N0 ∈ N such that for all M ≥ M0 and N ≥ N0,

∀t ∈]eu0 , e−v0 [ , | ψX(t) − ψXM,N (t) |≤ ε

2
.(4.3)

As ψXM,N is continuous for t > 0 and the sequence (ψXM,N )M,N∈N converges uniformly to
ψX on ]eu0 , e−v0 [ then, ψX is continuous at the point t = 1 where we have ψX(1) = 1. We
may then choose u, v such that 1 ∈]eu, e−v[⊆]eu0 , e−v0 [ and

∀t ∈]eu, e−v[ , | ψX(t) |≤ 1 +
ε

2
.(4.4)

As a consequence of estimate (4.3) we then have:

∀t ∈]eu, e−v[ , | ψXM,N (t) |≤ 1 + ε .(4.5)

A very well known formula tells us that for all t ∈ DX :

(ψX(t))m = (ψXM,N (t))m + (ψX(t) − ψXM,N (t))
m−1∑

i=0

(ψX(t))m−1−i (ψXM,N (t))i .

Defining

RM,N
ε (t) = (ψX(t) − ψXM,N (t))

m−1∑

i=0

(ψX(t))m−1−i (ψXM,N (t))i ,

it follows from the previous estimates (4.4) and (4.5) that the estimate (4.2) in the statement
of the theorem is valid, thus finishing the proof of this theorem.

5. Auxiliary results

For the reader’s convenience we present in this section some technical results on Dirichlet
series and moment generating functions that were essential to prove some fundamental
results on PGF. We suppose that the results on subsection 5.2 may have interest on its own.

5.1. A quick review of Dirichlet series. In this subsection we recall from [Hardy & Riesz]
or [Zaks & Zygmund] some results that were needed in previous sections. A Dirichlet series
is a series of the form

+∞∑

n=1

ane−λns ,(5.1)

where (an)nN∗ is a sequence of complex numbers and (λn)nN∗ is an unbounded increasing
sequence of positive real numbers. Let us observe first that if the series in (5.1) converges
absolutely for s0 = σ0 + it0 then the series converges absolutely and uniformly for every
s = σ + it such that σ ≥ σ0, as a consequence of Weierstrass criteria. This result implies the
existence of α, named the abscissa of absolute convergence, such that for s = σ+it such
that σ > α the series converges absolutely and, if σ < α then the series does not converge
absolutely. On the line σ = α more analysis is needed to decide on the absolute convergence
of the series.

In what concerns simple convergence and, as an easy consequence of Abel’s lemma on
series summation, we get that if the series in (5.1) converges for s0 = σ0 + it0 then
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(a) The series converges for every s = σ + it such that σ > σ0.
(b) The series converges uniformly in

{s ∈ C :| Arg(s − s0) |≤ a <
π

2
} .

Once again, this result implies the existence of β, named the abscissa of convergence,
such that for s = σ + it such that σ > β the series converges and if σ < β then the series
diverges. Also in this case, on the line σ = β more analysis is needed to decide the simple
convergence of the series.

Moreover, another application of the same lemma shows that if β > 0 or if β = 0 but∑+∞
n=1 an �= 0 then

β = lim sup
n→+∞

|
∑n

k=1 ak |
λn

.

It can also be shown that if β < 0 then

β = lim sup
n→+∞

|
∑+∞

k=n+1 ak |
λn+1

.

As a consequence we also have that if α > 0 or if α = 0 but
∑+∞

n=1 | an |�= 0 then

α = lim sup
n→+∞

∑n
k=1 | ak |

λn
.(5.2)

and if α < 0 then

α = lim sup
n→+∞

∑+∞
k=n+1 | ak |

λn+1
.(5.3)

5.2. On the moment generating function. Recall the definition of the moment gener-
ating function and of its natural domain of existence given in definition (2.3). It is easy but
somehow lengthy to show that D̃X having a non empty interior happens only for random
variables with exponential decaying tails.

Proposition 5.1. Let X be a real valued random variable.

