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Abstract

The purpose of this paper is to compute the ranks of the monoid ORm×n of all orientation-preserving or orientation-
reversing full transformations on a chain with mn elements that preserve a uniform m-partition and of its submonoids
OPm×n of all orientation-preserving transformations and ODm×n of all order-preserving or order-reversing full transfor-
mations. These three monoids are natural extensions of Om×n, the monoid of all order-preserving full transformations
on a chain with mn elements that preserve a uniform m-partition. Moreover, we also determine the ranks of certain
semigroups of orientation-preserving full transformations with restricted ranges.

2000 Mathematics subject classification: 20M20, 20M10.

Keywords: order-preserving transformations, orientation-preserving transformations, equivalence-preserving transformations.

Introduction and preliminaries

Let X be a set and denote by T (X) the monoid (under composition) of all full transformations on X. For n ∈ N, let Xn

be a chain with n elements, say Xn = {1 < 2 < · · · < n}, and denote the monoid T (Xn) simply by Tn. We say that a
transformation α in Tn is order-preserving [order-reversing] if, for all x, y ∈ Xn, x ≤ y implies xα ≤ yα [xα ≥ yα]. Notice
that, the product of two order-preserving transformations or of two order-reversing transformations is order-preserving
and the product of an order-preserving transformation by an order-reversing transformation is order-reversing. Denote
by On the submonoid of Tn whose elements are order-preserving and by ODn the submonoid of Tn whose elements are
either order-preserving or order-reversing. Next, let a = (a1, a2, . . . , at) be a sequence of t (t ≥ 0) elements from the
chain Xn. We say that a is cyclic [anti-cyclic] if there exists no more than one index i ∈ {1, . . . , t} such that ai > ai+1

[ai < ai+1], where at+1 denotes a1. Let α ∈ Tn. We say that α is an orientation-preserving [orientation-reversing]
transformation if the sequence of its images (1α, . . . , nα) is cyclic [anti-cyclic]. Like in the order case, the product of
two orientation-preserving or of two orientation-reversing transformations is orientation-preserving and the product of an
orientation-preserving transformation by an orientation-reversing transformation is orientation-reversing. Denote by OPn
the submonoid of Tn whose elements are orientation-preserving and by ORn the submonoid of Tn whose elements are
either orientation-preserving or orientation-reversing.

Semigroups of order-preserving transformations have long been considered in the literature. In 1962, Aı̌zenštat [2]
gave a presentation for On, from which it can be deduced that On has only one non-trivial automorphism, for n > 1.
Also in 1962, Aı̌zenštat [1] showed that the non-trivial congruences of On are exactly the Rees congruences. Some years
later, in 1971, Howie [16] studied some combinatorial and algebraic properties of On, in particular, he showed that On is
generated by idempotents of defect one and has F2n idempotents, where F2n is the 2nth Fibonacci number. Later, in 1992,
Gomes and Howie [15] revisited the semigroup On and computed its rank and idempotent rank (which are n and 2n− 2,
respectively). Recall that the [idempotent] rank of a finite [idempotent generated] monoid is the cardinality of a least-size
[idempotent] generating set. More recently, Fernandes et al. [11] characterized the endomorphisms of On. The notion of
an orientation-preserving transformation was introduced by McAlister in [20] and, independently, by Catarino and Higgins
in [6]. Several properties of the monoids OPn and ORn have been investigated in these two papers. A presentation for
the monoid OPn, in terms of 2n − 1 generators, was given by Catarino in [5]. A new presentation for OPn, in terms of
2 (its rank) generators, was found by Arthur and Ruškuc [4], who also exhibited a presentation for the monoid ORn, in
terms of 3 (its rank) generators. Finally, regarding the monoid ODn, a presentation was given by Fernandes et al. in [9].
Its rank, computed in [10] by the same authors, is dn/2e+ 1.

1The author gratefully acknowledges support of FCT and PIDDAC, within the projects ISFL-1-143 and PTDC/MAT/69514/2006 of CAUL.
2The author gratefully acknowledges support of ISEL and of FCT and PIDDAC, within the projects ISFL-1-143 and PTDC/MAT/69514/2006

of CAUL.
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Now, let ρ be an equivalence relation on a set X and denote by Tρ(X) the submonoid of T (X) of all transformations
that preserve the equivalence relation ρ, i.e. Tρ(X) = {α ∈ T (X) | (aα, bα) ∈ ρ, for all (a, b) ∈ ρ}. This monoid was
studied by Huisheng in [18] who determined its regular elements and described its Green’s relations.

Let m,n ∈ N. Of particular interest is the submonoid Tm×n = Tρ(Xmn) of Tmn, with ρ the equivalence relation on
Xmn defined by ρ = (A1 × A1) ∪ (A2 × A2) ∪ · · · ∪ (Am × Am), where Ai = {(i − 1)n + 1, . . . , in}, for i ∈ {1, . . . ,m}.
Notice that the ρ-classes Ai, with 1 ≤ i ≤ m, form a uniform m-partition of Xmn.

Regarding the rank of Tm×n, first, Huisheng [17] proved that it is at most 6 and, later, Araújo and Schneider [3]
improved this result by showing that, for |Xmn| ≥ 3, the rank of Tm×n is precisely 4. The ranks of its partial and (partial)
injective counterparts were determined by the first author together with Cicalò and Schneider [7].

Finally, denote by ORm×n the submonoid of Tm×n of all orientation-preserving or orientation-reversing transfor-
mations, i.e. ORm×n = Tm×n ∩ ORmn. Similarly, let ODm×n = Tm×n ∩ ODmn, OPm×n = Tm×n ∩ OPmn and
Om×n = Tm×n ∩ Omn.

Example Consider the following transformations of T12:

α1 =

(
1 2 3 4 5 6 7 8 9 10 11 12
9 11 10 12 1 3 3 2 5 5 7 8

)
; α2 =

(
1 2 3 4 5 6 7 8 9 10 11 12
8 8 8 6 6 5 5 5 12 12 11 10

)
;

α3 =

(
1 2 3 4 5 6 7 8 9 10 11 12
11 11 10 10 10 9 9 9 4 3 3 1

)
; α4 =

(
1 2 3 4 5 6 7 8 9 10 11 12
7 7 7 8 8 8 5 5 5 6 6 7

)
;

α5 =

(
1 2 3 4 5 6 7 8 9 10 11 12
1 1 1 2 3 3 4 4 10 11 11 11

)
; α6 =

(
1 2 3 4 5 6 7 8 9 10 11 12
1 1 2 3 5 5 6 9 9 10 10 11

)
.

Then, we have: α1 ∈ T3×4, but α1 6∈ OR3×4; α2 ∈ OR3×4, but α2 6∈ OP3×4; α3 ∈ OD3×4, but α3 6∈ O3×4; α4 ∈ OP3×4,
but α4 6∈ O3×4; α5 ∈ O3×4; and, finally, α6 6∈ T3×4.

In [19] Huisheng and Dingyu described the regular elements and the Green relations of Om×n. On the other hand,
in [12] the authors proved that the monoid Om×n has rank 2mn − n. A description of the regular elements and a
characterization of the Green relations of the monoid OPm×n were given by Sun et al. in [21]. The cardinals of the
monoids ORm×n, OPm×n, ODm×n and Om×n were determined by the authors in [13].

In this paper, we continue the work of [12] and compute the ranks of the monoids OPm×n, ODm×n and ORm×n
(Sections 2, 3 and 4, respectively). In order to help achieving this goal, we use the wreath product description of Tm×n,
due to Araújo and Schneider [3], that we recall in the beginning of Section 2. On the other hand, since it will be useful
to determine the rank of OPm×n, in Section 1, we find generating sets (and the ranks) of certain subsemigroups of OPn
with restricted ranges.

1 On the semigroups OPn,r
Let n ∈ N and 1 ≤ r ≤ n. Consider the subsemigroup with restricted range OPn,r = {α ∈ OPn | Im(α) ⊆ {1, . . . , r}} of
OPn. Recall that the ranks and other properties of the subsemigroups of restricted range of PT n, Tn and In were studied
by Fernandes and Sanwong in [14]. In this section, we determine a set of generators of OPn,r that we will use in the next
section. Moreover, we deduce that OPn,r has rank equal to

(
n
r

)
, for 2 ≤ r ≤ n− 1.

Notice that, OPn,1 is a trivial semigroup and OPn,n = OPn. Therefore, in what follows, we consider 2 ≤ r ≤ n− 1.
We begin by showing that OPn,r is generated by its elements of rank r.

Lemma 1.1 For 1 ≤ k < r, any transformation of OPn,r of rank k is a product of elements of OPn,r of rank k + 1.

