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Abstract
The purpose of this paper is to compute the ranks of the monoid OR,, «x» of all orientation-preserving or orientation-
reversing full transformations on a chain with mn elements that preserve a uniform m-partition and of its submonoids
OP . xn of all orientation-preserving transformations and OD,,, x, of all order-preserving or order-reversing full transfor-
mations. These three monoids are natural extensions of O, x», the monoid of all order-preserving full transformations
on a chain with mn elements that preserve a uniform m-partition. Moreover, we also determine the ranks of certain
semigroups of orientation-preserving full transformations with restricted ranges.
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Introduction and preliminaries

Let X be a set and denote by 7(X) the monoid (under composition) of all full transformations on X. For n € N, let X,
be a chain with n elements, say X, = {1 < 2 < --- < n}, and denote the monoid 7 (X,,) simply by 7. We say that a
transformation « in 7y, is order-preserving [order-reversing] if, for all x,y € X,,, x < y implies za < ya [ra > yal. Notice
that, the product of two order-preserving transformations or of two order-reversing transformations is order-preserving
and the product of an order-preserving transformation by an order-reversing transformation is order-reversing. Denote
by O,, the submonoid of 7, whose elements are order-preserving and by OD,, the submonoid of 7, whose elements are
either order-preserving or order-reversing. Next, let a = (a1, a2,...,a:) be a sequence of t (¢ > 0) elements from the
chain X,,. We say that a is cyclic [anti-cyclic] if there exists no more than one index i € {1,...,t} such that a; > a;41
[a; < a;t1], where a;r1 denotes a;. Let a € T,. We say that « is an orientation-preserving [orientation-reversing|
transformation if the sequence of its images (la,...,na) is cyclic [anti-cyclic]. Like in the order case, the product of
two orientation-preserving or of two orientation-reversing transformations is orientation-preserving and the product of an
orientation-preserving transformation by an orientation-reversing transformation is orientation-reversing. Denote by OP,,
the submonoid of 7, whose elements are orientation-preserving and by OR,, the submonoid of 7, whose elements are
either orientation-preserving or orientation-reversing.

Semigroups of order-preserving transformations have long been considered in the literature. In 1962, Aizenstat [2]
gave a presentation for O, from which it can be deduced that O,, has only one non-trivial automorphism, for n > 1.
Also in 1962, Aizenstat [1] showed that the non-trivial congruences of O,, are exactly the Rees congruences. Some years
later, in 1971, Howie [16] studied some combinatorial and algebraic properties of O,,, in particular, he showed that O,, is
generated by idempotents of defect one and has Fh,, idempotents, where Fy, is the 2n'® Fibonacci number. Later, in 1992,
Gomes and Howie [15] revisited the semigroup O,, and computed its rank and idempotent rank (which are n and 2n — 2,
respectively). Recall that the [idempotent] rank of a finite [idempotent generated] monoid is the cardinality of a least-size
[idempotent]| generating set. More recently, Fernandes et al. [11] characterized the endomorphisms of O,,. The notion of
an orientation-preserving transformation was introduced by McAlister in [20] and, independently, by Catarino and Higgins
in [6]. Several properties of the monoids OP,, and OR,, have been investigated in these two papers. A presentation for
the monoid OP,,, in terms of 2n — 1 generators, was given by Catarino in [5]. A new presentation for OP,,, in terms of
2 (its rank) generators, was found by Arthur and Ruskuc [4], who also exhibited a presentation for the monoid OR,,, in
terms of 3 (its rank) generators. Finally, regarding the monoid OD,,, a presentation was given by Fernandes et al. in [9].
Its rank, computed in [10] by the same authors, is [n/2] + 1.
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Now, let p be an equivalence relation on a set X and denote by 7,(X) the submonoid of 7(X) of all transformations
that preserve the equivalence relation p, i.e. T,(X) = {a € T(X) | (aa,ba) € p,for all (a,b) € p}. This monoid was
studied by Huisheng in [18] who determined its regular elements and described its Green’s relations.

Let m,n € N. Of particular interest is the submonoid Tp,xn = Tp(Xmn) of Tmn, with p the equivalence relation on
X defined by p = (A1 x A1) U (Ag x Ag) U---U (4, X Ap,), where 4; = {(i — )n+1,...,in}, for i € {1,...,m}.
Notice that the p-classes A;, with 1 <14 < 'm, form a uniform m-partition of X,,,.

Regarding the rank of Ty,xn, first, Huisheng [17] proved that it is at most 6 and, later, Araijo and Schneider [3]
improved this result by showing that, for | X,,,| > 3, the rank of T, is precisely 4. The ranks of its partial and (partial)
injective counterparts were determined by the first author together with Cicald and Schneider [7].

Finally, denote by OR,,xn the submonoid of 7T,,«, of all orientation-preserving or orientation-reversing transfor-
mations, i.e. ORyxn = Tmxn N ORupyn. Similarly, let OD,xn = Tmxn N ODpny, OPrisn = Toxn N OPmyn and
Omxn = men N Omn

Example Consider the following transformations of 7Tio:

1 2 3 4|5 6 7 8|9 10 11 12 (1 23 4[5 6 7 8[9 10 11 12,
0‘1*<9 1110 12‘1 3 3 2‘5 507 ) ‘”*(8 8 8 6‘6 5 5 5‘ 12 11 10)

1 2 3 4|5 6 7 8[9 10 11 12\ (1 2 3 4[5 6 7 8|9 10 11 12,
s (11 1110 10‘10999‘4 3 3 1)’ a4_(7778‘8855‘5 6 6 7>’

123 4|5 6 7 8[9 10 11 12 (1 23 456 78 9 10 11 12
0‘5_(1 1 12‘3344‘10 1111 11)’ aﬁ_(l 123556 99 10 10 11>

Then, we have: oy € T3x4, but a3 € OR3x4; @z € OR3x4, but as &€ OP3yx4; az € OD3xy, but ag € Ozx4; ag € OP3xa4,
but ay € Osx4; as € O3x4; and, finally, ag € Tzx4.

In [19] Huisheng and Dingyu described the regular elements and the Green relations of O,,x,. On the other hand,
in [12] the authors proved that the monoid O,,x, has rank 2mn — n. A description of the regular elements and a
characterization of the Green relations of the monoid OP,,«, were given by Sun et al. in [21]. The cardinals of the
monoids ORpmxn, OPmxn, ODmxn and Oy, xp, were determined by the authors in [13].

In this paper, we continue the work of [12] and compute the ranks of the monoids OP,,xn, ODpmxn and ORpxn
(Sections 2, 3 and 4, respectively). In order to help achieving this goal, we use the wreath product description of Ty, xn,
due to Aratijo and Schneider [3], that we recall in the beginning of Section 2. On the other hand, since it will be useful
to determine the rank of OP,,«n, in Section 1, we find generating sets (and the ranks) of certain subsemigroups of OP,,
with restricted ranges.

1 On the semigroups OP,,,

Let n € Nand 1 < <n. Consider the subsemigroup with restricted range OP,,, = {a € OP,, | Im(a) C {1,...,7}} of
OP,,. Recall that the ranks and other properties of the subsemigroups of restricted range of PT,, 7, and Z,, were studied
by Fernandes and Sanwong in [14]. In this section, we determine a set of generators of OP,, , that we will use in the next
section. Moreover, we deduce that OP,, , has rank equal to (Z), for2<r<n-1.
Notice that, OP,, 1 is a trivial semigroup and OP,, ,, = OP,,. Therefore, in what follows, we consider 2 <r <n — 1.
We begin by showing that OP,, , is generated by its elements of rank r.