Int(D̃X) �= ∅ ⇔ ∃k, c > 0 P[| X |> x] ≤ ke−cx .(5.4)

Proof. Suppose that the natural domain of definition of MGF has non empty interior. Let us
deal with

∫
R+

eσx dµX(x) first. Suppose that for σ+ > 0 we have
∫

R+
eσ+x dµX(x) < +∞.

We then have: ∫

Ω
eσ+X+

dP =
∫

R+

eσ+x dµX(x) + µX({0}) < +∞ .(5.5)

By Tchebytcheff inequality

P[eσ+X+
> u] ≤ 1

u

∫

Ω
eσ+X+

dP ,

which is equivalent by an obvious change of variable to:

P[X+ > t] ≤ eσ+t

∫

Ω
eσ+X+

dP .

In the same way if for σ− < 0 we have
∫

R+
eσ−xµX(x) < +∞ we may conclude

P[X− > t] ≤ eσ−t

∫

Ω
e−σ−X−

dP ,
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and finally

P[| X |> t] = P[{X+ > t} ∪ {X− > t}] ≤

≤ 2 sup
(∫

Ω
eσ+X+

dP,

∫

Ω
e−σ−X−

dP

)

e− inf(σ+,−σ−)t ,

as wanted. Suppose that the condition on the right of (5.4) is verified. As we can write (see
[Rudin 86, p. 172]) for σ ≥ 0 and X a positive random variable

∫

Ω
eσXdP = σ

∫ +∞

0
eσt

P[| X |> t]dt

then by formula (5.5), and σ+ such that 0 ≤ σ+ < c
∫

R+

eσ+xµX(x) ≤
∫

Ω
eσ+X+

dP = σ+

∫ +∞

0
eσ+t

P[X+ > t]dt ≤

≤ σ+k

∫ +∞

0
e(σ+−c)tdt < +∞ .

A similar argument shows that for σ− such that −c < σ+ ≤ 0
∫

R−
eσ−xµX(x) ≤

∫

Ω
e(−σ−)X−

dP = −σ−
∫ +∞

0
e(−σ−)t

P[X− > t]dt ≤

≤ −σ−k

∫ +∞

0
e(−σ−−c)tdt < +∞ .

As a consequence we have

{s = σ + it ∈ C : σ ∈] − c,+c[} ⊂ D̃X

and so Int(D̃X) �= ∅ as wanted.

Remark 5.2. It is this limitation that forces the use of characteristic functions, which are
always well defined for general random variables.

The next result clarifies the general form of the natural domain of of definition the MGF.

Proposition 5.3. Let X be a real valued random variable. Then, there exists σ−
0 ≤ 0 and

σ+
0 ≥ 0 such that:

{s = σ + it ∈ C : σ ∈]σ−
0 , σ+

0 [} ⊂ D̃X ⊂ {s = σ + it ∈ C : σ ∈ [σ−
0 , σ+

0 ]}(5.6)

Proof. Recall that for ε ≥ 0

eσx

{
≤ e(σ+ε)x x ≥ 0
≥ e(σ+ε)x x ≤ 0 .

and that by definition we have that for s ∈ D̃X

µ̃X(s) =
∫

R−
esxµX(x) + µX({0}) +

∫

R+

esxµX(x) .

Now, if for σ− we have
∫

R−
eσ−xµX(x) < +∞ then for s = σ + it such that σ ≥ σ−

∫

R−
| esx | µX(x) =

∫

R−
eσxµX(x) ≤

∫

R−
eσ−xµX(x) < +∞ .
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Let σ−
0 := inf{σ ∈ R :

∫
R−

eσxµX(x) ≤ +∞} and observe that as µX(R−) < +∞ we have

σ−
0 ≤ 0. Similarly if we have for σ+ we have

∫
R+

eσ+xµX(x) < +∞ then for for s = σ + it

such that σ ≤ σ+

∫

R+

| esx | µX(x) =
∫

R+

eσxµX(x) ≤
∫

R+

eσ+xµX(x) < +∞ .