Proof. Let α =

(
I1 I2 · · · Ik
a1 a2 · · · ak

)
be an element of OPn,r of rank k, where I1, I2, . . . , Ik are the kernel classes of α

in order 1 ∈ I1 and min Ii < min Ii+1, for i = 1, . . . , k − 1. Notice that I2, . . . , Ik are intervals and I1 is an interval if and
only if n ∈ Ik (otherwise I1 is a union of two intervals). Observe also that (a1, a2, . . . , ak) is a k-cycle. On the other hand,
as k < n, there exits j ∈ {1, . . . , k} such that |Ij | > 1.

Consider γ =

(
1 · · · k − j k − j + 1 · · · k k + 1 · · · n

aj+1 · · · ak a1 · · · aj aj · · · aj

)
. Clearly, γ ∈ OPn,r and γ has rank k.

Next, if 2 ≤ j ≤ k, let β =

(
I1 · · · Ij−1 min Ij Ij\{min Ij} Ij+1 · · · Ik

k − j + 1 · · · k − 1 k k + 1 1 · · · k − j

)
; if j = 1 and n ∈ Ik, let

β =

(
1 2 · · · max I1 I2 · · · Ik
k k + 1 · · · k + 1 1 · · · k − 1

)
; and, if j = 1 and n ∈ I1, let β =

(
I ′1 I2 · · · Ik I ′′1

k + 1 1 · · · k − 1 k

)
,

2



P
re

-p
ri

nt
s

D
M

-F
C

T
-U

N
L

20
11

P
ré
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where I ′1 and I ′′1 are intervals such that I ′1 ∪ I ′′1 = I1 and max I ′1 < min I ′′1 (notice that, we also have max Ik < min I ′′1 ).
Hence, in all cases, it is a routine matter to check that β is an element of OPn,r of rank k + 1 and α = βγ.

Now, we focus our attention on γ. Let (b1, . . . , bk) be the k-cycle (aj+1, . . . , ak, a1, . . . , aj). Observe that, with this

notation, we have γ =

(
1 · · · k k + 1 · · · n
b1 · · · bk bk · · · bk

)
. Take b ∈ {1, . . . , r}\ Im(γ). If bk < b < b1 or b1 < bk < b,

let γ1 =

(
1 · · · k k + 1 · · · n
1 · · · k k + 1 · · · k + 1

)
and γ2 =

(
1 · · · k k + 1 k + 2 · · · n
b1 · · · bk bk b · · · b

)
. On the other hand, if

bi < b < bi+1 or b < bi+1 < bi or bi+1 < bi < b, for some i ∈ {1, . . . , k − 1}, let

γ1 =

(
1 · · · i− 1 i i+ 1 · · · k k + 1 · · · n

k − i+ 2 · · · k k + 1 1 · · · k − i k − i+ 1 · · · k − i+ 1

)
and

γ2 =

(
1 · · · k − i k − i+ 1 k − i+ 2 · · · k + 1 k + 2 · · · n
bi+1 · · · bk bk b1 · · · bi b · · · b

)
(notice that k < n − 1, whence k + 2 ≤ n). Then, in both cases, it is easy to show that γ1, γ2 ∈ OPn,r, γ1 and γ2 have
rank k + 1 and γ = γ1γ2.

Therefore, we proved that α = βγ1γ2, with β, γ1 and γ2 elements of OPn,r of rank k + 1, as required. �

From this lemma, by induction on the rank of the transformations, we may deduce that OPn,r is generated by its
elements of rank r, as announced above.

Next, let gn,r =

(
1 2 · · · r − 1 r r + 1 · · · n
2 3 · · · r 1 1 · · · 1

)
∈ OPn,r. Hence, we have:

Lemma 1.2 Let α and β be two elements of OPn,r of rank r such that Ker(β) = Ker(α). Then β = αgkn,r, for some
k ∈ {0, . . . , r − 1}.

Proof. Take α =

(
I1 I2 · · · Ir
a1 a2 · · · ar

)
and β =

(
I1 I2 · · · Ir
b1 b2 · · · br

)
, where I1, I2, . . . , Ir are the kernel classes of α and

β in order 1 ∈ I1 and min Ii < min Ii+1, for i = 1, . . . , r − 1. Then, as (a1, a2, . . . , ar) and (b1, b2, . . . , br) are two r-cycles
of {1, . . . , r}, we have (a1, . . . , ar) = (i + 1, . . . , r, 1, . . . , i) and (b1, . . . , br) = (j + 1, . . . , r, 1, . . . , j), for some 1 ≤ i, j ≤ r.
Take k = j − i, if i ≤ j, and k = r − i + j, otherwise. Hence, k ∈ {0, . . . , r − 1} and it is a routine matter to prove that
β = αgkn,r, as required. �

Now, notice that, if α is an element of OPn,r of rank r and α1 and α2 are two elements of OPn,r such that α = α1α2,
then Ker(α1) = Ker(α). On the other hand, it is clear that the number of distinct kernels of transformations of OPn,r of
rank r coincides with the number of distinct kernels of transformations of OPn of rank r, which is precisely

(
n
r

)
(see [6]).

These observations, together with the previous two lemmas, prove the following result.

Theorem 1.3 For 2 ≤ r ≤ n−1, the semigroup OPn,r is generated by any subset of transformations of rank r containing
at least one element from each distinct kernel. Furthermore, OPn,r has rank equal to

(
n
r

)
.

2 The rank of the monoid OPm×n
Let m,n ≥ 2. Following [3], we define the wreath product Tn o Tm of Tn and Tm as being the monoid with underlying set
T mn × Tm and multiplication defined by

(α1, . . . , αm;β)(α′1, . . . , α
′
m;β′) = (α1α

′
1β , . . . , αmα

′
mβ ;ββ′),

for all (α1, . . . , αm;β), (α′1, . . . , α
′
m;β′) ∈ T mn × Tm.

Let α ∈ Tm×n and let β ∈ Tm be the quotient map of α by ρ, i.e. for all j ∈ {1, . . . ,m}, we have Ajα ⊆ Ajβ . For each
j ∈ {1, . . . ,m}, define αj ∈ Tn by

kαj = ((j − 1)n+ k)α− (jβ − 1)n, (1)

for all k ∈ {1, . . . , n}. Let α = (α1, α2, . . . , αm;β) ∈ T mn × Tm. With this notation, the function

ψ : Tm×n −→ Tn o Tm
α 7−→ α

3
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is an isomorphism (see [3, Lemma 2.1]).
Notice that, from (1), we have kαj < `αj if and only if ((j − 1)n + k)α < ((j − 1)n + `)α, for all 1 ≤ k, ` ≤ n

and j ∈ {1, . . . ,m}. Furthermore, if jβ = (j + 1)β, for some j ∈ {1, . . . ,m − 1}, then nαj < 1αj+1 if and only if
(jn)α < (jn+ 1)α. Also, if mβ = 1β, then nαm < 1α1 if and only if (mn)α < 1α.

Now, admit that α is an orientation-preserving transformation. Then,

1. 1α ≤ · · · ≤ (mn)α; or

2. (r + 1)α ≤ · · · ≤ (mn)α ≤ 1α ≤ · · · ≤ rα and rα > (r + 1)α, for some r ∈ {1, . . . ,mn− 1}.

In the first case (notice that α is order-preserving), clearly, αj ∈ On, for all j ∈ {1, . . . ,m}. Next, suppose that α satisfies
the second condition. If r ∈ Aj\{jn}, for some j ∈ {1, . . . ,m}, then αj ∈ OPn\On and αi ∈ On, for all i ∈ {1, . . . ,m}\{j}.
Furthermore, Im(α) ⊆ Ajα, whence β is constant. Otherwise (i.e. r = jn, for some j ∈ {1, . . . ,m − 1}), it is clear that
we have αi ∈ On, for all i ∈ {1, . . . ,m}.

On the other hand, also as a consequence of (1), if (in)α ≤ (jn)α then iβ ≤ jβ, for all 1 ≤ i, j ≤ m. In fact,
suppose that iβ > jβ, for some 1 ≤ i, j ≤ m. Then, iβ = jβ + t, for some t ≥ 1, and so (iβ)n = (jβ)n + tn. Hence
(in)α = ((i−1)n+n)α = nαi+(iβ−1)n = nαi+(jβ−1)n+ tn > nαj +(jβ−1)n = ((j−1)n+n)α = (jn)α, as required.
Now, if α is orientation-preserving then, as any subsequence of a cyclic sequence is also cyclic (see [8, Proposition 2.1]), the
sequence (nα, (2n)α, . . . , (mn)α) is cyclic and so, by the above observation, the sequence (1β, 2β, . . . ,mβ) is also cyclic,
i.e. β ∈ OPm.