Lemma 1.1 For 1 <k <r, any transformation of OP,, , of rank k is a product of elements of OPy, , of rank k + 1.

Proof. Let a = ( clzl CIL2 CILk ) be an element of OP,, , of rank k, where Iy, I, ..., I} are the kernel classes of «
1] a2 k
in order 1 € I1 and minJ; < min I;41, for ¢ = 1,...,k — 1. Notice that Io,..., I are intervals and I; is an interval if and
only if n € I) (otherwise I; is a union of two intervals). Observe also that (a1, as,...,a) is a k-cycle. On the other hand,
as k < n, there exits j € {1,...,k} such that |I;| > 1.
Consider’y-( 1 S A K At k+1 con Clearly, v € OP,,, and v has rank k.
a]+1 DY ak a’l DR a]
Next, if 2 < j <k, let = h | L= Tj Ty ;if j=1and n € I, let
e i k—j+1 k— TR R I PN I b
(1] 2 o maxD | L _ B I ||| I, |IY
'6_<kk+1 k11 )andlf] Landn € I, let § = (k+1 Lo | k=1] & )




where I and I} are intervals such that I{ U I{ = I; and maxI{ < minI{ (notice that, we also have max I} < minlI}).
Hence, in all cases, it is a routine matter to check that 3 is an element of OP,, , of rank £+ 1 and a = 7.
Now, we focus our attention on 7. Let (b1,...,bx) be the k-cycle (ajt1,...,ak,a1,...,a;). Observe that, with this

Lo bkl n).Takebe{l,...m}\lm(w). If by, < b < by or by < by < b,

notation, we have v = ( b b b b
1o b e e b

(1 -k k+1 n (1 - k k+1 k+2 -+ n .
let v = T N T k+1>and’yg— by - b by b b)' On the other hand, if
b¢<b<bi+1orb<bi+1<biorb¢+1<bi<b,forsomeie{l,...,k:—l},let

_ 1 ! i i+1 .- k k+1 n
M=\ k—i+2 -+ k k+1 1 o k=i k—i+1 - k—i+1
and
(1 k=i k—i41l k—i+2 - k+1 k+2 - n
EN\ by o by b by ol A §

(notice that k& < n — 1, whence k + 2 < n). Then, in both cases, it is easy to show that v1,v2 € OP,,,, 71 and 72 have
rank k£ + 1 and v = y172.
Therefore, we proved that o = 8v17v2, with 5, 71 and 7, elements of OP,, . of rank k + 1, as required. O

From this lemma, by induction on the rank of the transformations, we may deduce that OP,, , is generated by its
elements of rank r, as announced above.

Netotet g = (3 3

r+1 --- n
1 e 1

) € OP,,,-. Hence, we have:

Lemma 1.2 Let o and S be two elements of OP,,, of rank r such that Ker(8) = Ker(a). Then = agﬁyr, for some
L I I,

ke{0,...,r—1}.
Ir _ Il
aj | as ar )andﬁ— ( by | ba by

B in order 1 € I and minI; < min [;4q, for ¢ = 1,...,7 — 1. Then, as (a1, as,...,a,) and (b1, bs,...,b.) are two r-cycles
of {1,...,7}, we have (a1,...,a,) = (i +1,...,m1,...,4) and (by,...,b,) = (G +1,...,m1,...,4), for some 1 <i,j <r.
Take k = j —i,if i < j, and k = r — i + j, otherwise. Hence, k € {0,...,r — 1} and it is a routine matter to prove that
8= agfw, as required. O

Proof. Take o = <

) , where I, I>, ..., I, are the kernel classes of o and

Now, notice that, if o is an element of OP,, ;. of rank r and o; and ay are two elements of OP,, , such that a = ajas2,
then Ker(ay) = Ker(a). On the other hand, it is clear that the number of distinct kernels of transformations of OP,, , of
rank 7 coincides with the number of distinct kernels of transformations of OP,, of rank r, which is precisely () (see [6]).
These observations, together with the previous two lemmas, prove the following result.

Theorem 1.3 For2 <r < n—1, the semigroup OP,,, is generated by any subset of transformations of rank r containing
at least one element from each distinct kernel. Furthermore, OPy, , has rank equal to (Z)

2 The rank of the monoid OP,,«,

Let m,n > 2. Following [3], we define the wreath product T, Ty, of T, and Ty, as being the monoid with underlying set
T X Tp and multiplication defined by

(alv L 7am; /6)(0/17 et 70"/m; ﬂ/) = (06106/15, ) ama;nﬁ;ﬂﬁ/)v

for all (a1,...,am;B), (&f,...,al,;8) € T™ X Tn.
Let o € Truxn and let 8 € T, be the quotient map of a by p, i.e. for all j € {1,...,m}, we have Ajo0 C A;3. For each
j€{1,...,m}, define a; € T,, by
kaj = ((j —Dn+k)a—(j8 - L)n, (1)

forall k€ {1,...,n}. Let @ = (a1, 0a9,...,am;3) € T,™ x T,,. With this notation, the function

1/1 : men — 7;127—777,
a — [



is an isomorphism (see [3, Lemma 2.1]).

Notice that, from (1), we have ko < faj if and only if ((j — I)n+ k)a < ((j — I)n+ £)e, for all 1 < k, £ < n
and j € {1,...,m}. Furthermore, if j8 = (j + 1)8, for some j € {1,...,m — 1}, then na; < loj4q if and only if
(jn)a < (jn + 1D)a. Also, if mfS = 13, then na,, < lag if and only if (mn)a < la.

Now, admit that « is an orientation-preserving transformation. Then,

1. la <--- < (mn)a; or
2. r+l)a<---<(mn)a<la<---<raand ra> (r+1)a, for some r € {1,...,mn —1}.

In the first case (notice that « is order-preserving), clearly, o; € Oy, for all j € {1,...,m}. Next, suppose that o satisfies
the second condition. If r € A;\{jn}, for some j € {1,...,m}, then a; € OP,\O,, and o; € Oy, foralli € {1,...,m}\{j}.
Furthermore, Im(a) C Ajc, whence f is constant. Otherwise (i.e. r = jn, for some j € {1,...,m — 1}), it is clear that
we have a; € Oy, for all i € {1,...,m}.

On the other hand, also as a consequence of (1), if (in)a < (jn)a then i < jB, for all 1 < 4
suppose that i8 > jg, for some 1 < 4,5 < m. Then, i8 = jf + ¢, for some ¢t > 1, and so (i8)n = (j8)n + tn. Hence
(in)a = (i —1)n+n)a =na;+ (i —1)n = nay+ (jB—1)n+tn > na; + (56 —1)n = ((j — 1)n+n)a = (jn)a, as required.
Now, if « is orientation-preserving then, as any subsequence of a cyclic sequence is also cyclic (see [8, Proposition 2.1]), the
sequence (na, (2n)a, ..., (mn)a) is cyclic and so, by the above observation, the sequence (13,28, ...,mf) is also cyclic,
ie. f e OPyy,.