Defining σ+
0 := sup{σ ∈ R :

∫
R+

eσxµX(x) ≤ +∞} we have that as µX(R+) < +∞ we have
σ+

0 ≥ 0. It is now clear that the pair (σ−
0 , σ+

0 ) is bound to verify the statement above.

The nest result shows that MGF of random variables or more generally complex Laplace
transforms of probability measures are holomorphic functions whenever the natural domain
of definition is non trivial.

Proposition 5.4. Let µ be a probability measure and denote by µ̃ its complex Laplace trans-
form defined as in (2.1). Suppose that Int(D̃µ) �= ∅. Then µ̃ is an holomorphic function on
D̃µ.

Proof. Suppose first that µ is a positive finite measure with compact support denoted by K.
In this case the result is a simple consequence of Lebesgue dominated convergence theorem.
In fact, we can write for s ∈ Int(D̃) fixed that, in case µ̃′(s) exists, we have

µ̃′(s) = lim
h→0

µ̃(s + h) − µ̃(s)
h

= lim
h→0

∫

K
esx

(
ehu − 1

h

)

dµ(x) .

Now, with

φs,x(h) := esx

(
ehu − 1

h

)

we have limh→0 φs,x(h) = xesx which is a bounded function for x ∈ K, say by a constant
MK . For x ∈ K and h small enough

| φs,x(h) |≤| φs,x(h) − xesx | + | xesx |≤ ε + MK .

By the Lebesgue dominated convergence theorem we will have

µ̃′(s) =
∫

K
xesxdµ(x) ∈ C.(5.7)

as µ is a finite measure. For a general µ we will consider an approximation by a sequence of
measures with compact support. Consider φn a continuous function with compact support
such that 0 ≤ φn ≤ 1, φn ≡ 1 over [−n, +n] and the support of φn is a subset of [−2n, +2n].
Let µn := φnµ . Then, µn is a finite measure with compact support such that µ̃n is perfectly
defined on D̃ and so it is an holomorphic function on the interior of this set by the preceeding
argument. We will now show that (µ̃n)n∈N converges uniformly on compacts to µ̃. Consider
now an arbitrary compact set K ⊂ D̃. We have the following estimates.

sup
s∈K

| µ̃n(s) − µ̃(s) | ≤ sup
s∈K

∣
∣
∣
∣

∫

R−
esx(1 − φn(x))dµ(x)

∣
∣
∣
∣ +

+ | µ({0}) − µn({0}) | + sup
s∈K

∣
∣
∣
∣

∫

R+

esx(1 − φn(x))dµ(x)
∣
∣
∣
∣ .

For a start it is obvious that limn→+∞ | µ({0}) − µn({0}) |= 0. Observe also that as we
have for all s ∈ K

| esx(1 − φn(x)) |≤ eσ−
0 x(1 − φn(x)) ≤ 2 eσ−

0 x
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with the function on the right being µ integrable we may apply Lebesgue dominated con-
vergence to have

lim
n→+∞

sup
s∈K

∣
∣
∣
∣

∫

R−
esx(1 − φn(x))dµ(x)

∣
∣
∣
∣ ≤ lim

n→+∞

∫

R−
eσ−

0 x(1 − φn(x))dµ(x) = 0 .

The same reasoning applies to the integral over R+ and as a consequence we also have

lim
n→+∞

sup
s∈K

∣
∣
∣
∣

∫

R+

esx(1 − φn(x))dµ(x)
∣
∣
∣
∣ = 0 .

In order to conclude let us observe that the sequence of holomorphic functions (µ̃n)n∈N con-
verges uniformly on the compact sets of Int(D̃) to µ̃ and so this last function is holomorphic
in Int(D̃) by a well known theorem of complex analysis (see, for instance, [Rudin 86, p.
214]).

Theorem 5.5. Suppose that µ1, µ2, . . . , µn, . . . µ are probability measures such that (µ̃n)n∈N

converges to µ̃ over D̃µ such that Int(D̃µ) �= ∅. Then (µ̃n)n∈N is a tight sequence of measures.