Recall that the authors showed in [12, Lemma 1.2] that

Om×nψ = {(α1, . . . , αm;β) ∈ Omn ×Om | jβ = (j + 1)β implies nαj ≤ 1αj+1, for all j ∈ {1, . . . ,m− 1}}. (2)

Considering addition modulo m (in particular, m+ 1 = 1), for OPm×n, we have:

Proposition 2.1 A (m + 1)-tuple (α1, α2, . . . , αm;β) of T mn × Tm belongs to OPm×nψ if and only if it satisfies one of
the following conditions:

1. β is a non-constant transformation of OPm,

for all i ∈ {1, . . . ,m}, αi ∈ On and,

for all j ∈ {1, . . . ,m}, jβ = (j + 1)β implies nαj ≤ 1αj+1;

2. β is a constant transformation,

for all i ∈ {1, . . . ,m}, αi ∈ On and

there exists at most one index j ∈ {1, . . . ,m} such that nαj > 1αj+1;

3. β is a constant transformation,

there exists one index i ∈ {1, . . . ,m} such that αi ∈ OPn \ On and, for all j ∈ {1, . . . ,m} \ {i}, αj ∈ On and,

for all j ∈ {1, . . . ,m}, nαj ≤ 1αj+1.

Proof. We will take into consideration, several times, the observations stated above.
First, assuming that a (m + 1)-tuple (α1, . . . , αm;β) satisfies 1, 2 or 3, it is just a routine matter to check that, if

α ∈ Tm×n is such that αψ = (α1, . . . , αm;β) then α ∈ OPm×n.
Conversely, let α ∈ OPm×n and take α = αψ = (α1, . . . , αm;β).
If α is order-preserving then, by (2), (α1, . . . , αm;β) ∈ Omn ×Om and, for all j ∈ {1, . . . ,m− 1}, jβ = (j + 1)β implies

nαj ≤ 1αj+1. If β is not constant, then mβ 6= 1β and so the (m+ 1)-tuple α satisfies 1. Otherwise, α satisfies 2.
Next, suppose that (r + 1)α ≤ · · · ≤ (mn)α ≤ 1α ≤ · · · ≤ rα and rα > (r + 1)α, for some r ∈ {1, . . . ,mn − 1}. If

r ∈ Aj \ {jn}, for some j ∈ {1, . . . ,m}, it is easy to deduce that α satisfies 3. On the other hand, if r = jn, for some
j ∈ {1, . . . ,m− 1}, it is easy to show that α satisfies 1, if β is not constant, and that α satisfies 2, otherwise. �

Let α ∈ OPm×n. For i ∈ {1, 2, 3}, we say that α and αψ are of type i if αψ satisfies the condition i. of the previous
proposition. Notice that, if (α1, . . . , αm;β) = αψ is of type 2 and, for all j ∈ {1, . . . ,m}, nαj ≤ 1αj+1, then α must be a
constant transformation.

Moreover, as clearly the product of (m + 1)-tuples of types 1 or 2 (respectively, 2 or 3) cannot be a (m + 1)-tuple of
type 3 (respectively, 1), then the subset M (respectively, N) of OPm×nψ of all (m+1)-tuples of types 1 or 2 (respectively,
2 or 3) is a submonoid (respectively, subsemigroup) of OPm×nψ.

4
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Let M = Mψ−1. Hence, clearly, M is the submonoid of OPm×n whose elements are the order-preserving transfor-
mations (and so, in particular, M contains Om×n) and the transformations α ∈ OPm×n such that (jn + 1)α ≤ · · · ≤
(mn)α ≤ 1α ≤ · · · ≤ (jn)α and (jn)α > (jn+ 1)α, for some j ∈ {1, . . . ,m− 1}.

Recall that, being gn the n-cycle

(
1 2 · · · n− 1 n
2 3 · · · n 1

)
∈ OPn, each element s ∈ OPn admits a factorization

s = gjnu, with 0 ≤ j ≤ n− 1 and u ∈ On, which is unique unless s is constant (see [6]).
Now, consider the permutations (of {1, . . . ,mn})

g = gmn =

(
1 2 · · · mn− 1 mn
2 3 · · · mn 1

)
∈ OPmn

and

f = gn =

(
1 · · · n n+ 1 · · · mn− n mn− n+ 1 · · · mn

n+ 1 · · · 2n 2n+ 1 · · · mn 1 · · · n

)
∈ OPm×n.

Let α ∈ M \ Om×n and take j ∈ {1, . . . ,m − 1} such that (jn)α > (jn + 1)α. Then, as (jn + 1)α ≤ · · · ≤ (mn)α ≤
1α ≤ · · · ≤ (jn)α, it is clear that f jα ∈ Om×n. Thus, we have:

Lemma 2.2 Each element α ∈ M admits a factorization α = f jγ, with 0 ≤ j ≤ m − 1 and γ ∈ Om×n, which is unique
unless α is constant. In particular, the monoid M is generated by Om×n and f .

Notice that, the uniqueness stated in the previous lemma follows immediately from the fact that f is a power of g and
from Catarino and Higgins’s result mentioned above.

Now, let N = Nψ−1. Clearly, N is the subsemigroup of OPm×n whose elements are the transformations α ∈ OPm×n
such that Im(α) ⊆ Aj , for some j ∈ {1, . . . ,m}. Next, we justify the study made in the previous section by considering
OPmn,n, which is a subsemigroup of N . For j ∈ {1, . . . ,m}, let νj = (1, γ2, . . . , γm;βj), where γ2 = · · · = γm =(

1 · · · n
n · · · n

)
and βj =

(
1 · · · m
j · · · j

)
. Clearly, νj ∈ N , for all j ∈ {1, . . . ,m}. Next, let α = (α1, . . . , αm;βj) ∈ N ,

with j ∈ {1, . . . ,m}. Then γ = (α1, . . . , αm;β1) ∈ OPmn,nψ and α = γ νj . On the other hand, noticing that fψ =
(1, . . . , 1; gm), we also have α(fψ)m−j+1 = γ, i.e. α = γ(fψ)j−1.

Thus, being νj the element of N such that νjψ = νj , with j ∈ {1, . . . ,m}, we have:

Lemma 2.3 The semigroup N is generated by OPmn,n ∪ {ν2, . . . , νm}. Moreover, every element of N is a product of an
element of OPmn,n by a power of f .

Next, for j ∈ {1, . . . , n− 1}, let

pj =

(
1 2 · · · n− j n− j + 1 · · · n n+ 1 · · ·

j + 1 j + 2 · · · n 1 · · · 1 1 · · ·
· · · (m− 1)n (m− 1)n+ 1 · · · mn− j mn− j + 1 · · · mn
· · · 1 1 · · · 1 2 · · · j + 1

)
∈ OPmn,n.

Notice that

pi1 =

(
1 · · · n− i n− i+ 1 · · · n n+ 1 · · · (m− 1)n (m− 1)n+ 1 · · · mn− 1 mn

i+ 1 · · · n 1 · · · i i · · · i i · · · i i+ 1

)
,

for i ∈ {1, . . . , n− 1}, and

pn1 =

(
1 · · · n n+ 1 · · · (m− 1)n (m− 1)n+ 1 · · · mn− 1 mn
1 · · · n n · · · n n · · · n 1

)
,

is a right identity of OPmn,n.

Lemma 2.4 Any transformation of OPmn,n is a product of elements of M ∪ {pj | 1 ≤ j ≤ dn−12 e}.

Proof. By Theorem 1.3, it suffices to consider only transformations of OPmn,n with rank n. Let γ be such a transfor-
mation.

step 1. Let i = 1γ and α = γpn−i+1
1 . Then, 1α = 1γpn−i+1

1 = ipn−i+1
1 = 1 and γ = αpn+i−11 . If α ∈ M then γ satisfies

the statement of the lemma.

5
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Therefore, suppose that α 6∈ M . Hence, (mn)α = 1 (otherwise (mn)α = n, whence α ∈ Omn and so α ∈ M). Let
r ∈ {1, . . . ,mn} be the least integer such that {r, . . . ,mn}α = {1}. As α also has rank n and 1α = 1, then r ≥ n + 1.
Thus, r = (t− 1)n+ k + 1, for some t ∈ {2, . . . ,m} and k ∈ {1, . . . , n− 1} (notice that, if k = 0 then α ∈M).