Recall that the authors showed in [12, Lemma 1.2] that

< 4,7 < m. In fact,

Omsn® ={(01,...;am; B) € O x O, | jB = (j + 1)B implies no; < loyjiq, forall j € {1,...,m —1}}. (2)
Considering addition modulo m (in particular, m + 1 = 1), for OP,,xn, we have:

Proposition 2.1 4 (m + 1)-tuple (a1, ;. ..,am;B) of T X T belongs to OPpxnt if and only if it satisfies one of
the following conditions:

1. B is a non-constant transformation of OP,,,
forallie{l,...,m}, a; € O, and,
forallje{l,...,m}, j8 = (j+1)8 implies no; < lajyq;

2. pBis a constant transformation,
forallie{l,...,m}, a; € O, and

there exists at most one index j € {1,...,m} such that na; > lojiq;

3. B is a constant transformation,
there exists one index i € {1,...,m} such that a; € OP,, \ Oy, and, for all j € {1,...,m}\ {i}, a; € O,, and,
forall j € {1,...,m}, na; < lajii.

Proof. We will take into consideration, several times, the observations stated above.

First, assuming that a (m + 1)-tuple (au,...,ay,;3) satisfies 1, 2 or 3, it is just a routine matter to check that, if
@ € Tmxn 18 such that atp) = (aq, ..., @m; B) then a € OPyxn.

Conversely, let a € OP,xp and take @ = ay) = (aq, ..., am; 5).

If « is order-preserving then, by (2), (a1,...,am;8) € O x Oy, and, for all j € {1,...,m —1}, j8 = (j + 1)3 implies
na; < lojiq. If B is not constant, then mfB # 15 and so the (m + 1)-tuple @ satisfies 1. Otherwise, @ satisfies 2.

Next, suppose that (r +1)a < --- < (mn)a < la < --- < ra and ra > (r + 1)a, for some r € {1,...,mn — 1}. If
r € A; \ {jn}, for some j € {1,...,m}, it is easy to deduce that @ satisfies 3. On the other hand, if r = jn, for some
je{l,...,m— 1}, it is easy to show that @ satisfies 1, if 3 is not constant, and that @ satisfies 2, otherwise. O

Let @ € OPyxn. For i € {1,2,3}, we say that o and at) are of type i if at) satisfies the condition 4. of the previous
proposition. Notice that, if (a1, ..., am; f) = at) is of type 2 and, for all j € {1,...,m}, na; < lajy1, then o must be a
constant transformation.

Moreover, as clearly the product of (m + 1)-tuples of types 1 or 2 (respectively, 2 or 3) cannot be a (m + 1)-tuple of
type 3 (respectively, 1), then the subset M (respectively, N) of OP,,,xn of all (m+ 1)-tuples of types 1 or 2 (respectively,
2 or 3) is a submonoid (respectively, subsemigroup) of OP,,xn1.



Let M = M+vy~!'. Hence, clearly, M is the submonoid of OP,,y, whose elements are the order-preserving transfor-

mations (and so, in particular, M contains O,,x,) and the transformations o € OP,,xp such that (jn + Da < -+ <
(mn)a <la <--- < (jn)a and (jn)a > (jn + 1)a, for some j € {1,...,m —1}.

Recall that, being g, the n-cycle < ; ?) " ; 1 le ) € OP,, each element s € OP,, admits a factorization
s=glu, with 0 < j <n—1and u € O,, which is unique unless s is constant (see [6]).

Now, consider the permutations (of {1,...,mn})

1 2 -+ mn—1 mn
g:gmn:(2 3 ... mn 1 )EOPmn
and
n_ 1 - m | n+1 -+ mn-n|mn—-n+1 --- mn
F=9 _(n+1 - 2n | 2n+1 - mn 1 N ) )EOP’”X"'

Let « € M \ Opxp and take j € {1,...,m — 1} such that (jn)a > (jn + 1)a. Then, as (jn+ Da < - < (mn)a <
la < --- < (jn)a, it is clear that fia € O,,x,. Thus, we have:

Lemma 2.2 Each element o € M admits a factorization o = fiv, with 0 < j < m — 1 and v € Oyyxn, which is unique
unless a is constant. In particular, the monoid M is generated by O xpn and f.

Notice that, the uniqueness stated in the previous lemma follows immediately from the fact that f is a power of g and
from Catarino and Higgins’s result mentioned above.
Now, let N = Ny~!. Clearly, N is the subsemigroup of OP,,«, whose elements are the transformations a € OP,,xx

such that Im(«) C Aj, for some j € {1,...,m}. Next, we justify the study made in the previous section by considering
OPran,n, Which is a subsemigroup of N. For j € {1,...,m}, let 7; = (1,7v2,...,%m;B;), where v = --- = v, =
rlL ™) and B = ( ; Zl ) Clearly, 7; € N, for all j € {1,...,m}. Next, let @ = (a1,...,am;B;) € N,

with j € {1,...,m}. Then 7 = (au,...,m;B1) € OPunnt and @ = F7;. On the other hand, noticing that f¢ =
(1,...,1;9m), we also have a(fy)™ 7+ =7, ie. a=7(fy) L
Thus, being v; the element of N such that vji) =7, with j € {1,...,m}, we have:

Lemma 2.3 The semigroup N is generated by OPpnn U{va,...,Un}. Moreover, every element of N is a product of an
element of OPppn.n by a power of f.

Next, for j € {1,...,n — 1}, let

o 1 2 - n—3 n—j34+1 -+ nin+4+1
Pi=lj+1 j+2 - n 1 1]
(m—1n|(m-1)n+1 -+ mn—j5 mn—j+1 -+ mn
1 1 1 9 | € OPmn,n-
Notice that
i 1 - n—-i n—i+1 -+ n|in+l -+ m—-Dn|m-1n+1 -+ mn—1 mn
PL=\i+1 -« n 1 R i i i i+1 )
forie{1,...,n—1}, and
wn (1 - nln+l -+ m=-Dn|(m-1)n+1 -+ mn—-1 mn
pr = 1 -+ n n n n n 1 ’

is a right identity of OPp p.
Lemma 2.4 Any transformation of OPpnn is a product of elements of M U{p,; |1 <j < ["T’W}

Proof. By Theorem 1.3, it suffices to consider only transformations of OPy,y », with rank n. Let v be such a transfor-
mation.

STEP 1. Let ¢ = 1y and o = 'yp?ﬂjrl. Then, la = 1’yp?7i+1 =ip} " =1 and vy = ap?“fl. If @ € M then + satisfies

the statement of the lemma.



Therefore, suppose that o ¢ M. Hence, (mn)a = 1 (otherwise (mn)a = n, whence a € Oy, and so o € M). Let
r € {1,...,mn} be the least integer such that {r,...,mn}a = {1}. As « also has rank n and lao = 1, then r > n + 1.
Thus, r = (t — 1)n+ k+ 1, for some ¢t € {2,...,m} and k € {1,...,n — 1} (notice that, if kK = 0 then o € M).

Let j = ((t — 1)n)ae — 1 (notice that 0 < j <n —1). If j = 0 then

(1 - (t-1n|(t-1n+1 --- tn—1 tn|tn+1 --- mn
a=1{1 ... 1 9 n 1 1 .1 )
whence
apl ! = 1 - (t=In|(t-1)n+1 -+ tn—1 tn|tn+1 --- mn cM
n ... n 1 P n—l /)’I/ n PR n
and so, as v = ozp?‘”_l = (ap’f_l)pﬁ, in this case 7 also satisfies the statement of the lemma. Otherwise, let 8 € 7., be
defined by
mn—(G+1—za) fl<z<(t—1)n
=< za—j ft—1m+1<z<(t—-1n+k
n ft—1n+k+1<z<mn
Then, 8 € M and o = Bp,.
STEP 2. Now, in order to disregard the transformations pg, with £ > [251], for a given j € {1,...,n— 1}, we repeat STEP
1 considering, in particular, v = p;. As 1p; = j + 1, we take
=G4+l _ i _ (1 o om—j mn—j+1 - n n+1
;= PiP1 = PiP1 _<1 nfj ’Il*j+1 ’Il*j+1 n7j+1
(m—Un|(m-1n+1 -+ mn—3 mn—j7j+1 -+ mn—-1 mn
n—j+1 n—j+1 oo m—J3+1 n—j3+2 .- n 1 '

Notice that a; ¢ M. Now, by STEP 1, there exists 3; € M such that o; = B;pi—j11)-1 = Bjpn—j. Thus, p; = ajp{ =
ijn,jp{, for some 3; € M.