Proof. We will show that

∀ε > 0 ∃rε > 0 sup
n∈N

∫

|x|≥rε

dµn(x) ≤ ε .(5.8)

Consider σ−
1 , σ+

1 such that 0 ∈ [σ−
1 , σ+

1 ] ⊂]σ−
0 , σ+

0 [. We will show first that

∃c > 0 ∀s ∈ {z = σ + it ∈ C : σ ∈ [σ−
1 , σ+

1 ]} | 1 − µ̃(s) |≤ c | s | .(5.9)

In fact as µ̃ is holomorphic in Int(Dµ), for σ + it such that σ ∈ [σ−
1 , σ+

1 ] we will have

| 1 − µ̃(s) |≤| s | sup
r∈[|0,s|]

| µ̃′(r) |

where [|0, s|] is the convex envelope in the plane of the set {0, s}. By formula (5.7) we have
for r = αs with α ∈ [0, 1]

| µ̃′(r) | =
∣
∣
∣
∣

∫

R

xerxdµ

∣
∣
∣
∣ ≤

∫

R−
(−x)eσ−

1 xdµ(x) + µ({0}) +
∫

R+

xeσ+
1 xdµ(x) =

=
∫

R−
(−x)e(σ−

1 −σ−
0 )x eσ−

0 xdµ(x) + µ({0}) +
∫

R+

xe(σ+
1 −σ+

0 )x eσ+
0 xdµ(x) .

Now as σ−
1 > σ−

0 , we have limx→+∞−xe(σ−
1 −σ−

0 )x = 0 and so this function is bounded by
some constant, say M− in R−. By a similar argument the function xe(σ+

1 −σ+
0 )x is bounded

by some constant M+ in R+. As a consequence,

| µ̃′(r) |≤ M−

∫

R−
eσ−

0 xdµ(x) + µ({0}) + M+

∫

R+

eσ+
0 xdµ(x) = C < +∞ ,

and so (5.9) is proved. We will now prove (5.8). Consider a given ε > 0. As a consequence
of the hypotheses made on the sequence (µn)n∈N we have that

∃n0 ∈ N ∀n ∈ N n ≥ n0 ⇒| 1 − µ̃n(0 + it) |≤| 1 − µ̃(0 + it) | +
ε

4
.
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Now, by a well known tail estimate (see [Kallenberg 02, p. 85]) we have that for every r > 0
and n > n0,

µn(| x |> r) ≤ r

2

∫ 2/r

−2/r
(1 − µ̂n(t))dt ≤ r

2

∫ 2/r

−2/r
(1 − µ̃n(0 + it))dt ≤

≤ r

2

∫ 2/r

−2/r

(
| 1 − µ̃(0 + it) | +

ε

4

)
dt ≤ r

2

∫ 2/r

−2/r
(c | t | +

ε

4
)dt =

4c

r
+

ε

4
.

We may now choose r0 such that for n > n0 and r > r0 we have

µn(| x |> r) ≤ ε .

Also for m ∈ {1, . . . , n0}, as we have µm(R) = 1 there exists rm > 0 such that for r > rm

we have µm(| x |> r) ≤ ε. Choosing rε = max0≤n≤n0rn we will have

sup
n∈N∗

µn(| x |> r) ≤ ε

as wanted.

In fact more is true. The next result may be deduced from an exercise stated in [Kallenberg 02,
p. 101]. It is a continuity theorem for moment generating functions.

Theorem 5.6. Suppose that µ1, µ2, . . . , µn, . . . µ are probability measures such that (µ̃n)n∈N

converges to µ̃ on some set D̃µ = {s = σ + it ∈ C : σ ∈ [σ−, σ+]} such that Int(D̃µ) �= ∅.
Then (µ̃n)n∈N converges weakly to µ.