Let j = ((t− 1)n)α− 1 (notice that 0 ≤ j ≤ n− 1). If j = 0 then

α =

(
1 · · · (t− 1)n (t− 1)n+ 1 · · · tn− 1 tn tn+ 1 · · · mn
1 · · · 1 2 · · · n 1 1 · · · 1

)
,

whence

αpn−11 =

(
1 · · · (t− 1)n (t− 1)n+ 1 · · · tn− 1 tn tn+ 1 · · · mn
n · · · n 1 · · · n− 1 n n · · · n

)
∈M

and so, as γ = αpn+i−11 = (αpn−11 )pi1, in this case γ also satisfies the statement of the lemma. Otherwise, let β ∈ Tmn be
defined by

xβ =

 mn− (j + 1− xα) if 1 ≤ x ≤ (t− 1)n
xα− j if (t− 1)n+ 1 ≤ x ≤ (t− 1)n+ k
n if (t− 1)n+ k + 1 ≤ x ≤ mn.

Then, β ∈M and α = βpj .

step 2. Now, in order to disregard the transformations p`, with ` > dn−12 e, for a given j ∈ {1, . . . , n− 1}, we repeat step
1 considering, in particular, γ = pj . As 1pj = j + 1, we take

αj = pjp
n−(j+1)+1
1 = pjp

n−j
1 =

(
1 · · · n− j n− j + 1 · · · n n+ 1 · · ·
1 · · · n− j n− j + 1 · · · n− j + 1 n− j + 1 · · ·
· · · (m− 1)n (m− 1)n+ 1 · · · mn− j mn− j + 1 · · · mn− 1 mn
· · · n− j + 1 n− j + 1 · · · n− j + 1 n− j + 2 · · · n 1

)
.

Notice that αj 6∈ M . Now, by step 1, there exists βj ∈ M such that αj = βjp(n−j+1)−1 = βjpn−j . Thus, pj = αjp
j
1 =

βjpn−jp
j
1, for some βj ∈M .

Finally, by noticing that dn−12 e < j ≤ n − 1 implies 1 ≤ n − j ≤ dn−12 e, we may deduce that any transformation of
OPmn,n with rank n is a product of elements of M ∪ {pj | 1 ≤ j ≤ dn−12 e}, as required. �

Now, let

ci =

(
1 · · · (i− 1)n (i− 1)n+ 1 (i− 1)n+ 2 (i− 1)n+ 3 · · · in in+ 1 · · · mn
1 · · · (i− 1)n (i− 1)n+ 1 (i− 1)n+ 1 (i− 1)n+ 2 · · · in− 1 in+ 1 · · · mn

)
∈ Om×n

and

bi,j =

(
1 · · · (i− 1)n (i− 1)n+ 1 · · · (i− 1)n+ j − 1 (i− 1)n+ j (i− 1)n+ j + 1 · · · in
1 · · · (i− 1)n (i− 1)n+ 1 · · · (i− 1)n+ j − 1 (i− 1)n+ j + 1 (i− 1)n+ j + 1 · · · in

in+ 1 · · · mn
in+ 1 · · · mn

)
∈ Om×n,

for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n− 1}; and

si =

(
1 · · · (i− 1)n (i− 1)n+ 1 (i− 1)n+ 2 · · · in
1 · · · (i− 1)n (i− 1)n+ 1 (i− 1)n+ 1 · · · (i− 1)n+ 1

in+ 1 in+ 2 · · · (i+ 1)n (i+ 1)n+ 1 · · · mn
(i− 1)n+ 1 (i− 1)n+ 2 · · · in (i+ 1)n+ 1 · · · mn

)
∈ Om×n

and

ti,j =

(
1 · · · (i− 1)n (i− 1)n+ 1 · · · in− j + 1 in− j + 2 · · · in
1 · · · (i− 1)n in+ 1 · · · in+ 1 in+ 2 · · · in+ j

in+ 1 · · · in+ j in+ j + 1 · · · (i+ 1)n (i+ 1)n+ 1 · · · mn
in+ j · · · in+ j in+ j + 1 · · · (i+ 1)n (i+ 1)n+ 1 · · · mn

)
∈ Om×n,

for i ∈ {1, . . . ,m− 1} and j ∈ {1, . . . , n}. The authors proved in [12, Proposition 2.5] that the set

{ci, bi,j , sk, tk,` | 1 ≤ i ≤ m, 1 ≤ j ≤ n− 1, 1 ≤ k ≤ m− 1, 2 ≤ ` ≤ n}

is a generating set of the monoid Om×n. On the other hand, it is a routine matter to show that:

6
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çõ
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1. ci = fm−i+1c1f
i−1, for 2 ≤ i ≤ m;

2. bi,j = fm−i+1b1,jf
i−1, for 2 ≤ i ≤ m and 1 ≤ j ≤ n− 1;

3. si = fm−i+1s1f
i−1, for 2 ≤ i ≤ m− 1; and

4. ti,j = fm−i+1t1,jf
i−1, for 2 ≤ i ≤ m− 1 and 2 ≤ j ≤ n.

These observations combined with the previous three lemmas, allow us to deduce the following result.

Proposition 2.5 The set A = {f, c1, b1,1 . . . , b1,n−1, s1, t1,2 . . . , t1,n, p1, . . . , pdn−1
2 e
} is a generating set, with 2n+dn−12 e+1

elements, of the monoid OPm×n.

Example 2.1 The monoid OP3×4 is generated by the following transformations:

f =

(
1 2 3 4 5 6 7 8 9 10 11 12
5 6 7 8 9 10 11 12 1 2 3 4

)
; c1 =

(
1 2 3 4 5 6 7 8 9 10 11 12
1 1 2 3 5 6 7 8 9 10 11 12

)
;

b1,1 =

(
1 2 3 4 5 6 7 8 9 10 11 12
2 2 3 4 5 6 7 8 9 10 11 12

)
; s1 =

(
1 2 3 4 5 6 7 8 9 10 11 12
1 1 1 1 1 2 3 4 9 10 11 12

)
;

b1,2 =

(
1 2 3 4 5 6 7 8 9 10 11 12
1 3 3 4 5 6 7 8 9 10 11 12

)
; t1,2 =

(
1 2 3 4 5 6 7 8 9 10 11 12
5 5 5 6 6 6 7 8 9 10 11 12

)
;

b1,3 =

(
1 2 3 4 5 6 7 8 9 10 11 12
1 2 4 4 5 6 7 8 9 10 11 12

)
; t1,3 =

(
1 2 3 4 5 6 7 8 9 10 11 12
5 5 6 7 7 7 7 8 9 10 11 12

)
;

p1 =

(
1 2 3 4 5 6 7 8 9 10 11 12
2 3 4 1 1 1 1 1 1 1 1 2

)
; t1,4 =

(
1 2 3 4 5 6 7 8 9 10 11 12
5 6 7 8 8 8 8 8 9 10 11 12

)
;

p2 =

(
1 2 3 4 5 6 7 8 9 10 11 12
3 4 1 1 1 1 1 1 1 1 2 3

)
.

The next series of lemmas will allow us to conclude that A is a least size generating set of OPm×n, for m > 2, and
contains a least size generating set of OP2×n.

Lemma 2.6 Any generating set of OPm×n contains at least a non identity element of rank mn and n distinct elements
of rank mn− 1.

Proof. Let X be a generating set of OPm×n.
Notice that, the group of units of OPm×n is, clearly, generated by the permutation f = gn, which has order m. Hence,

X must contain a non identity element of rank mn.
Now, let ξ1, . . . , ξk (k ≥ 1) be all the elements of X of rank mn− 1. Then, any element of OPm×n of rank mn− 1 is of

the form αξjf
i, for some j ∈ {1, . . . , k}, i ∈ {0, . . . ,m− 1} and a product α ∈ OPm×n. As the elements of rank mn− 1 of

the above form can not have more than mk distinct images and, on the other hand, we have precisely mn possible distinct
images for an element of OPm×n of rank mn− 1, we deduce that mn ≤ mk and so k ≥ n, as required. �

Lemma 2.7 For m > 2, any generating set of OPm×n contains at least n distinct elements of rank (m− 1)n.

Proof. Let Tj = {α ∈ OPm×n | rank(α) = (m− 1)n and (kn)α = (kn+ 1)α = (i− 1)n+ j, for some 1 ≤ i, k ≤ m}, for
j ∈ {1, . . . , n}. Clearly, T1, . . . , Tn are n two by two disjoint non-empty subsets of elements of rank (m− 1)n of OPm×n.