Finally, by noticing that ["T_l] <j<n-—1limpliesl <n—j< [”7_11, we may deduce that any transformation of
OPn,n with rank n is a product of elements of M U {p; | 1 < j < [251]}, as required. O

Now, let
(1 - G—Dn|@GE—-—n+1 (i—1)n+2 (G—1)n+3 - in |in+1 -+ mn co
“a=\1 - i—-n|@E-1)n+1 (G—1)n+1 (¢(—1n+2 - in—1|in+1 -+ mn mxmn
and
poo— (1 i-In|(E—-1n+1 -+ (G—-1n+j5j-1 (@G—-1n+5 (GE—-Ln+j+1 - in
J 1 i—Dn|@GE—1n+1 -+ (GE—1n+j—-1 GE—1n+j+1 (@i—1)n+j+1 - in
m+1 - mn
in+1 - mn)EOan,
forie{l,...,m}and j € {1,...,n—1}; and
(1 e G=n|(@E-n+1 (i-1)n+2 - in
1 o Gi—Dn|li—Dn+1 (i—Dn+1 - (i—n+1
in+1 in+2 o i+ Dn | @E+)n+1 - mn co
t—-n+1 GE—1n+2 -- in G+n+1 -+ mn mxmn
and
b 1 G—n|@E—1n+1 -+ n—j+1 in—35+2 - in
| i—1)n in+1 in+1 in+2 - in+j
in+1 -+ in+j im+j+1 -+ (GE+Dn|@E+)n+1 -+ mn co
in+j - in+j in+ji+1 -+ (G+Dn|@E+)n+1 -+ mn mxne

forie {1,...,m—1} and j € {1,...,n}. The authors proved in [12, Proposition 2.5] that the set
{ci,bij, Skt |1 <i<m,1<j<n-11<k<m-12</{<n}

is a generating set of the monoid O,,«.,. On the other hand, it is a routine matter to show that:



1. ¢; = fmitle £~ for 2 <i<m;
2. b ;= i for2<i<mand 1 <j<n-—1;
3. 5y = fm g fiml for 2 <i<m—1; and
4.ty = frmtt gy i for2<i<m—1and 2 < j <n.
These observations combined with the previous three lemmas, allow us to deduce the following result.

Proposition 2.5 The set A= {f,c1,b11-..,b1,n—1,51,t12- -, t1.n,P1,--- ,p[%w} is a generating set, with 2n+ (an] +1
elements, of the monoid OP pxrp-

Example 2.1 The monoid OP3yx4 is generated by the following transformations:

f_1234567 11112._123456789101112.
_5678910111 3 4 ) 2711 23|56 7 89 10 11 12 )°
b_123456789101112 (1 2 3 4|5 6 7 8|9 10 11 12
L=V 92 2 3 4|5 6 7 89 10 11 %1701 11 11 2 3 4/9 10 11 12 )°
po— (123 456 7 89 10 11 12\ (123456 7 8[9 10 11 12
27\ 1 3 3 4(5 6 7 8/9 10 11 12 )> "2~ \5 5 5 6|6 6 7 89 10 11 12 )’
b (123 456 7 8[9 10 11 12\ (123456 7 8[9 10 11 12,
13741 2 4 45 6 7 89 10 11 12 )’ "3~ \5 5 6 7|7 7 7 8|9 10 11 12 )’
_ (1234|567 8910 11 12 (1234|567 89 10 11 12
Pr={9 3 4 1|1 1111 1 1 2)° 4715 6 7 8/8 8 8 8/9 10 11 12 )’
1 2 3 4|5 6 7 8|9 10 11 12
P2 341 101 11 1|1 1 2 3 )°

The next series of lemmas will allow us to conclude that A is a least size generating set of OP,,xn, for m > 2, and
contains a least size generating set of OPoxy,.

Lemma 2.6 Any generating set of OP,xy contains at least a non identity element of rank mn and n distinct elements
of rank mn — 1.

Proof. Let X be a generating set of OP,,,«p.

Notice that, the group of units of OP,,, «,, is, clearly, generated by the permutation f = ¢”, which has order m. Hence,
X must contain a non identity element of rank mn.

Now, let &1,...,& (k > 1) be all the elements of X of rank mn — 1. Then, any element of OP,,,«,, of rank mn — 1 is of
the form a&; f?, for some j € {1,...,k}, i € {0,...,m —1} and a product &« € OP,, . As the elements of rank mn — 1 of
the above form can not have more than mk distinct images and, on the other hand, we have precisely mn possible distinct
images for an element of OP,, «, of rank mn — 1, we deduce that mn < mk and so k > n, as required. O

Lemma 2.7 For m > 2, any generating set of OP,xn contains at least n distinct elements of rank (m — 1)n.
Proof. Let Tj = {& € OPpyxn | rank(a) = (m — 1)n and (kn)a = (kn + 1)a = (i — 1)n + j, for some 1 < i,k < m}, for

j€{l,...,n}. Clearly, T1,...,T, are n two by two disjoint non-empty subsets of elements of rank (m — 1)n of OP,,xn.
Let j € {1,...,n} and take o € Tj. Let ¢,k € {1,...,m} be such that (kn)a = (kn+1)a = (i — )n+ j.

Suppose that a = o/a”, for some o a” € (’)’Pan, and take ayy = (ay,...,am;8), &b = (af,...,a,;B') and
o'y = (of,...,all 8. Notlce that, a, o/ and o are elements of OP,,xy, of type 1 (whence oy, o), o) € O, for

¢ e {1,...,m}). Also, observe that nay = j = lagy1, Im(ag) = {1,...,5}, Im(ag41) = {4,...,n} and ay = 1, for
e {l,...,m}\{k,k+1}. Moreover, we have ay = oy, for £ € {1,...,m}, and, on the other hand, 3 = 3’8", from
which follows that rank(8’) = m — 1 or rank(8”) = m — 1, since rank(3) = m — 1.

Next, our goal is to show that o/ € T; or o’ € T;. We consider two cases: rank(f’) =m — 1 or rank(8’) = m.

First, admit that 5’ has rank m — 1. Then o’ has rank (m — 1)n and so Ker(o') = Ker(a). Hence Ker(a},) = Ker(ay)

and Ker(a}, ;) = Ker(ag1), from which follows that |Im(aj,)| = |Im(ag)| = j and [Im(aj, )| = |Im(ag41)| =n—j+1.
Thus nag, > j and lag,, < j, since lag, < --- < naj and log,; < --- < najg, ;. On the other hand, the equality
Ker(a’) = Ker(a) also implies that (kn)a’ = (kn + 1)/, whence naj, = laj ., and so naj = lag,, = j. Then

(kn)e/ = (kn+1)o/ = (k' — 1)n + j and, finally, we conclude that o/ € T}.