Proof. We will show first that if (µnk
)k∈N is a subsequence of (µn)n∈N converging vaguely

to some probability distribution ν, then for s ∈ Int(D̃µ) we will have

lim
n→+∞

˜µnk
= ν̃(s) .(5.10)

Let ε > 0 be given. Let s = σ + it ∈ Int(D̃µ) and consider for all r > 0, φr a continuous
function such that 0 ≤ φr ≤ 1, φr ≡ 1 on [−r, +r] and such that the support of φr is
contained in [−2r, +2r]. We may write

| µ̃nk
(s) − ν̃(s) |=| µnk

(esx) − ν(esx) |≤
≤| µnk

(esx) − µnk
(φre

sx) | + | µnk
(φre

sx) − ν(φre
sx) | + | ν(φre

sx) − ν(esx) | .

By Holder’s inequality, for p ≥ 1 and such that pσ ∈]σ−, σ+[ we have

| µnk
(esx) − µnk

(φre
sx) | + | ν(φre

sx) − ν(esx) |≤
∫

R

eσx (1 − φr)(x) d(µnk
+ ν)(x) ≤

≤
(∫

R

epσxd(µnk
+ ν)(x)

)1/p (∫

R

(1 − φr)q(x)d(µnk
+ ν)(x)

)1/q

≤

≤ (µ̃nk
(pσ) + ν̃(pσ))1/p ((µnk

+ ν)({| x |≥ 2r}))1/q .

As limk→+∞ µ̃nk
(pσ) = µ̃(pσ) we have that for some constant c > 0

∀k ∈ N (µ̃nk
(pσ) + ν̃(pσ))1/p ≤ c .

As by theorem 5.5 the sequence (µn)n∈N is tight then the sequence (µnk
+ν)k∈N is also tight

and so there exists rε > 0 such that

c × ((µnk
+ ν)({| x |≥ 2rε)})1/q ≤ ε

2
.
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Also as φrεe
sx is a continuous function with compact support then there exists k0 ∈ N such

that

∀k ∈ N k ≥ k0 ⇒| µnk
(φrεe

sx) − ν(φrεe
sx) |≤ ε

2
As a consequence we have that for all s = σ+it ∈ Int(D̃µ) we will have equality (5.10) verified
as wanted. As µ̃ and ν̃ are holomorphic functions, the hypothesis made on the sequence
(µn)n∈N and equality (5.10) shows that µ̃ ≡ ν̃. We now observe that we have in fact that if
(µnk

)k∈N is a subsequence of (µn)n∈N converging weakly to a probability distribution ν then
then µ = ν as the subsequence (µnk

)k∈N is a fortiori vaguely convergent to ν. By a well
known result [Shiryaev 96, p. 322] we finally have that (µn)n∈N being tight and such that
every weakly convergent subsequence converges to the same probability measure µ, then
(µn)n∈N converges weakly to µ thus ending the proof of the theorem.

References

[Dowling et al 97] M. M. Dowling, M. Nakamura, Estimating parameters for discrete distributions via the
empirical probability generating function. Commun. Stat., Simulation Comput. 26 1 (1997) 301–313.

[Feller 68] W. Feller, An introduction to Probability theory and its Applications, third edition, John Wiley &
Sons 1968.

[Hardy & Riesz] G. H. Hardy, M. Riesz The general theory of Dirichlet’s series, Cambridge University Press
1915.

[Hoffmann-Jørgensen 94] J. Hoffmann-Jørgensen, Probability with a view towards statistics, Volume I, Chap-
man & Hall 1994.

[Kahane 89] J.-P. Kahane, The last problem of Harald Bohr. Journal of the Australian Mathematical Society
A 47 (1989), pp. 133-52

[Kallenberg 02] O. Kallenberg, Foundations of Modern Probability, second edition, Springer Verlag 2002.
[Lando 03] S. K. Lando, Lectures on generating Functions, Student Mathematical Library, American Math-

ematical Society 2003.
[Marques et al 89] M. S. Marques, V. Pérez-Abreu, Law of large numbers and central limit theorem for the

empirical probability generating function of stationary random sequences and processes. Caballero, Maŕıa
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