Let j ∈ {1, . . . , n} and take α ∈ Tj . Let i, k ∈ {1, . . . ,m} be such that (kn)α = (kn+ 1)α = (i− 1)n+ j.
Suppose that α = α′α′′, for some α′, α′′ ∈ OPm×n, and take αψ = (α1, . . . , αm;β), α′ψ = (α′1, . . . , α

′
m;β′) and

α′′ψ = (α′′1 , . . . , α
′′
m;β′′). Notice that, α, α′ and α′′ are elements of OPm×n of type 1 (whence α`, α

′
`, α
′′
` ∈ On, for

` ∈ {1, . . . ,m}). Also, observe that nαk = j = 1αk+1, Im(αk) = {1, . . . , j}, Im(αk+1) = {j, . . . , n} and α` = 1, for
` ∈ {1, . . . ,m} \ {k, k + 1}. Moreover, we have α` = α′`α

′′
`β′ , for ` ∈ {1, . . . ,m}, and, on the other hand, β = β′β′′, from

which follows that rank(β′) = m− 1 or rank(β′′) = m− 1, since rank(β) = m− 1.
Next, our goal is to show that α′ ∈ Tj or α′′ ∈ Tj . We consider two cases: rank(β′) = m− 1 or rank(β′) = m.
First, admit that β′ has rank m− 1. Then α′ has rank (m− 1)n and so Ker(α′) = Ker(α). Hence Ker(α′k) = Ker(αk)

and Ker(α′k+1) = Ker(αk+1), from which follows that | Im(α′k)| = | Im(αk)| = j and | Im(α′k+1)| = | Im(αk+1)| = n− j+ 1.
Thus nα′k ≥ j and 1α′k+1 ≤ j, since 1α′k ≤ · · · ≤ nα′k and 1α′k+1 ≤ · · · ≤ nα′k+1. On the other hand, the equality
Ker(α′) = Ker(α) also implies that (kn)α′ = (kn + 1)α′, whence nα′k = 1α′k+1 and so nα′k = 1α′k+1 = j. Then
(kn)α′ = (kn+ 1)α′ = (kβ′ − 1)n+ j and, finally, we conclude that α′ ∈ Tj .

7
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Secondly, suppose that β′ has rank m (i.e. β′ is a power of gm). Then β′′ must have rank m− 1 and so α′′ has rank
(m − 1)n. As α′kα

′′
kβ′ = αk, then {1, . . . , j} = Im(αk) ⊆ Im(α′′kβ′) and so nα′′kβ′ ≥ j. Similarly, as α′k+1α

′′
(k+1)β′ = αk+1,

then {j, . . . , n} = Im(αk+1) ⊆ Im(α′′(k+1)β′) and so 1α′′(k+1)β′ ≤ j. Now, by noticing that β′ is a power a gm, we have

(k + 1)β′ = kβ′ + 1 and so (kβ′ + 1)β′′ = ((k + 1)β′)β′′ = (k + 1)β = kβ = (kβ′)β′′. Hence, j ≤ nα′′kβ′ ≤ 1α′′kβ′+1 =
1α′′(k+1)β′ ≤ j, i.e. nα′′kβ′ = 1α′′kβ′+1 = j, from which follows that ((kβ′)n)α′′ = ((kβ′)n + 1)α′′ = (kβ − 1)n + j. Thus

α′′ ∈ Tj , as required.
Now, by induction on k, it is clear that to write an element of Tj as a product of k elements of OPm×n, we must have

a factor belonging to Tj , for all 1 ≤ j ≤ n. This fact proves the lemma. �

The next lemma helps us to find the least number of elements of rank n required on a generating set of OPm×n.

Lemma 2.8 Let (α1, . . . , αm;β) ∈ OPm×nψ be such that iβ = jβ, for some 1 ≤ i < j ≤ m. Then | Im(αi)|+ | Im(αj)| ≤
n+ 2. Moreover, if | Im(αi)|+ | Im(αj)| = n+ 2, then (α1, . . . , αm;β) is of type 3 and:

1. αi ∈ OPn \ On or αj ∈ OPn \ On;

2. Im(αi) ∪ Im(αj) = Aiβ (and so (α1, . . . , αm;β)ψ−1 is a transformation of OPm×n of rank n);

3. | Im(αk)| = 1, for k ∈ {1, . . . ,m} \ {i, j}.

Proof. We begin by proving that | Im(αi)|+ | Im(αj)| ≤ n+ 2.
First, suppose that αi, αj ∈ On. Then, as iβ = jβ, we have

1αi ≤ · · · ≤ nαi ≤ 1αj ≤ · · · ≤ nαj or 1αj ≤ · · · ≤ nαj ≤ 1αi ≤ · · · ≤ nαi,

whence Im(αi) ∪ Im(αj) has at least | Im(αi)| + | Im(αj)| − 1 distinct elements (notice that we may have nαi = 1αj or
nαj = 1αi). As Im(αi) ∪ Im(αj) ⊆ Aiβ , it follows that | Im(αi)|+ | Im(αj)| ≤ n+ 1.

Next, suppose that αi ∈ OPn \ On. Then αj ∈ On and we have

(t+ 1)αi ≤ · · · ≤ nαi ≤ 1αj ≤ · · · ≤ nαj ≤ 1αi ≤ · · · ≤ tαi,

for some 1 ≤ t ≤ m − 1, whence Im(αi) ∪ Im(αj) has at least | Im(αi)| + | Im(αj)| − 2 distinct elements (notice that we
may have nαi = 1αj and nαj = 1αi) and so | Im(αi)|+ | Im(αj)| ≤ n+ 2.

Finally, as the case αj ∈ OPn \ On is similar to the previous one, we proved that | Im(αi)|+ | Im(αj)| ≤ n+ 2, for all
cases.

Now, in order to prove the second part of the lemma, admit that | Im(αi)|+ | Im(αj)| = n+ 2.
Notice that, by the first part of the proof, αi ∈ OPn \ On or αj ∈ OPn \ On (and so (α1, . . . , αm;β) must be of type

3). On the other hand, as n ≥ | Im(αi) ∪ Im(αj)| ≥ | Im(αi)|+ | Im(αj)| − 2 = n, we have Im(αi) ∪ Im(αj) = Aiβ .
Suppose that αi ∈ OPn \ On and let t ∈ {1, . . . ,m− 1} be as above. Let k ∈ {i+ 1, . . . , j − 1}. Let ` ∈ {1, . . . ,m} \

{i, . . . , j}. Then (with the obvious adaptation if k or ` does not exist) we have

(t+ 1)αi ≤ · · · ≤ nαi ≤ 1αk ≤ · · · ≤ nαk ≤ 1αj ≤ · · · ≤ nαj ≤ 1α` ≤ · · · ≤ nα` ≤ 1αi ≤ · · · ≤ tαi.

Hence, nαi = 1αj and nαj = 1αi, otherwise Im(αi)∪ Im(αj) would have at least | Im(αi)|+ | Im(αj)| − 1 = n+ 1 distinct
elements, which is a contradiction. Thus, nαi = 1αk = · · · = nαk = 1αj (if k exists) and nαj = 1α` = · · · = nα` = 1αi (if
` exists). Anyway, we proved that | Im(αk)| = 1, for k ∈ {1, . . . ,m} \ {i, j}.

Similarly, if αj ∈ OPn \ On, we have | Im(αk)| = 1, for k ∈ {1, . . . ,m} \ {i, j}, as required. �

Lemma 2.9 Any generating set of OPm×n contains at least dn−12 e elements of rank n.

Proof. For 1 ≤ i ≤ dn−12 e, define

Pi = {(γ1, . . . , γm;λ) ∈ N | | Im(γk)| = n− i+ 1 and | Im(γ`)| = i+ 1, for some 1 ≤ k, ` ≤ m such that k 6= `}.

Notice that piψ ∈ Pi and, by Lemma 2.8, all elements of Pi are of type 3 and all elements of Piψ
−1 have rank n, for

1 ≤ i ≤ dn−12 e. Moreover, P1, . . . , Pdn−1
2 e

are dn−12 e two by two disjoint subsets of OPm×nψ. In fact, suppose there exists

(γ1, . . . , γm;λ) ∈ Pi ∩Pj , for some 1 ≤ i < j ≤ dn−12 e. Let 1 ≤ k, ` ≤ m, with k 6= `, be such that | Im(γk)| = n− i+ 1 and
| Im(γ`)| = i + 1. Then, by Lemma 2.8, we have | Im(γt)| = 1, for t ∈ {1, . . . ,m} \ {k, `}. Hence | Im(γk)| = n − j + 1 or
| Im(γk)| = j+ 1. If | Im(γk)| = n− j+ 1 then i = j, which is a contradiction. On the other hand, if | Im(γk)| = j+ 1 then
n = i+ j < dn−12 e+ dn−12 e ≤

n
2 + n

2 = n, which is again a contradiction. Therefore, Pi ∩ Pj = ∅, for 1 ≤ i < j ≤ dn−12 e.

8
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çõ
es

D
M

-F
C

T
-U

N
L

20
11

It follows that P1ψ
−1, . . . , Pdn−1

2 e
ψ−1 are dn−12 e two by two disjoint subsets of OPm×n of elements of rank n.

Now, let i ∈ {1, . . . , dn−12 e} and take γ = (γ1, . . . , γm;λ) ∈ Pi. Let 1 ≤ k, ` ≤ m, with k 6= `, be such that
| Im(γk)| = n− i+ 1 and | Im(γ`)| = i+ 1.