Secondly, suppose that 8’ has rank m (i.e. 8’ is a power of g,,). Then $” must have rank m — 1 and so o has rank
(m —1)n. As ooy = oy, then {1,...,j} = Im(ax) C Im(ajy ) and so najg > j. Similarly, as aj 0, 15 = Qrt1,
then {j,...,n} = Im(ag4+1) € Im(af),)5) and so 1afy )5 < j. Now, by noticing that ' is a power a gn, we have
(k+1)8" = kB +1and so (k' +1)8" = ((k+1)8)8" = (k+1)8 = kB = (kB')B". Hence, j < najs < lags ., =
lafy )5 < J, le. najgly = lajg = j, from which follows that ((k8')n)a” = ((k8')n + 1)a” = (kB — 1)n + j. Thus
o € Tj, as required.

Now, by induction on £, it is clear that to write an element of Tj as a product of k elements of OP,, x,, we must have
a factor belonging to T}, for all 1 < j < n. This fact proves the lemma. O

The next lemma helps us to find the least number of elements of rank n required on a generating set of OP,,,xn.

Lemma 2.8 Let (ai,...,0m;3) € OPmxnt be such that i = jB, for some 1 <i < j <m. Then |Im(a;)|+ |Im(a;)| <
n+ 2. Moreover, if | Im(c;)| + |Im(cy;)| = n + 2, then (as,...,am;B) is of type & and:

1. a; € OP,\ O, ora; € OP, \ Op;
2. Im(a;) UIm(oj) = Ajp (and so (aq,...,cum; B)Y~1 is a transformation of OPyxn of rank n);
3. | Im(ag)| =1, for ke {1,...,m}\ {i,j}.

Proof. We begin by proving that |Im(e;)| + [Im(e;)| < n + 2.
First, suppose that o, o; € O,. Then, as i8 = j3, we have

lo; < <na; <la; <---<na; or la; <---<na; <la; < - < na;,

whence Im(a;) U Im(c;) has at least |Im(cy)| + |Im(a;)| — 1 distinct elements (notice that we may have na; = lay or
no; = loy). As Im(a;) UIm(ay) C Ayp, it follows that | Im(e;)| + [Im(ey;)| < n+ 1.
Next, suppose that a; € OP,, \ O,,. Then a; € O,, and we have

(t+1o < - <noy <la; <--- <ney <loy < -+ < tay,

for some 1 <t < m — 1, whence Im(c;) UIm(a;) has at least |Im(a;)| + [Im(a;)| — 2 distinct elements (notice that we
may have no; = 1oy and noj = la;) and so [Im(a;)| + [Im(aj)| < n + 2.

Finally, as the case a; € OP,, \ O,, is similar to the previous one, we proved that |Im(a;)| + |Im(e;)| < n + 2, for all
cases.

Now, in order to prove the second part of the lemma, admit that | Im(c;)| + | Im(a;)| = n + 2.

Notice that, by the first part of the proof, a; € OP, \ O, or aj € OP, \ O, (and so (a1, ..., qm; 3) must be of type
3). On the other hand, as n > |Im(a;) UIm(a;)| > [Im(a;)| + | Im(ej)| — 2 = n, we have Im(c;) UIm(a;) = A,3.

Suppose that o; € OP,, \ O,, and let t € {1,...,m — 1} be as above. Let k € {i+1,...,5 —1}. Let £ € {1,...,m}\
{i,...,7}. Then (with the obvious adaptation if k or £ does not exist) we have

(t+1Do; < - <noy <lap<---<nap <la; <---<naj <lag < <nay <la; < - < toy.

Hence, no; = 1oy and naj; = 1oy, otherwise Im(ay) U Im(cyj) would have at least | Im(ay)| + | Im(ey;)| — 1 = n+ 1 distinct
elements, which is a contradiction. Thus, no; = lag = -+ - = noyg = 1oy (if k exists) and noj = lag =--- =noy = loy (if
¢ exists). Anyway, we proved that |Im(ag)| =1, for k € {1,...,m}\ {i,5}.

Similarly, if a; € OP,, \ Oy, we have |Im(ay)| =1, for k € {1,...,m} \ {¢,7}, as required. O

Lemma 2.9 Any generating set of OP . xn contains at least ["T_l] elements of rank n.
Proof. For1 <i< (”.511, define
P, ={(7,---yYm;A) € N | |Im(yx)| =n —i+ 1 and |Im(v,)| =i + 1, for some 1 < k,¢ < m such that k # (}.

Notice that p;1) € P; and, by Lemma 2.8, all elements of P; are of type 3 and all elements of P;y~! have rank n, for
1<i< [%41 Moreover, Py, ..., P[%] are f%l two by two disjoint subsets of OP,, 1. In fact, suppose there exists
(Y1, Ym3A) € PiNP;, for some 1 <i < j < [251]. Let 1 < k, ¢ < m, with k # ¢, be such that | Im(y)| = n—i+1 and
[Im(y¢)| =i+ 1. Then, by Lemma 2.8, we have |Im(y)| = 1, for t € {1,...,m} \ {k,¢}. Hence |Im(vyx)|=n—j+1 or
[Tm ()| = j+ 1. If | Im(yx)| = n—j + 1 then ¢ = j, which is a contradiction. On the other hand, if |Im(vx)| = j+ 1 then
n=i+j <[]+ [%5*] < %+ % = n, which is again a contradiction. Therefore, P, N P; =0, for 1 <14 < j < [2%51].



It follows that Py, ..., P(nT_lﬂ/FI are ("T_l] two by two disjoint subsets of OP,,x. of elements of rank n.

Now, let 7 € {1,,("7*1]} and take ¥ = (y1,...,Ym;A) € Pi. Let 1 < k¢ < m, with k # ¢, be such that
[Im(vk)| =n—i+ 1 and | Im(y,)| =7 + 1.

Suppose that 7 = apa/1, for some o, & € OP,xn, and take ap = (ay,...,ap; ) and o' = (o, ..., al,; 8). Notice
that v; = aja;ﬂ, for 1 < j < m. Moreover, as 7 is of type 3, then either « or o is of type 3.

Next, our goal is to show that ap € P; or o1 € P;.

We begin by observing that if k8 = ¢ then, by Lemma 2.8, we have |Im(ay)| + | Im(ay)| < n 4+ 2 and so, as

n—i+1=[Im(y)| = |(Im(ax))orsl < [Im(ag)| and i+ 1 =[Im(y)| = [(Tm(er))aps| < [Im(a),

it follows that |Im(ag)| =n —i+ 1 and |Im(ay)| =i+ 1. We consider two cases.

First, if « is of type 3 (in particular, we have a) € N), as 3 is a constant transformation, we have k3 = £3 and so, by
the above observation, we may deduce immediately that av € P;.

On the other hand, admit that « is not of type 3. Then k8 # ¢6. In fact, if k8 = ¢f then |Im(ag)| + |Im(ay)| =
(n—i+1)+(i+1) =n+2 and so, by Lemma 2.8, a must be of type 3, which is a contradiction. Also, notice that o’
must be of type 3 and so 8’ is a constant transformation. In particular, (k3)8" = (¢5)5’. Hence, by Lemma 2.8, we have
| Im ()| + [ Im(ayg)| < n + 2. Moreover, since Im(vyx) = Im(agayz) € Im(ay ) and Im(ye) = Im(cpayg) C Im(ayg), we
have n —i+1 = [Im(vyg)| < [Im(aj )| and i +1 = [Im(v,)| < |Im(ajz)[. Thus, we obtain precisely | Im(ajz)| =n—i+1
and |Im(ajg)| =i + 1, which proves that o'y € P;.