Suppose that γ = αψα′ψ, for some α, α′ ∈ OPm×n, and take αψ = (α1, . . . , αm;β) and α′ψ = (α′1, . . . , α
′
m;β′). Notice

that γj = αjα
′
jβ , for 1 ≤ j ≤ m. Moreover, as γ is of type 3, then either α or α′ is of type 3.

Next, our goal is to show that αψ ∈ Pi or α′ψ ∈ Pi.
We begin by observing that if kβ = `β then, by Lemma 2.8, we have | Im(αk)|+ | Im(α`)| ≤ n+ 2 and so, as

n− i+ 1 = | Im(γk)| = |(Im(αk))α′kβ | ≤ | Im(αk)| and i+ 1 = | Im(γ`)| = |(Im(α`))α
′
`β | ≤ | Im(α`)|,

it follows that | Im(αk)| = n− i+ 1 and | Im(α`)| = i+ 1. We consider two cases.
First, if α is of type 3 (in particular, we have αψ ∈ N), as β is a constant transformation, we have kβ = `β and so, by

the above observation, we may deduce immediately that αψ ∈ Pi.
On the other hand, admit that α is not of type 3. Then kβ 6= `β. In fact, if kβ = `β then | Im(αk)| + | Im(α`)| =

(n − i + 1) + (i + 1) = n + 2 and so, by Lemma 2.8, α must be of type 3, which is a contradiction. Also, notice that α′

must be of type 3 and so β′ is a constant transformation. In particular, (kβ)β′ = (`β)β′. Hence, by Lemma 2.8, we have
| Im(α′kβ)|+ | Im(α′`β)| ≤ n+ 2. Moreover, since Im(γk) = Im(αkα

′
kβ) ⊆ Im(α′kβ) and Im(γ`) = Im(α`α

′
`β) ⊆ Im(α′`β), we

have n− i+ 1 = | Im(γk)| ≤ | Im(α′kβ)| and i+ 1 = | Im(γ`)| ≤ | Im(α′`β)|. Thus, we obtain precisely | Im(α′kβ)| = n− i+ 1
and | Im(α′`β)| = i+ 1, which proves that α′ψ ∈ Pi.

Now, by induction on k, it is easy to show that to write an element of Piψ
−1 as a product of k elements of OPm×n,

we must have a factor that belongs to Piψ
−1, for all 1 ≤ i ≤ dn−12 e. This fact proves the lemma. �

Now, for m > 2, from the previous lemmas, we deduce immediately that A is a least size generating set of OPm×n.
On the other and, regarding OP2×n, it is a routine matter to show that:

1. s1 = b1,1b1,2 · · · b1,n−1fpn1 ;

2. t1,j = fcj−11 pj−1f , for 2 ≤ j ≤ dn−12 e+ 1

3. t1,j = cn−1−j1 b1,1pn−jp1
j−1f , for dn−12 e+ 2 ≤ j ≤ n− 2; and

4. t1,n−1 = b1,1p
n−1
1 f and t1,n = fc1fp

n
1f .

Hence, from these equalities and Lemmas 2.6 and 2.9, it follows that {f, c1, b1,1 . . . , b1,n−1, p1, . . . , pdn−1
2 e
} is a least size

generating set of OP2×n. Therefore, we have proved:

Theorem 2.10 The rank of OPm×n is equal to 2n+ dn−12 e+ 1, for m > 2, and equal to n+ dn−12 e+ 1, for m = 2.

3 The rank of the monoid ODm×n
Consider the reflexion

h =

(
1 2 · · · n− 1 mn
mn mn− 1 · · · 2 1

)
.

Observe that h is a permutation of order two of Xmn and h ∈ ODm×n. Moreover, given α ∈ Tmn, we have α = h2α = h(hα)
and α is an order-reversing transformation if and only if hα (respectively, αh) is an order-preserving transformation. Thus,
clearly, the monoid ODm×n is generated by Om×n ∪ {h}. As recalled in Section 2, the authors proved in [12] that

C = {ci, bi,j , sk, tk,` | 1 ≤ i ≤ m, 1 ≤ j ≤ n− 1, 1 ≤ k ≤ m− 1, 2 ≤ ` ≤ n}

is a generating set, with 2mn− n elements, of the monoid Om×n. Hence C ∪ {h} generates ODm×n. In order to reduce
the number of generators, consider

si,j =

(
1 · · · (i− 1)n (i− 1)n+ 1 · · · in− j + 1 in− j + 2 · · · in
1 · · · (i− 1)n (i− 1)n+ 1 · · · in− j + 1 in− j + 1 · · · in− j + 1

in+ 1 in+ 2 · · · in+ j · · · (i+ 1)n (i+ 1)n+ 1 · · · mn
in− j + 1 in− j + 2 · · · in · · · in (i+ 1)n+ 1 · · · mn

)
∈ Om×n,

for i ∈ {1, . . . ,m−1} and j ∈ {1, . . . , n}. Notice that, we have si = si,n, for i ∈ {1, . . . ,m−1}. Finally, if m is odd, consider
also the transformation uj ∈ Om×n of rank mn− 1, whose image is {1, . . . ,mn} \ {m−12 n+ j} and whose kernel is defined
by the partition {{1}, . . . , {m−12 n+ dn2 e− j}, {

m−1
2 n+ dn2 e− j+1, m−12 n+ dn2 e− j+2}, {m−12 n+ dn2 e− j+3}, . . . , {mn}},

for each 1 ≤ j ≤ dn2 e.

9
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Example 3.1 For m = 3 and n = 5, we have:

u1 =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 7 8 9 9 10 11 12 13 14 15

)
,

u2 =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 8 8 9 10 11 12 13 14 15

)
,

u3 =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 6 7 9 10 11 12 13 14 15

)
.

The proofs of the equalities stated in the next lemma are routine.

Lemma 3.1 The following identities hold:

1. ci = hbm−i+1,n−1bm−i+1,n−2 · · · bm−i+1,1h, for 1 ≤ i ≤ m;

2. bi,1 = hbm−i+1,n−1bm−i+1,n−2 · · · bm−i+1,2cm−i+1h, for 1 ≤ i ≤ m;

3. bi,j = hbm−i+1,n−jbm−i+1,n−j−1 · · · bm−i+1,2cm−i+1bm−i+1,n−1bm−i+1,n−2 · · · bm−i+1,n−j+1h, for 1 ≤ i ≤ m and
2 ≤ j ≤ n− 1;

4. bm+1
2 ,j = udn2 e−j+1uj, for m odd and 1 ≤ j ≤ dn2 e;

5. bm+1
2 ,n−j = hudn2 e−j+1uj+1h, for m odd and 1 ≤ j ≤ n− dn2 e − 1;

6. ti,j = hsm−i,jh, for 1 ≤ i ≤ m− 1 and 1 ≤ j ≤ n;

7. ti,j = cn−ji hb′2 · · · b′jhsi,n−j+1hsm−ih, with b′` = bm−i,n−j+`−1bm−i,n−j+`−2 · · · bm−i,`, for 2 ≤ ` ≤ j, 1 ≤ i ≤ m− 1
and 2 ≤ j ≤ n− 1. �

Now, let A be the set

{ci, bi,j , sk,`, sm
2 ,r
, st, h | 1 ≤ i ≤

m

2
, 1 ≤ j ≤ n−1, 1 ≤ k ≤ m

2
−1, 2 ≤ ` ≤ n−1, n−

⌈n
2

⌉
+1 ≤ r ≤ n−1, 1 ≤ t ≤ m−1},

if m is even, and the set

{ci, bi,j , uk, si,`, st, h | 1 ≤ i ≤
m− 1

2
, 1 ≤ j ≤ n− 1, 1 ≤ k ≤

⌈n
2

⌉
, 2 ≤ ` ≤ n− 1, 1 ≤ t ≤ m− 1},

if m is odd. By using the equalities of Lemma 3.1, it is not difficult to show that any element of C is a product of elements
of A. Thus, it follows that:

Proposition 3.2 The set A generates the monoid ODm×n. Furthermore, A has dmn2 e+
⌈
(m−1)n

2

⌉
+ 1 elements. �

Next, we aim to show that the rank of ODm×n is precisely dmn2 e+
⌈
(m−1)n

2

⌉
+ 1.

Let U be a generating set of ODm×n.
First, notice that, as h is the unique non-identity permutation in ODm×n, we must have h ∈ U .
On the other hand, recall that, in the proof of [9, Theorem 1.5], Fernandes et al. showed that any generating set

of the monoid ODn, for n ≥ 2, has at least dn2 e elements of rank n − 1. A similar argument allow us to conclude that
U must have at least dmn2 e elements of rank mn − 1. In fact, take Ki = {1, 2, . . . ,mn} \ {i}, for 1 ≤ i ≤ mn, and let
ξ1, . . . , ξk be all the elements of U of rank mn− 1. Then k ≥ 1 and, for all 1 ≤ i ≤ k, there exists 1 ≤ `i ≤ mn such that
Im(ξi) = K`i . Now, given an element α ∈ ODm×n of rank mn−1, we have α = ξξi or α = ξξih, for some ξ ∈ ODm×n and
1 ≤ i ≤ k. Hence, Im(α) = Im(ξi) = K`i or Im(α) = Im(ξih) = Kmn−`i+1. As we have mn possible distinct images for a
transformation of ODm×n of rank mn− 1, the set {K`1 , . . . ,K`k ,Kmn−`1+1, . . . ,Kmn−`k+1} has at least mn elements. It
follows that 2k ≥ mn and so k ≥ dmn2 e.

Therefore, we have proved:

Lemma 3.3 Any generating set of ODm×n contains h and at least dmn2 e distinct elements of rank mn− 1. �

Regarding generators of rank (m− 1)n, we have:

10
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Lemma 3.4 Any generating set of ODm×n contains at least
⌈
(m−1)n

2

⌉
distinct elements of rank (m− 1)n.

Proof. For 1 ≤ i ≤ m− 1 and 1 ≤ j ≤ n, consider

Qi,j = {α ∈ Om×n | rank(α) = (m− 1)n and (in)α = (in+ 1)α = (k − 1)n+ j, for some 1 ≤ k ≤ m}.

The authors proved in [12, Theorem 2.6] that the family {Qi,j | 1 ≤ i ≤ m − 1, 1 ≤ j ≤ n} consists on (m − 1)n two by
two disjoint non-empty subsets of Om×n such that, given α1, α2 ∈ Om×n, if α1α2 ∈ Qi,j then α1 ∈ Qi,j or α2 ∈ Qi,j , for
1 ≤ i ≤ m− 1 and 1 ≤ j ≤ n. On the other hand, given α ∈ Tmn, it is easy to show that

α ∈ Qi,j if and only if hαh ∈ Qm−i,n−j+1 and, consequently, hα ∈ Qi,j if and only if αh ∈ Qm−i,n−j+1, (3)

for 1 ≤ i ≤ m− 1 and 1 ≤ j ≤ n.
Next, for 1 ≤ i ≤ m− 1 and 1 ≤ j ≤ n, define

Ti,j = {α ∈ ODm×n | α ∈ Qi,j ∪Qm−i,n−j+1 or hα ∈ Qi,j ∪Qm−i,n−j+1}.

Observe that, clearly, Ti,j = Tm−i,n−j+1, for 1 ≤ i ≤ m − 1 and 1 ≤ j ≤ n. Moreover, if 1 ≤ i, i′ ≤ m − 1
and 1 ≤ j, j′ ≤ n are such that Ti,j ∩ Ti′,j′ 6= ∅ then (i′, j′) = (i, j) or (i′, j′) = (m − i, n − j + 1). In fact, suppose
that there exists α ∈ Ti,j ∩ Ti′,j′ . If α ∈ Om×n then α ∈ (Qi,j ∪ Qm−i,n−j+1) ∩ (Qi′,j′ ∪ Qm−i′,n−j′+1). On the other
hand, if α 6∈ Om×n then hα ∈ (Qi,j ∪ Qm−i,n−j+1) ∩ (Qi′,j′ ∪ Qm−i′,n−j′+1). Then, for both cases, Qi,j ∩ Qi′,j′ 6= ∅
or Qi,j ∩ Qm−i′,n−j′+1 6= ∅ or Qm−i,n−j+1 ∩ Qi′,j′ 6= ∅ or Qm−i,n−j+1 ∩ Qm−i′,n−j′+1 6= ∅, from which follows that
(i′, j′) = (i, j) or (i′, j′) = (m − i, n − j + 1), regarding that {Qi,j | 1 ≤ i ≤ m − 1, 1 ≤ j ≤ n} has (m − 1)n two by two
disjoint elements.

Therefore, we may deduce that the family {Ti,j | 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n} consists on
⌈
(m−1)n

2

⌉
two by two disjoint

non-empty subsets of ODm×n.
Now, by proving that any generating set of ODm×n contains an element of Ti,j , for all 1 ≤ i ≤ m− 1 and 1 ≤ j ≤ n,

the proof of the lemma follows. To accomplish this aim, we show that, for 1 ≤ i ≤ m − 1 and 1 ≤ j ≤ n, given
α1, . . . , αk ∈ ODm×n (k ∈ N) such that α1 · · ·αk ∈ Ti,j , we have αt ∈ Ti,j , for some t ∈ {1, . . . , k}. Furthermore, in order
to prove this last statement, by induction on k, it suffices to consider k = 2.

First, notice that, given α ∈ Tmn, it follows from (3) that

{α, hαh, αh, hα} ⊆ Ti,j or {α, hαh, αh, hα} ∩ Ti,j = ∅, (4)

for 1 ≤ i ≤ m− 1 and 1 ≤ j ≤ n.
Hence, let 1 ≤ i ≤ m − 1 and 1 ≤ j ≤ n and let α1, α2 ∈ ODm×n be such that α1α2 ∈ Ti,j . Next, we show that

α1 ∈ Ti,j or α2 ∈ Ti,j , by considering four cases, which finishes the proof.
case 1. If α1, α2 ∈ Om×n, then α1α2 ∈ Qi,j ∪Qm−i,n−j+1 and so, by the observation at the start of the proof, we have
α1 ∈ Qi,j ∪Qm−i,n−j+1 or α2 ∈ Qi,j ∪Qm−i,n−j+1, whence α1 ∈ Ti,j or α2 ∈ Ti,j .
case 2. If α1 6∈ Om×n and α2 6∈ Om×n, then (α1h)(hα2) = α1α2 ∈ Ti,j and α1h, hα2 ∈ Om×n and so, by case 1,
α1h ∈ Ti,j or hα2 ∈ Ti,j . Hence, by (4), α1 ∈ Ti,j or α2 ∈ Ti,j .
case 3. If α1 6∈ Om×n and α2 ∈ Om×n, then hα1 ∈ Om×n and α2 ∈ Om×n and, by (4), (hα1)α2 = h(α1α2) ∈ Ti,j . Hence,
by case 1, hα1 ∈ Ti,j or α2 ∈ Ti,j and so, again by (4), α1 ∈ Ti,j or α2 ∈ Ti,j .
case 4. Finally, if α1 ∈ Om×n and α2 6∈ Om×n, then α1 ∈ Om×n and α2h ∈ Om×n and, by (4), α1(α2h) = (α1α2)h ∈ Ti,j .
Thus, by case 1, α1 ∈ Ti,j or α2h ∈ Ti,j and so, once again by (4), α1 ∈ Ti,j or α2 ∈ Ti,j , as required. �

Now, from Proposition 3.2 and Lemmas 3.3 and 3.4, the main result of this section follows immediately.

Theorem 3.5 The rank of ODm×n is dmn2 e+ d (m−1)n2 e+ 1. �

4 The rank of the monoid ORm×n

As for ODm×n, if α ∈ Tmn, then α is an orientation-reversing transformation if and only if hα (respectively, αh) is an
orientation-preserving transformation. Hence, as α = h2α = h(hα), it is clear that the monoid ORm×n is generated by
OPm×n ∪ {h}. From Section 2, recall that {f, c1, b1,1 . . . , b1,n−1, s1, t1,2 . . . , t1,n, p1, . . . , pdn−1

2 e
} is a generating set, with

2n + dn−12 e + 1 elements, of the monoid OPm×n. Furthermore, for m = 2, the set {f, c1, b1,1 . . . , b1,n−1, p1, . . . , pdn−1
2 e
}

generates OP2×n and has just n+ dn−12 e+ 1 elements.
Now, for 1 ≤ j ≤ dn2 e, let vj be the transformation of Om×n of rank mn − 1, whose image is {1, . . . ,mn} \ {j} and

whose kernel is defined by the partition {{1}, . . . , {dn2 e − j}, {d
n
2 e − j + 1, dn2 e − j + 2}, {dn2 e − j + 3}, . . . , {mn}}.

11
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Example 4.1 For m = 3 and n = 5, we have:

v1 =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 3 4 4 5 6 7 8 9 10 11 12 13 14 15

)
,

v2 =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 3 3 4 5 6 7 8 9 10 11 12 13 14 15

)
,

v3 =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 2 4 5 6 7 8 9 10 11 12 13 14 15

)
.

It is a routine matter to prove the following lemma.