Now, by induction on k, it is easy to show that to write an element of Pj3)~! as a product of k elements of OP,,xn,
we must have a factor that belongs to Py~ !, for all 1 <4 < f"T_lw This fact proves the lemma. O

Now, for m > 2, from the previous lemmas, we deduce immediately that A is a least size generating set of OP,,xn.
On the other and, regarding OPsy,, it is a routine matter to show that:

1. s1=0b11b12 - b1 o1 /P

2. tl,j = fcjl'_lpj_lf, fOI' 2 S] S "anl] +1

3. tl,j = C?_l_ijlpn_jpljilf, for ’—anl] +2 < ] <n-— 2, and

4. tl,n—l = b171p7f_1f and tl,n = flep?f.
Hence, from these equalities and Lemmas 2.6 and 2.9, it follows that {f,c1,b11...,b1n-1,p1,--- ,p[%w} is a least size
generating set of OPax,,. Therefore, we have proved:

Theorem 2.10 The rank of OPyxn is equal to 2n + [”T_l] + 1, for m > 2, and equal to n + ["T_ll + 1, form = 2.

3 The rank of the monoid OD,, .,

o 1 2 - o n—1 mn
“\mn mn-1 --- 2 1 ’
Observe that h is a permutation of order two of X,,,, and h € OD,,, . Moreover, given & € T, we have a = h2a = h(ha)

and « is an order-reversing transformation if and only if ha (respectively, ah) is an order-preserving transformation. Thus,
clearly, the monoid OD,, ., is generated by O« U{h}. As recalled in Section 2, the authors proved in [12] that

Consider the reflexion

C:{C’valjask‘7tk,f|lglémvléj§n7171§k§m7172S£§n}

is a generating set, with 2mn — n elements, of the monoid O,,«,. Hence C' U {h} generates OD,,, . In order to reduce
the number of generators, consider

S 1 - @G—Dn|@GE-—1n+1 - din—j+1 in—j5+2 - in

W= 1 o G—Dn|G—Dn+l - in—gt1 in—j41 - in—j+1
in+1 in+2 - dint+j - (i+Dn|@GE+1l)n+1 -+ mn co
in—j+1 in—j+2 - in .- in (i+)n+1 -+ mn X

fori e {1,...,m—1}and j € {1,...,n}. Notice that, we have s; = s, ,, for i € {1,...,m—1}. Finally, if m is odd, consider
also the transformation u; € Op,x,, of rank mn — 1, whose image is {1,...,mn}\ {Z5:2n + j} and whose kernel is defined
for each 1 < j < [3].




Example 3.1 For m = 3 and n = 5, we have:
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The proofs of the equalities stated in the next lemma are routine.
Lemma 3.1 The following identities hold:

1. ¢; = hbpm—it1n—1bm—it1,n—2 - " bm—it1,1h, forl <i<m;

2. bi1 = hbm—itin—1bm—itin—2"bm—it1,26m_it1h, forl <i<m;

3. bi,j = hbm—i+1,n—jbm—i+1,n—j—l "'bm—i+1,2Cm—i+1bm—i+1,n—1bm—i+1,n—2"'bm—i+1,n—j+lh: for 1 < i < m and

4o bmgs ;= upgi_jpauy, form odd and 1 <j < [3];

= hurny_jy1ujr1h, form odd and 1 <j <n—[5]

5. bLJrl 2

p) 7n_j

6. tij =hsm_ijh, forl<i<m-—-1landl<j<n;

7.ty = bl - - Vihsin—j+1hsm—ih, with by = bm—in—jre—10m—in—jye—2 - bmiy, for2<L<j, 1<i<m-—1
and2<j<n-1. 0O

Now, let A be the set

2<i<n—1, n—[ghlgrgnq, 1<t<m—1)},

-1

. m
{€irbijy Sk 8m ry s, h [ 1 <0 < 5

. m
1<j<n-1,1<k<o

if m is even, and the set

m

—1
{eibigoun,siesih | 1Si< = 1<j<n—1, 1<k< [g] 2<li<n—1,1<t<m—1},
if m is odd. By using the equalities of Lemma 3.1, it is not difficult to show that any element of C is a product of elements
of A. Thus, it follows that:

Proposition 3.2 The set A generates the monoid OD,y, . Furthermore, A has [ ] + [@—‘ + 1 elements. O

Next, we aim to show that the rank of OD,, «,, is precisely [%1 + [w—‘ + 1.

Let U be a generating set of OD,,xn-

First, notice that, as h is the unique non-identity permutation in OD,,, «,, we must have h € U.

On the other hand, recall that, in the proof of [9, Theorem 1.5], Fernandes et al. showed that any generating set
of the monoid OD,,, for n > 2, has at least [5] elements of rank n — 1. A similar argument allow us to conclude that
U must have at least [""] elements of rank mn — 1. In fact, take K; = {1,2,...,mn} \ {i}, for 1 < i < mn, and let
&1,. .., & be all the elements of U of rank mn — 1. Then k£ > 1 and, for all 1 < i < k, there exists 1 < ¢; < mn such that
Im(¢;) = Ky,. Now, given an element o € OD,;, ., of rank mn — 1, we have o = £§; or o = £&;h, for some & € OD,, ., and
1 < < k. Hence, Im(a)) = Im(§;) = Ky, or Im(a) = Im(&;h) = Kppp—r,+1- As we have mn possible distinct images for a
transformation of OD,,,, of rank mn — 1, the set {Ky,,..., K¢, Knn—t,41; - - - s Kmn—e,+1} has at least mn elements. It
follows that 2k > mn and so k > [7*].

Therefore, we have proved:
Lemma 3.3 Any generating set of ODyxn contains h and at least [ ] distinct elements of rank mn —1. O

Regarding generators of rank (m — 1)n, we have:

10



(m—1)n
2

Lemma 3.4 Any generating set of ODp,xy contains at least [ -‘ distinct elements of rank (m — 1)n.

Proof. For 1 <i<m —1and 1 < j < n, consider
Qij = {a € Onxn | rank(a) = (m — 1)n and (in)a = (in+ 1)a = (kK — 1)n + j, for some 1 < k < m}.

The authors proved in [12, Theorem 2.6] that the family {Q;; | 1 <i <m —1,1 < j < n} consists on (m — 1)n two by
two disjoint non-empty subsets of O,y such that, given oy, as € Opxn, if v1a € Q; 5 then ay € Q5 or ag € Q; 5, for
1<i<m—1and1<j<n. On the other hand, given « € T,,,,, it is easy to show that

a € Q;; if and only if hah € Qu—in—j+1  and, consequently, ha € Q;; if and only if ah € Qu—in—jt1, (3)

forl1<i<m-—-land1<j<n.
Next, for 1 <i<m —1and 1 < j < n, define

Tij={a € ODpmxn | @ € Qij UQm—_in—jt1 0r ha € Qi j U Qi n—jt1}-

Observe that, clearly, T;; = Tp—in—jy1, for 1 < i < m—1and 1 < j < n. Moreover, if 1 < 1,7 < m-—1
and 1 < j,j° < n are such that T; ; N Ty j» # 0 then (¢/,j") = (i,j) or (¢,j') = (m —i,n — j + 1). In fact, suppose
that there exists a € TiJ N Ti',j’- If @ € Opxpn then a € (Qi,j @] mei,n7j+1) N (Qi/,jf U mei’,nfjurl)- On the other
hand, if & € Opyxn then ha € (Qij U Qum—in—j+1) N (Qirjr U Qm—ir n—j+1). Then, for both cases, Q;; N Q;r ;v # 0
or Q'L,j N QnL—i/,n—j/+1 }é @ or Qm—i,n—j+1 N Qi/,j’ # @ or Qm—i,n—j-‘rl N Qm—i’,n—j’-‘rl 7£ @7 from which follows that
(¢, 5") = (4,7) or (¢/,j") = (m —i,n — j + 1), regarding that {Q;; | 1 <i <m —1,1 < j < n} has (m — 1)n two by two
disjoint elements.