Lemma 4.1 The following equalities hold:

1. b1,j = vdn2 e−j+1vj, for 1 ≤ j ≤ dn2 e;

2. b1,n−j = fm−1hvdn2 e−j+1vj+1f
m−1h, for 1 ≤ j ≤ n− dn2 e − 1;

3. c1 = hfb1,n−1b1,n−2 · · · b1,2b1,1fm−1h;

4. t1,n = fm−2hs1f
m−2h;

5. t1,j = cn−j1 hf2(b1,n−j+1b1,n−j · · · b1,2)(b1,n−j+2b1,n−j+1 · · · b1,3) · · · (b1,n−1b1,n−2 · · · b1,j)t1,n−j+1s1f
m−2h,

for 2 ≤ j ≤ n− 1. �

Therefore, it is easy to prove that:

Proposition 4.2 The set {f, s1, t1,2 . . . , t1,dn2 e, p1, . . . , pdn−1
2 e

, v1, . . . , vdn2 e, h} has 2dn2 e+d
n−1
2 e+2 elements and generates

ORm×n. Furthermore, for m = 2, the set {f, p1, . . . , pdn−1
2 e

, v1, . . . , vdn2 e, h} has dn2 e+ dn−12 e+ 2 elements and generates

OR2×n. �

In what follows, we show that the first and second sets of the last result are a least size generating set of ORm×n, for
m > 2, and of OP2×n, respectively.

First, notice that any generating set ORm×n must contain two distinct permutations of Xmn, one preserving the
orientation and another reversing the orientation.

Next, we consider transformations of rank mn− 1.

Lemma 4.3 Any generating set of ORm×n contains at least dn2 e distinct elements of rank mn− 1.

Proof. For each 1 ≤ t ≤ mn, let Kt = {1, 2, . . . ,mn}\{t}. Let U be a generating set of ORm×n and let ξ1, . . . , ξk (k ≥ 1)
be all the elements of U of rank mn − 1. Then, for 1 ≤ j ≤ k, we have that Im(ξj) = K`j , for some 1 ≤ `j ≤ mn. For
1 ≤ j ≤ k and 1 ≤ i ≤ m− 1, define `ik+j as being the element of Xmn congruent modulo mn with `j + in.

Now, take a transformation γ ∈ ORm×n of rank mn − 1. Then, γ = αξjf
i or γ = αξjf

ih, for some j ∈ {1, . . . , k},
i ∈ {0, . . . ,m− 1} and α ∈ ORm×n. Hence, Im(γ) = K`ik+j

or Im(γ) = Kmn−`ik+j+1. As we have precisely mn possible
distinct images for a transformation of ORm×n of rank mn− 1, the set {K`1 , . . . ,K`mk

,Kmn−`1+1, . . . ,Kmn−`mk+1} has
at least mn distinct elements. Thus 2mk ≥ mn and so k ≥ dn2 e, as required. �

For the transformations of rank (m− 1)n, we have:

Lemma 4.4 For m > 2, any generating set of ORm×n contains at least dn2 e distinct elements of rank (m− 1)n.

Proof. This proof is similar to Lemma 3.4 and so we omit some details.
For j ∈ {1, . . . , n}, consider

Tj = {α ∈ OPm×n | rank(α) = (m− 1)n and (kn)α = (kn+ 1)α = (i− 1)n+ j, for some 1 ≤ i, k ≤ m}.

Recall that, in the proof of Lemma 2.7, we showed that T1, . . . , Tn are n two by two disjoint subsets of OPm×n such
that, given α1, α2 ∈ OPm×n, if α1α2 ∈ Tj then α1 ∈ Tj or α2 ∈ Tj , for 1 ≤ j ≤ n. Moreover, it is easy to show that,
given α ∈ Tmn, we have α ∈ Tj if and only if hαh ∈ Tn−j+1 and, consequently, hα ∈ Tj if and only if αh ∈ Tn−j+1, for
1 ≤ j ≤ n. Define

Uj = {α ∈ ORm×n | α ∈ Tj ∪ Tn−j+1 or hα ∈ Tj ∪ Tn−j+1},

12
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ré

-P
u
b
li
ca

çõ
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for 1 ≤ j ≤ n.
First, observe that, clearly, Uj = Un−j+1, for 1 ≤ j ≤ n. Also, it is easy to show that, if j, j′ ∈ {1, . . . , n} are such

that Uj ∩ Uj′ 6= ∅ then j′ ∈ {j, n− j + 1}. It follows that U1, . . . , Udn2 e are dn2 e two by two disjoint non-empty subsets of
ORm×n.

Secondly, notice that, given α ∈ Tmn, it is also easy to show that {α, hαh, αh, hα} ⊆ Uj or {α, hαh, αh, hα} ∩ Uj = ∅,
for 1 ≤ j ≤ n. Hence, it is a routine matter to prove that, for 1 ≤ j ≤ n and α1, α2 ∈ ORm×n such that α1α2 ∈ Uj ,
we have α1 ∈ Uj or α2 ∈ Uj . It follows, by induction on k, that to write an element of Uj as a product of k elements of
ORm×n, we must have a factor that belongs to Uj , for 1 ≤ j ≤ dn2 e, which proves the lemma. �

Next, we deal with transformations of ORm×n of rank n. As for OPm×n, we aim to show that, in order to generate
ORm×n, at least dn−12 e distinct transformations of rank n are required.

We begin with an observation, for which we need to introduce notation first. For each n ∈ N, denote by hn the reflexion

permutation

(
1 2 · · · n− 1 n
n n− 1 · · · 2 1

)
of Xn. Observe that, with this notation, we have h = hmn and, moreover,

hψ = (hn, hn, . . . , hn;hm). Furthermore, being α ∈ Tm×n and αψ = (α1, α2, . . . , αm;β), we obtain

(hαh)ψ = (hnαmhn, hnαm−1hn, . . . , hnα1hn;hmβhm). (5)

Notice that, clearly,
| Im(hmβhm)| = | Im(β)| and | Im(hnαihn)| = | Im(αi)|, (6)

for 1 ≤ i ≤ m.
Now, recall the dn−12 e two by two disjoint subsets of OPm×nψ

Pi = {(γ1, . . . , γm;λ) ∈ N | | Im(γk)| = n− i+ 1 and | Im(γ`)| = i+ 1, for some 1 ≤ k, ` ≤ m such that k 6= `},

with 1 ≤ i ≤ dn−12 e, considered in the proof of Lemma 2.9. Given α ∈ Tmn, from (5) and (6), it follows immediately that

αψ ∈ Pi if and only if (hαh)ψ ∈ Pi and, consequently, (hα)ψ ∈ Pi if and only if (αh)ψ ∈ Pi, (7)

for 1 ≤ i ≤ dn−12 e.
Next, following the same strategy of Lemmas 3.4 and 4.4, we define

Qi = {α ∈ ORm×n | αψ ∈ Pi or (hα)ψ ∈ Pi},

for 1 ≤ i ≤ dn−12 e.
First, observe that, as P1ψ

−1, . . . , Pdn−1
2 e

ψ−1 are dn−12 e two by two disjoint subsets of transformations of rank n of

OPm×n, it is clear that also Q1, . . . , Qdn−1
2 e

are dn−12 e two by two disjoint subsets of transformations of rank n of ORm×n.

On the other hand, from (7), we also deduce that

{α, hαh, αh, hα} ⊆ Qi or {α, hαh, αh, hα} ∩Qi = ∅, (8)

for α ∈ Tmn and 1 ≤ i ≤ dn−12 e. Now, recall we proved in Lemma 2.9 that α1α2 ∈ Piψ
−1 implies α1 ∈ Piψ

−1 or
α2 ∈ Piψ−1, for α1, α2 ∈ OPm×n and 1 ≤ i ≤ dn−12 e. Hence, by using properly the property (8), it is easy to show also
that, given α1, α2 ∈ ORm×n, if α1α2 ∈ Qi then α1 ∈ Qi or α2 ∈ Qi, for 1 ≤ i ≤ dn−12 e. Thus, by induction on k, it
follows that to write an element of Qi as a product of k elements of ORm×n, we must have a factor that belongs to Qi,
for 1 ≤ i ≤ dn−12 e.

Therefore, we have proved that:

Lemma 4.5 Any generating set of ORm×n contains at least dn−12 e distinct elements of rank n. �

Finally, it follows our main objective of this section.

Theorem 4.6 The rank of ORm×n is equal to 2dn2 e+ dn−12 e+ 2, for m > 2, and equal to dn2 e+ dn−12 e+ 2, for m = 2.
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[2] A.Ya. Aı̆zenštat, The defining relations of the endomorphism semigroup of a finite linearly ordered set, Sb. Math. 3
(1962), 161–169 (Russian).
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