Therefore, we may deduce that the family {7;; |1 <7 <m —1,1 < j < n} consists on [@—‘ two by two disjoint
non-empty subsets of OD,, «n.

Now, by proving that any generating set of OD,,«,, contains an element of 7} ;, forall 1 <i<m —1land 1 < j <n,
the proof of the lemma follows. To accomplish this aim, we show that, for 1 < ¢ < m—1and 1 < j < n, given
at,...,05 € ODpyxyp (k € N) such that oy - - o € T} j, we have oy € T}, for some t € {1,...,k}. Furthermore, in order
to prove this last statement, by induction on k, it suffices to consider k = 2.

First, notice that, given a € Ty, it follows from (3) that

{a, hah,ah,ha} CT;; or {wo, hah,ah,ha}tNT;; =0, (4)

forl<i<m-—land1<j<n.

Hence, let 1 <i <m—-1and 1 < j < n and let a;,as € OD,,xp be such that ayas € T; ;. Next, we show that
a1 € T ; or anp € T; j, by considering four cases, which finishes the proof.
CASE 1. If a1, a0 € Opyxn, then aqan € Q5 U Qru—in—j+1 and so, by the observation at the start of the proof, we have
o1 € Qi’j @] mei,nfjjtl or aip € Qi,j @] Qm,i)n,jJrh whence o € Ti’j or aip € Ti’j.
CASE 2. If oy & Opyxnn and a2 € Opxp, then (aqh)(has) = ajae € T;; and arh,has € Opyx, and so, by CASE 1,
arh € TiJ or hag € Ti,j- Hence, by (4), o) € TiJ or (g € TiJ.
CASE 3. If a1 & Opxn and ag € Opyxn, then hay € Oryxr and ag € Op,xr, and, by (4), (hai)ag = h(cnas) € T; ;. Hence,
by CASE 1, hay € T; j or g € T; ; and so, again by (4), oy € T} j or as € T; ;.
CASE 4. Finally, if oy € Osxn and ag € Opmxn, then aq € Oy iy and ash € Oy, xq and, by (4), aq(a2h) = (a1a2)h € T; 5.
Thus, by CASE 1, aq € T; ; or ash € T; ; and so, once again by (4), a; € T; j or as € T} j, as required. O

Now, from Proposition 3.2 and Lemmas 3.3 and 3.4, the main result of this section follows immediately.

Theorem 3.5 The rank of ODyyxyp is [ + (@1 +1. O

4 The rank of the monoid OR,, «,,

As for OD,,xn, if @ € Thun, then « is an orientation-reversing transformation if and only if ha (respectively, ah) is an
orientation-preserving transformation. Hence, as a = h?a = h(ha), it is clear that the monoid OR,,x,, is generated by
OPruxn U {h}. From Section 2, recall that {f,c1,b11...,b1.n—1,81,t12- 1,0, P15 - - ,pranl]} is a generating set, with
2n + f”T*W + 1 elements, of the monoid OP,,xy,. Furthermore, for m = 2, the set {f,c1,b1,1...,b1,n-1,P1,--- 7p(anl]}

generates OPay,, and has just n + f"T_l] + 1 elements.

Now, for 1 < j <[], let v; be the transformation of Op,xy of rank mn — 1, whose image is {1,...,mn} \ {j} and
whose kernel is defined by the partition {{1},....{[5] —j}{[5] =7+ 1L [5] =7 +2}{[5] —j+3},...,{mn}}.
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Example 4.1 For m = 3 and n = 5, we have:
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It is a routine matter to prove the following lemma.
Lemma 4.1 The following equalities hold:
1. by =vpg—jravy, for1<j<[§];
2 bin—y = " g v ST, for <G <n—[3] - 1;
3. ¢ =hfbin_1bin_o-b12bi 1 fM 1y
4. tin = ™ 2hs " 2h;
5

Lty = CTijth(bl,n—j—&-lbl,n—j coob19) (b1 p—jt2bin—jr1 - b13) - (bi—1b1p—2 - - bl,j)tl,n—j+151fm72h;
for2<j<n-—1. O

Therefore, it is easy to prove that:

Proposition 4.2 The set {f,s1,t12...,t1[27,p1,- - sPpaz1], V1,0, U2, h} has 2] %] Jr[”T*l} +2 elements and generates
n _

ORuxn- Furthermore, for m = 2, the set {f,p1,... SIESS NI ,v[%%h} has [ 5]+ ("Tl] + 2 elements and generates
ORoxn. O

In what follows, we show that the first and second sets of the last result are a least size generating set of OR,;,xp, for
m > 2, and of OPayx,, respectively.

First, notice that any generating set OR,,x, must contain two distinct permutations of X,,,, one preserving the
orientation and another reversing the orientation.

Next, we consider transformations of rank mn — 1.

Lemma 4.3 Any generating set of ORpy,xn contains at least [5 ] distinct elements of rank mn — 1.

Proof. Foreach 1 <t <mmn,let K; = {1,2,...,mn}\{t}. Let U be a generating set of OR,,,x» and let &,...,& (k> 1)
be all the elements of U of rank mn — 1. Then, for 1 < j < k, we have that Im({;) = Ky,, for some 1 < ¢; < mn. For
1<j<kand1<i<m—1, define {;,4; as being the element of X,,, congruent modulo mn with ¢; 4 in.

Now, take a transformation v € OR,,x, of rank mn — 1. Then, v = a&; f* or v = a&; f'h, for some j € {1,...,k},
i€10,...,m—1} and o € ORpxn. Hence, Im(y) = Ky, , or Im(y) = Kyn—g;,,;+1. As we have precisely mn possible
distinct images for a transformation of OR,, «, of rank mn — 1, the set {Ky,,..., Ko, ., Kmn—t1+1, - - - » Kmn—s,,,+1} has
at least mn distinct elements. Thus 2mk > mn and so k > [§ ], as required. O

For the transformations of rank (m — 1)n, we have:

Lemma 4.4 For m > 2, any generating set of OR.xn contains at least [2] distinct elements of rank (m — 1)n.

n

2

Proof. This proof is similar to Lemma 3.4 and so we omit some details.
For j € {1,...,n}, consider

T; = {a € OP.xn | rank(e) = (m — 1)n and (kn)a = (kn+ 1)a = (i — 1)n + j, for some 1 < i,k < m}.

Recall that, in the proof of Lemma 2.7, we showed that Ti,...,T, are n two by two disjoint subsets of OP,,x, such
that, given aq,ap € OPpxp, if a1ag € T then oy € Tj or ap € Ty, for 1 < j < n. Moreover, it is easy to show that,
given « € Tpp, we have a € T} if and only if hah € T,,_;41 and, consequently, ha € T} if and only if ah € T}, 41, for
1 < j <n. Define

Uj = {Oé € ORuxn | [OAS Ti UTn_j_,_l or ha € Tj UTn—j—i—l},
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for1 <j<n.

First, observe that, clearly, U; = U,_;11, for 1 < j < n. Also, it is easy to show that, if j,j" € {1,...,n} are such
that U; N Uj: # 0 then j' € {j,n — j + 1}. Tt follows that Uy,...,Uraq are [§] two by two disjoint non-empty subsets of
ORan-

Secondly, notice that, given o € Ty, it is also easy to show that {«, hah,ah, ha} C U; or {«, hah,ah,ha} NU; =0,
for 1 < j < n. Hence, it is a routine matter to prove that, for 1 < j < n and ay, 02 € ORyxn such that ajas € Uj,
we have oy € U; or ap € Uj. It follows, by induction on k, that to write an element of U; as a product of k elements of
ORmxn, we must have a factor that belongs to Uj;, for 1 < j < [§], which proves the lemma. O

Next, we deal with transformations of OR,, «, of rank n. As for OP,,«,, we aim to show that, in order to generate
ORnxn, at least f"T_lW distinct transformations of rank n are required.

We begin with an observation, for which we need to introduce notation first. For each n € N, denote by h,, the reflexion

2 v o m—1 n

n—1 --- 2 1

hy = (hp, by« -« B Byy). Furthermore, being a € Truxp and atp = (g, aa, . . .,y B), we obtain

permutation ) of X,. Observe that, with this notation, we have h = h,,,, and, moreover,

(hah)y = (hnamhn, hntim—1ln, - .- s Bt s B Bhun)- (5)
Notice that, clearly,
[ T (R Shim )| = [Im(B)]  and [ Im(hpoihn)| = [ Tm(az)], (6)
for 1 <i<m.
Now, recall the f"T_lW two by two disjoint subsets of OP,,xnt
P ={(71,--,%m;A) € N | |Im(y)| =n — i+ 1 and |Im(qy)| =i + 1, for some 1 < k, ¢ < m such that k # ¢},
with 1 < i < [251], considered in the proof of Lemma 2.9. Given a € Ty, from (5) and (6), it follows immediately that

ap € P; if and only if (hah)y € P;  and, consequently, (ha)y € P; if and only if (ah)y € P, (7)

for 1 <i <251
Next, following the same strategy of Lemmas 3.4 and 4.4, we define

Q; ={a € ORpxn | b € P; or (ha)y € P;},

forl1 <i< ("T_l]
First, observe that, as Piy~', ..., P[ na ]1/)_1 are ("7*1] two by two disjoint subsets of transformations of rank n of
OP uxn, it is clear that also @, . . ., Qf"%W are ["7’1] two by two disjoint subsets of transformations of rank n of OR % n .-
On the other hand, from (7), we also deduce that

{a,hah,ah,ha}t CQ; or {a,hah,ah,halnN@Q; =10, (8)

for « € Tpup and 1 < 4 < f"T*lw Now, recall we proved in Lemma 2.9 that ajas € Py~ ! implies oy € P~ ! or
as € Pyt for ay, a0 € OPpyxpn and 1 <4 < [”T’l] Hence, by using properly the property (8), it is easy to show also
that, given a1, as € ORpuxn, if a1as € Q; then ay € Q; or as € Q;, for 1 < i < [”T_l] Thus, by induction on k, it
follows that to write an element of @); as a product of k elements of OR,,,x,, we must have a factor that belongs to @,
forl1 <i< ("T_l]

Therefore, we have proved that:

n—1

5= | distinct elements of rank n. O

Lemma 4.5 Any generating set of OR,xn contains at least [
Finally, it follows our main objective of this section.

Theorem 4.6 The rank of ORyxn is equal to 2[ %] + [252] + 2, for m > 2, and equal to [%] + [252] + 2, for m = 2.

13



References

[1]

2]

[10]

[11]

[12]

A.Ya. Aizenstat, Homomorphisms of semigroups of endomorphisms of ordered sets, Uch. Zap. Leningr. Gos. Pedagog.
Inst. 238 (1962), 38-48 (Russian).

A.Ya. Aizenstat, The defining relations of the endomorphism semigroup of a finite linearly ordered set, Sb. Math. 3
(1962), 161-169 (Russian).

J. Araidjo and C. Schneider, The rank of the endomorphism monoid of a uniform partition, Semigroup Forum 78
(2009), 498-510.

R.E. Arthur and N. Ruskuc, Presentations for two extensions of the monoid of order-preserving mappings on a finite
chain, Southeast Asian Bull. Math. 24 (2000), 1-7.

P.M. Catarino, Monoids of orientation-preserving transformations of a finite chain and their presentations, Proc. of
the Conference in St Andrews, Scotland, 1997 (1998), 39-46.

P.M. Catarino and P.M. Higgins, The monoid of orientation-preserving mappings on a chain, Semigroup Forum 58
(1999), 190-206.

S. Cicalo, V.H. Fernandes and C. Schneider, On the ranks of partial endomorphism monoids of a uniform partition.

V.H. Fernandes, The monoid of all injective orientation-preserving partial transformations on a finite chain, Comm.
Algebra 28 (2000), 3401-3426.

V.H. Fernandes, G.M.S. Gomes and M.M. Jesus, Presentations for some monoids of partial transformations on a
finite chain, Comm. Algebra 33 (2005), 587-604.

V.H. Fernandes, G.M.S. Gomes and M.M. Jesus, Congruences on monoids of order-preserving or order-reversing
transformations on a finite chain, Glasgow Math. J. 47 (2005), 413-424.

V.H. Fernandes, M.M. Jesus, V. Maltcev and J.D. Mitchell, Endomorphisms of the semigroup of order-preserving
mappings, Semigroup Forum 81 (2010), 277-285.

V.H. Fernandes and T.M. Quinteiro, On the monoids of transformation that preserve the order and a uniform partition,
Comm. Algebra, to appear.

V.H. Fernandes and T.M. Quinteiro, The cardinal of various monoids of transformations that preserve a uniform
partition, Bull. Malays. Math. Sci. Soc., to appear.

V.H. Fernandes and J. Sanwong, Semigroups of transformations with restricted range, submitted.

G.M.S. Gomes and J.M. Howie, On the ranks of certain semigroups of order-preserving transformations, Semigroup
Forum 45 (1992), 272-282.

J.M. Howie, Product of idempotents in certain semigroups of transformations, Proc. Edinburgh Math. Soc. 17 (1971),
223-236.

P. Huisheng, On the rank of the semigroup Tg(X), Semigroup Forum 70 (2005), 107-117.

P. Huisheng, Regularity and Green’s relations for semigroups of transformations that preserve an equivalence, Comm.
Algebra 33 (2005), 109-118.

P. Huisheng and Z. Dingyu, Green’s Equivalences on Semigroups of Transformations Preserving Order and an Equiv-
alence Relation, Semigroup Forum 71 (2005), 241-251.

D.B. McAlister, Semigroups generated by a group and an idempotent, Comm. Algebra 26 (1998), 515-547.

L. Sun, P. Huisheng and Z.X. Cheng, Regularity and Green’s relations for semigroups of transformations preserving
orientation and an equivalence, Semigroup Forum 74 (2007), 473-486.

Vitor H. FERNANDES, Departamento de Matemética, Faculdade de Ciéncias e Tecnologia, Universidade Nova de Lisboa, Monte
da Caparica, 2829-516 Caparica, Portugal; also: Centro de Algebra da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003
Lisboa, Portugal; e-mail: vhf@fct.unl.pt

TERESA M. QUINTEIRO, Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emidio Navarro 1, 1950-062 Lisboa, Portugal;
e-mail: tmelo@dec.isel.ipl.pt

14



